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ABSTRACT

Motivation: In a gene regulatory network, genesare typically regulated

by transcription factors (TFs). Transcription factor activity (TFA) ismore

difficult tomeasure thangeneexpression levels are.Othermodels have

extracted information about TFA from gene expression data, but

without explicitly modeling feedback from the genes. We present a

state-space model (SSM) with hidden variables. The hidden variables

include regulatory motifs in the gene network, such as feedback

loops and auto-regulation, making SSM a useful complement to

existing models.

Results: A gene regulatory network incorporating, for example, feed-

forward loops, auto-regulationandmultiple-inputswasconstructedwith

anSSMmodel. First, the gene expression datawere simulated bySSM

and used to infer the TFAs. The ability of SSM to infer TFAs was evalu-

ated by comparing the profiles of the inferred and simulated TFAs.

Second, SSM was applied to gene expression data obtained from

Escherichia coli K12 undergoing a carbon source transition and from

theSaccharomycescerevisiae cell cycle. The inferredactivity profile for

eachTFwas validated either bymeasurement or by activity information

from the literature. The SSMmodel provides a probabilistic framework

to simulate gene regulatory networks and to infer activity profiles of

hidden variables.

Availability: Supplementary data and Matlab code will be made avail-

able at the URL below.

Contact: krischan@egr.msu.edu

Supplementary information: http://www.chems.msu.edu/groups/

chan/ssm.zip

INTRODUCTION

Cells respond to environmental and physiological changes through

an extensive transcriptional regulatory network, which is composed

of transcription factors (TFs) and genes. These transcription factors

bind to the promoter regions of specific genes to either positively or

negatively regulate expression. High throughput technologies, such

as cDNA microarray, allow the measurement of expression data

of the whole genome; however, genome-wide measurement of the

regulatory signals, i.e. transcription factor activities (TFAs),

remains a challenge. Clustering has been applied to gene expression

data to identify co-regulated genes (Bar-Joseph et al., 2002; Eisen
et al., 1998; Ramoni et al., 2002) and Bayesian network analysis has
been applied to infer regulatory networks (Friedman et al., 2000).
The objective of this paper is to infer TFAs from gene expression

data. The advent of the genome-wide binding assay to measure

protein–DNA interactions has helped to uncover the network

structure describing the connections between TFs and genes in

Escherichia coli K12 (Salgado et al., 2001) and Saccharomyces
cerevisiae (yeast) (Lee et al., 2002). Given the regulatory network

structure and gene expression profiles, the TFAs can be inferred

with mathematical modeling.

Several methods have been developed to infer TFAs from gene

expression data. A kinetic-based approach (Nachman et al., 2004),
which modeled mRNA transcription and decay, did not include

feedback from genes to TFs. Network component analysis

(NCA) (Liao et al., 2003; Kao et al., 2004), which assumed a

log-linear relationship between a gene’s expression and its regulat-

ory signals, i.e. TFA, modeled the gene regulatory network as

multiple-input motifs. Feedback from genes to TFs within network

structures, such as in auto-regulation, feed-forward loops, the

regulator chain or the interaction between TFs, is modeled as a

‘closed-loop’ from the TF to the genes, without explicitly modeling

the feedback (Tran et al., 2005).
To complement existing approaches, we have developed a state-

space model (SSM) with hidden variables that explicitly models

feedback in gene regulatory networks to infer the regulatory signals

from the gene expression profile. SSM is a subclass of dynamic

Bayesian network (DBN). DBN has been applied to infer the tran-

scriptional regulatory network from gene expression profiles, e.g.

T-cell activation (Rangel et al., 2004; Beal et al., 2005). Other
models, such as Hidden Markov model (HMM), the Boolean net-

work, and linear and non-linear auto-regression models, are also

subclasses of DBN (Murphy and Mian, 1999). SSM assumes the

existence of state variables that produce observations that are meas-

urable, as well as hidden variables, which are state variables that do

not produce an observation. This feature of SSM is attractive for

modeling gene regulatory networks. As illustrated in Figure 1, a

gene regulatory network consisting of TFs and genes can be rep-

resented by an SSM. The state of each gene produces observations,

such as expression profiles, that can be measured with cDNA

microarray. The state of each TF is hidden, and thus, does not

produce measurable observations. The structure of the connections

can be deduced from measurements of protein–DNA interactions.

