Expression patterns of CaV1.3 channels in the rat cochlea

Jin Chen1, Hanqi Chu1*, Hao Xiong2,3, Qingguo Chen1, Liangqiang Zhou1, Dan Bing1, Yun Liu1, Yan Gao1, Shaoli Wang1, Xiaowen Huang1, and Yonghua Cui1

1Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
2Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen D-72076, Germany
3Department of Otorhinolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China

*Correspondence address. Tel: +86-27-83663334; E-mail: qi7chu@163.com

Although CaV1.3 channels are known to be essential for neuronal excitation and signal transduction in the auditory system, their expression patterns in the cochlea are still not fully understood, particularly in the regions where non-sensory cells are located. We performed immunohistochemistry, western blotting and reverse transcription-polymerase chain reaction (RT-PCR) to identify the expression and distribution of CaV1.3 channels in the rat cochlea. Immunohistochemistry revealed that CaV1.3 channels were localized in the outer hair cells (OHCs), inner hair cells (IHCs), limbus laminae spiralis, spiral ganglion cell, spiral ligament (SL), and stria vascularis (STV). The results of RT-PCR and western blotting demonstrated CaV1.3 channels had a tissue-specific expression pattern. CaV1.3 mRNA and protein were intensively expressed in the basilar membrane and spiral ganglion while moderate level of CaV1.3 channels was observed in SL and STV. Our study preliminarily revealed the expression patterns of CaV1.3 channels in the rat cochlea, providing a theoretical basis for further research on the role of CaV1.3 channels in the periphery auditory system.

Keywords calcium; CaV1.3 channels; cochlea; rat; endocochlear potential

Received: December 1, 2011 Accepted: February 