We demonstrate that SSM can be applied to represent gene

regulatory networks of known structures and to infer the TFA

from the gene expression profile. We first applied SSM to learn

the TFA from data simulated for the gene regulatory network illus-

trated in Figure 1. Then we applied the model to experimental data

from E.coli transitioning its carbon source from glucose to acetate�To whom correspondence should be addressed.
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(Kao et al., 2004) and to cell cycle data from S.cerevisiae (Spellman

et al., 1998). The inferred activity profile for each TF was validated

either by a physical measurement (if available) or activity informa-

tion from the literature. Finally, further extensions to improve the

current SSM model are discussed.

MATERIALS AND METHODS

State-space model

State and observation In SSM, a sequence of observations

(O1, O2, . . . ,OT) is generated from a sequence of states (S1, S2, . . . , ST)

with the following model:

St ¼ ASt�1 þWt‚ ð1Þ
Ot ¼ BSt þ Vt‚ ð2Þ

where A defines the state transition probability P(St j St�1), i.e. how the state

at time point T can be determined from the state at time point T � 1, and B
defines the observation probability P(Ot j St), i.e. how the observation at time

point at T can be determined from the state at time point T.W � N(0, Q) and

V � N(0, R) define the Gaussian noise of the state and observation, respect-

ively. For convenience of notation, parameters A, B,W and Vwere combined

into a single parameter vector � ¼ (A, B, W, V). In the SSM model,

the structure is time invariant and the parameters are also time invariant,

i.e. the parameters that determine the transition from T� 1 to T are the same

as the parameters that govern the transition from T to T + 1. However, the

time-scale for each loop is not assumed to be the same. For example,

in the yeast dataset (Spellman et al., 1998), the time-scale for each loop

is the same (�7 min). However, in the E.coli (Kao et al., 2004) example, the

10 time points were taken at 0, 5, 15, 30, 60, 120, 180, 240, 300 and 360 min.

Therefore, the time-scale for each loop using the first five data points is not

the same as for the last five data points.

Parameter learning � ¼ (A, B, W, V) defines an SSM and is learned

from N samples of observation data O ¼ (O1:T (1), . . . ,O1:T (N)) by max-

imizing the likelihood of the observation. An Expectation-Maximization

(EM) algorithm is used to learn the parameters. Starting with an initial

guess of �, we perform the E (expectation) step at iteration k to estimate

the value of states S_hat with �k and O using inference; then, we perform the

M (maximization) step to maximize the likelihood of the conditional prob-

ability P(O,S_hat j �), such that �k+1¼ argmax(P(O,S_hat j �)). For details of
the parameter learning, see (Murphy and Mian, 1999). We used Bayes Net

Toolbox (Murphy, 2001) for the model computation.

State inference After the parameters are learned with the EM algorithm

from the observation data, the value of the state variables, including the

hidden variables, can be recursively inferred with the Bayes rule:

PðSt jO1:tÞ ¼ PðOt j StÞ
X

Ot�1

PðSt j St�1ÞPðSt�1 jO1:t�1Þ: ð3Þ

Sampling method to generate simulated data

If the structure and parameters of an SSM are defined, data can be generated

with sampling methods such as Gibbs sampling. The function of

sample_bnet in Bayes Net Toolbox (Murphy, 2001) was used to generate

the simulated gene expression data and TFA profiles.

Represent gene regulatory motifs within

SSM framework

Different motifs, such as auto-regulation, feed-forward loops, multiple-

inputs and single input, have been identified with protein–DNA interaction

measurements (Lee et al., 2002). Protein–DNA interaction measurements

identify the DNA sequences of a gene to which a TF will bind. Once a TF

binds to a DNA sequence (i.e. binding site) of a gene, the TF regulates the

transcription, and in turn the level of expression of that gene. Some TFs bind

to similar DNA sequences that may exist on many genes, while other TFs

bind to specific DNA sequences present in only one or a few genes. TFA is

defined as the concentration of the active conformation of a TF that is

capable of DNA binding. In the current SSM representation of a gene

regulatory network, each TF has one TFA node and its TFA is the same

for all binding sites. Therefore, in the model the level of activity of the

transcription factor (i.e. the TFA) indicates only whether a transcription

factor is activating (either positively or negatively) its genes or not. The

likelihood that a gene is activated by a transcription factor is inferred from

the data as conditional probabilities. For example, transcription factor TF1

binds to genes G1 and G2 at the same (or different) binding sites. The activity

level of TF1 is assumed to be the same for G1 and G2, however, the

probabilities that G1 or G2 is activated by TF1 are different as defined

by P(G1 jTF1) and P(G2 jTF1). In addition, the SSM assumes that there

is a time delay between binding and transcription.

Here we demonstrate that SSM is able to model these motifs, i.e. auto-

regulation, feed-forward loops, multiple-inputs and single input. As shown

in Figure 1, SSM is a dynamic model composed of two parts: states and

observations. State variables generate observations that are measurable,

whereas state variables that do not generate observations are called hidden

variables. A static gene regulatory motif can be represented dynamically by

connecting genes at time point T � 1 to the TFs they encode at time point T,
and connecting the TFs at time point T � 1 to the genes that they regulate at

time point T. Each TF has a TFA node. Each gene has a state node and an

observation node. Duplicating the state and observable variables of a gene

will increase the computational load. However, this limitation has an

intrinsic advantage. Having the state variable (gene) and the observation

variable (gene expression) as separate entities allows the SSM approach

A

B

Fig. 1. (A) An example of a gene regulatory network with two transcription

factors, TF1 and TF2, and three genes, G1, G2 and G3. TF1 regulates G1 and

G1 encodes TF1, which formulates auto-regulation between TF1 and G1.

TF1 regulates G2, G2 encodes TF2, both TF1 and TF2 regulate G3, which

formulates a feed-forward loop between TF1, G2, TF2 and G3. (B) A SSM

representation of the gene regulatory network illustrated in (A). The tran-

scription factors and genes make up the state space, whereas the observation

space is comprised of gene expression data.
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to take into account potential effects, such as post-transcriptional effects

(such as RNA decay) and measurement noise. If RNA decay and measure-

ment noise did not occur then the state and observation variables could

be combined into one variable. Under those circumstances a gene that is

transcriptionally activated would be measured at the mRNA (gene expres-

sion) level to be activated, thus Pr (E ¼ 1 j G ¼ 1) ¼ 1. However, the gene

expression level is determined by the net effect of mRNA transcription and

degradation. Effects, such as RNA decay (post-transcriptional modification)

and noise in the microarray measurement, could result in conditional

probabilities Pr (E ¼ 1 j G ¼ 1) < 1. In other words, a gene that is

transcriptionally activated may be measured at the gene expression level

to be inactivated if mRNA decay dominates over transcription (Wang et al.,
2002). Figure 2 illustrates a graphical representation of the auto-regulation,

feed-forward loop, multiple-input and multi-component loop motifs.

Threshold determination

We used a function with a definable threshold Th to discretize the gene

expression data. Any gene that showed a change larger than Th, based upon

log2 ratio, was assigned a discrete value of 1, or otherwise was assigned a

value of 0. Thus, a threshold of 1 indicates that a 2-fold (21) change in the

expression of a gene, relative to its initial state, is significant.

A

B C

D

Fig. 2. An example and the SSM representation of the gene regulatory motifs of (A) auto-regulation – transcription factor Ste12 (protein) binds to the promoter

sequence of gene STE12, which encodes for the transcription factor protein Ste12. (B) multi-component loop – transcription factor Rox1 (protein) binds to the

promoter sequence of gene YAP6, which encodes for the transcription factor protein Yap6. The Yap6 protein binds to the promoter sequence of gene ROX1,

which encodes for the transcription factor protein Rox1. (C) feed-forward loop – transcription factor Mcm1 (protein) binds to the promoter sequence of gene

SWI4, which encodes transcription factor protein Swi4. Transcription factors Swi4 andMcm1 bind to the promoter sequence of gene CLB2. (D) multiple-input

motif – transcription factors Fhl1, Rap2 and Yap5 all bind to the promoter sequences of genes RPL2B, RPL16A, RPS21B and RPS22A.
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SSM requires an optimal threshold in order to obtain reliable results. To

find an optimal threshold, we evaluate the TFA data for each TF over various

thresholds between �1 and 1. The optimal threshold, which gives the most

appropriate profile for each TF, is determined by comparing the TFA results

with known (e.g. measured or literature) values. For example, the gene

expression data that we used for S.cerevisiae were taken over 18 time points

that spanned two cell cycles (Spellman et al., 1998). The TFs we studied in

S.cerevisiae are known to have phase-specific activity during the cell cycle

(Aerne et al. 1998; Baetz et al., 1999; Kovacech et al., 1996; Lee et al., 2002;

MacKay et al., 2001; McInerny et al., 1997; Oehlen et al., 1996; Spellman

et al., 1998). Therefore, we assumed that the activity profile of each TF

during the first cell cycle should be repeated in the second cell cycle. We

identified the optimal threshold as the one that predicted this cyclic behavior

for all the transcription factors.

RESULTS

Inferring TFA from simulated data

Before testing the SSM with experimental data where the transcrip-

tion factor activities are unknown, we applied it to a simulated

system. We created a simple regulatory network (Fig. 1A) with

the feed-forward loop and auto-regulation motifs containing two

TFs and three genes. From the known network structure, we con-

structed a SSM representation of the network (Fig. 1B) and pre-

defined the � parameter, which is shown in the Supplementary

Table 1a. Using the network reconstructed by the SSM, we simu-

lated the dynamic profiles of TFA and gene expression levels with

the sampling method discussed in the Materials and methods sec-

tion. Given the simulated gene expression profile (shown in Sup-

plementary Table 1c) and the network structure, SSM learned the

parameters � and the TFA profile. The learned parameters are shown

in Supplementary Table 1b. They match closely to the predefined

parameters in Supplementary Table 1a. The learned or inferred TFA

was compared with the simulated TFA, as shown in Supplementary

Figure 1. The learned TFA matched 95% of the time points (38 out

of 40) of the simulated TFA. The results of this simulation provided

confidence that the SSM may be able to analyze a real system. The

simulations were performed on Matlab R13, Windows XP, on a PC

with Celeron CPU 2.4 GHZ and RAM 512MB. The simulation time

was 328.5 s.

SSM requires sufficient data to infer the parameters. We

evaluated how many data points are needed with the simulation

data by varying the number of time points from 6 to 40. Ten time

points were needed to correctly infer 80% of the TFA profile

and this percentage increased with the number of time points

used. The sampling time needs to be small enough to capture the

dynamic profile, which will vary with the biological system being

modeled.

Escherichia coli We applied SSM to a model system: E.coli trans-
itioning from glucose to acetate as a carbon source. The gene

expression data were obtained from (Kao et al., 2004) and the

regulatory information is available from the regulonDB database.

The SSM model included two TFs, CRP and ArcA, and eight of the

genes (shown in Supplementary Table 2) that are regulated by the

two TFs. The dynamic profiles of these two TFs were learned from

the gene expression levels of the eight genes. In the work by Kao

et al. (2004), cAMP was measured to indirectly indicate the

activity of CRP, since the activation of CRP requires the binding

of cAMP. From the measurement of cAMP (Fig. 5 in Kao, 2004),

we can see that the level decreased from its initial high but remained

upregulated, around 10-fold above the basal level, from the

second time point onward. Indeed, SSM inferred that CRP is active

from the second point onwards (Fig. 3). For the first time point,

however, CRP is predicted to be inactive. The expression level at

the first time point is the reference; all subsequent expression levels

are measured relative to the expression level at the first time point.

SSM also identified that ArcA was inactive for the first four

time points and active for the remaining 6 time points (Fig. 3).

An ArcA measurement is not readily obtainable for comparison.

Saccharomyces cerevisiae Next, we applied SSM to model

several of the common regulatory motifs in S.cerevisiae. According
to Lee et al. (2002), 39 out of the 106 studied regulators were

involved in feed-forward loops and 10 of the 106 were involved

in auto-regulation. Lee et al. (2002) also found that in combinations

of two or more of the 106 regulators, 295 were involved in

multiple-input motifs. Therefore, we selected TFs with the

aforementioned regulatory motifs, and whose activities could be

verified by the literature. Namely, MCm1, Swi4, Swi5 and Swi6,

which are well-studied and well-understood (Aerne et al., 1998;
Baetz et al., 1999; Kovacech et al., 1996; Lee et al., 2002; MacKay

et al., 2001; McInerny et al., 1997; Oehlen et al., 1996; Spellman

et al., 1998) TFs. SSM was applied to analyze the system illustrated

in Figure 4. The gene regulatory motifs, feed-forward (Mcm1 !
SWI5 ! Swi5 ! YJL160C + PIR1 + PIR3), multiple-input

Fig. 3. The results of using an SSM to analyze an E.coli system. The SSM predicts that CRP is inactive initially and then active from the second time point

onwards, as expected from the cAMPmeasurement (Kao, 2004). The SSM predicts that ArcA is inactive for the first four time points, but is activated for the last

six time points. Catabolite repressor protein (CRP) is a well-known regulator involved in carbon source transition, its activation requires binding of cAMP (Kao,

2004). The CRP level responds to the transition in carbon source by regulating uptake andmetabolic genes in preparation for a less favorable carbon source (Kao,

2005). The activation of ArcA has been proposed to reduce the production of electron donors and the level and activity of aerobic respiratory apparatus during the

carbon source transition by downregulating the TCA cycle enzymes (Kao, 2004; Nystrom 1996).
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(Mcm1 + Swi4 + Swi6! CLA4 + SWI4 + LSM4 + PCL1 + SIM1 +
GIN4 + YDR509W) and auto-regulation, (Swi5 ! SWI5; Swi4 !
SWI4) were obtained from (Lee et al. 2002).
We evaluated the ability of the SSM to infer TFA profiles

during the cell cycle of S.cerevisiae. Lee et al. (2002) performed

a genome-wide binding analysis to obtain the connectivity

information between the TFs and genes in yeast. We coupled the

connectivity information (Lee et al., 2002) with gene expression

data taken from yeast cultures synchronized by a-factor arrest

(Spellman et al., 1998). Of the four synchronization methods

used by Spellman et al., we chose the data obtained with the

a-factor method because it presented the least amount of missing

data for the genes studied. With the a-factor arrest method, the

data were sampled every 7 min, which captured approximately

two cell cycles with the 18 time points (Spellman et al., 1998).
This provided 9 time points (�63 min) for each cell cycle. Each

phase (i.e. M, G1, S and G2) within a cell cycle takes�15 min (Liao

et al., 2003). In other words, one cell cycle is �60 min. Therefore,

a 7 min sampling time is small enough to capture the phase change

profile within a cell cycle. The binding motifs and gene expression

data were used by SSM to infer the TFAs.

The SSM predictions are consistent with the literature results.

SSM inferred that MCm1 is active during the G2/M/G1 phases,

Swi4 and Swi6 are active during the G1 and S phases, and Swi5 is

active during the M and G1 phases. We confirmed the predictions

(Fig. 5) made by SSM with the literature. Past studies found that

MCm1 induced the expression of many genes during the G2/M/G1

phases. High transcription of both FAR1 and STE2 in the G2/M

phases requires MCm1 (Oehlen et al., 1996). MCm1 is also known

to induce the transcription of CLN3, SWI4 and CDC6 at the M/G1

boundary (Spellman et al., 1998). In contrast, Swi4 induced genes

in the G1 and S phases. Swi4 is the DNA binding component of

SBF (Baetz et al., 1999). Baetz et al. (1999) indicated that SBF

promotes the induction of gene expression at the G1/S-phase

transition of the mitotic cell cycle. MacKay et al. (2001) also

showed that a complex containing Swi4 induces CLN1 and

CLN2 transcription in the late G1 and drives the transition to S.

Similarly, Swi6 induced genes during the G1 and S phases.

The activity of Swi6 is very similar to that of Swi4, and these

two factors are known to be connected (Baetz et al., 1999; MacKay

et al., 2001). MacKay et al. (2001) showed that a Swi4-Swi6

complex induces CLN1 and CLN2 transcription in late G1 until

S. Baetz et al. (1999) also suggested that the DNA binding domain

of Swi4 is inaccessible in the full-length protein when not com-

plexed with Swi6. In contrast, Swi5 was activated during the M

phase and the M/G1 boundary. Kovacech et al. (1996) found

that Swi5 is partially responsible for the peak in EGT2 expression

during late M and early G1 phases. Aerne et al. (1998) found that

Swi5 regulates the expression of PCL2, PCL9, and the SIC1 Cdk

inhibitor in the late M phase.

In summary, SSM was applied to three systems, a simulated

gene regulatory network and two experimental systems, E.coli
and S.cerevisiae. A comparison of the three examples is presented

in Table 1. The simulation study confirmed the ability of SSM to

infer network parameters and state values from observational data.

Application of SSM to the experimental systems illustrates that

TFAs can be inferred from the gene expression data given the

regulatory network structure.

DISCUSSION

SSM is a subclass of DBN. DBN has been applied to infer the

structure of regulatory networks from temporal gene expression

data (Rangel et al., 2004; Beal et al., 2005; Ong et al., 2002;
Perrin et al., 2003; Nachman et al., 2004). Ong et al. (2002) expli-
citly included operons as hidden variables in the model to facilitate

Fig. 4. An SSM representation of the S.cerevisiae (yeast) system studied. The gene regulatory motifs were taken from (Lee et al. 2002), including feed-forward

(Mcm1! SWI5! Swi5!YJL160C + PIR1 + PIR3), multiple-input (Mcm1 + Swi4 + Swi6!CLA4 + SWI4 +LSM4 + PCL1 + SIM1 +GIN4 +YDR509W),

auto-regulation (Swi5 ! SWI5; Swi4 ! SWI4).
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the incorporation of a priori biological knowledge of the

co-expressed genes to improve the quality of the analysis. Here,

we explicitly included TFs in the model and included the connec-

tions between TFs and genes obtained through binding analysis

(Lee et al., 2002). SSM has the potential to infer unmeasurable,

as well as unmeasured, connections and events.

The benefit of the SSM over existing models [e.g. NCA (Liao

et al., 2003), kinetic modeling (Nachman et al., 2004) is that all

gene regulatory motifs, including feedback from gene to TFs, are

explicitly modeled. NCA implicitly models the feedback from gene

to TFs (Tran et al., 2005). In kinetic modeling (Nachman et al.,
2004), feedback from gene to TFs is not incorporated. In contrast,

SSM can explicitly model the feedback from gene to TFs, such as

the auto-regulatory motif. This facilitates the incorporation of

domain or experimental knowledge. For example, if a TF is experi-

mentally knocked–out or silenced, the SSM approach could easily

incorporate this information for the auto-regulatory motif.

In SSM, the nonlinear relationship between the TFs and genes are

quantified with conditional probabilities, i.e. P(Ot j St-1). By using

conditional probabilities, SSM does not presuppose a relationship

between the TFs and genes in the model, whereas NCA assumes a

log-linear relationship and kinetic modeling assumes a form for the

rate law, such as Michaelis–Menten kinetics. Conversely, NCA

(Liao et al., 2003) and kinetic modeling (Nachman et al., 2004)
can infer continuous profiles of TFA. Another advantage of kinetic

modeling is the ability to explicitly model both mRNA transcription

and decay. In the current application of SSM the gene expression

data are discretized, thus allowing us to infer when the TFAs are

active. This was sufficient to allow verification of the model pre-

dictions with the literature. For example, the model predicted the

phase in the cell cycle in which the genes that are regulated by a TF

are activated, which can be compared with the phase of the cell

cycle in which the genes are known to be activated in the literature.

The SSM assumes there is a time delay between binding and

transcription. As illustrated in Figure 1 in the Supplementary

data, by considering the state values at time T as a function of

the state values at time T� 1, the SSM implicitly assumes a

time delay for all TF effects on gene expression. In other words,

although the binding of a TF to the DNA sequence of a gene may

occur quickly (McAdams and Arkin, 1997), there is a time offset

between the binding of the TF to the DNA sequence of a gene and

the onset of transcription. This time offset ranges between minutes

to hours (Kerszberg, 2004). It has been shown that incorporating

a time delay in modeling gene regulatory networks is critical to

inferring the oscillatory behavior of NF-kB (Monk, 2003). We

further evaluated this assumption by allowing the genes to be regu-

lated by the current TFA in the yeast dataset. Without the time

delay, the cyclic TFA could not be inferred as illustrated in

Figure 2 in the Supplementary data. This, in addition to the previous

study (Monk, 2003), suggests that this biologically relevant

time delay (Kerszberg, 2004) must be incorporated in the model

to accurately infer the TFA profiles. In some cases, if the actual

Fig. 5. The results of using an SSM to analyze a yeast system. The SSM predictions closely followed the experimental trends and phases in which each

transcription factor is known to be active or inactive (Aerne et al., 1998; Baetz et al., 1999;Kovacech et al., 1996; Lee et al., 2002;MacKay et al., 2001;McInerny

et al., 1997; Oehlen et al., 1996; Spellman et al., 1998). The SSM inferred thatMCm1 is active during the G2/M/G1 phases, that Swi4 and Swi6 are active during

the G1 and S phases, and that Swi5 is active during the M and G1 phases.

Table 1. Comparison of three examples of SSM application

SSM application Network motifs Data input Validation

Simulation Auto-regulation

Feed-forward

Simulated data by sampling a

predefined network

Compared with sampled data

Compared with predefined parameters

E.coli Multiple-input Discretized experimental data Compared with measurements or NCA results

S.cerevisiae Multiple-input

Feed-forward

Auto-regulation

Discretized experimental data Compared with literature
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time delay is on the order of minutes and the measurements are

taken on the order of hours, then considerable error would be

introduced. In those cases, it would be more appropriate to

incorporate the connection between the TFs and genes in the

same time slice.

In the simulation study, the TFA inferred by the SSMmatched the

simulated TFA well but not exactly. The mismatches may be due

in part to the EM algorithm being a local optimization method

(Ong et al., 2002), in other words, the algorithm cannot guarantee

a TFA of (global) maximal likelihood. The optimization could

be improved by either running EM multiple times from different

starting points or using a global search algorithm, such as Markov

Chain Monte Carlo (MCMC) (Murphy, 2001).

The SSM model determines an optimal threshold value for

discretizing the gene expression data based upon a priori knowledge

of the TFA. If no a priori knowledge is available for the TFA

dynamics, this can be addressed one of two ways. In one approach,

the TFAs could be estimated from other approaches, e.g. NCA, and

the estimated TFA could be used to determine the threshold value.

In the other approach, the optimal threshold could be determined in

the SSM by including the threshold value (Th) as a part of the

parameter learning process, i.e. in the parameters � ¼ (A, B, W,

V, Th). How the observation dataO(Th)¼ (O1:T (1), . . . ,O1:T (N)) is
discretized depends on the threshold value, e.g. a very high thresh-

old value will set all the genes in the inactive state while a very

low threshold value will set all the genes in the active state. The

Expectation-Maximization (EM) algorithm could be used to learn

the parameters. Starting with an initial guess of �, we can perform

the E (expectation) step at iteration k to estimate the value of

states S_hat with �k and O(Th) using inference; then, we can

perform the M (maximization) step to maximize the likelihood

of the conditional probability P(O(Th),S_hat j �), such that �k+1 ¼
argmax(P(O(Th),S_hat j �)). Therefore, the parameters, including

the threshold value, can be inferred by maximizing the probability

of the observation and state values given the inferred parameters

(e.g. conditional probabilities).

The current SSM infers the most probable model, given the

observed data, by approximating the underlying structure of the

noise to be Gaussian (Murphy and Mian, 1999; Perrin et al.,
2003). Gene expression is an inherently stochastic phenomenon

(McAdams and Arkin, 1997). SSM modeled the regulatory net-

works stochastically using conditional probabilities. This probabil-

istic SSM may capture some of the stochastic nature of the gene

regulatory network, but an accurate representation of the stochasti-

city requires further understanding of the underlying structure of the

noise. Without knowing the structure of the noise, studies have

assumed it to be Gaussian (Perrin et al., 2003).
The current SSMmodel could be extended to incorporate a step to

learn the structure before inferring the TFAs by searching for a

network that gives the maximal likelihood against the observation.

The structural information obtained from the binding analysis

could be used to construct the initial network as a starting point

for the search (Nachman et al. 2004). Alternatively, the connections
indicated by the interaction data could be used to define a priori

probabilities of the connections in the network (Hartemink et al.,
2002). Thus, the connections that are supported by the interaction

measurements would have a higher likelihood of being valid

connections in the network than the unsupported connections. By

including a step to learn the structure, it could help refine the

network by inferring the interactions that are unmeasurable or

missing due to error (noise) in the measurement. A more accurate

network provides more confidence to the inferred TFA profile. In

this study, the model size was limited by the computational tool that

was used, namely Bayes Net Toolbox (Murphy, 2001), which is on a

Matlab platform. Future work will involve developing an execut-

able SSM in a C++ version of Bayes Net Toolbox, using Probab-

ilistic Networks Library (PNL) http://www.intel.com/technology/

computing/pnl/ to handle larger model sizes.
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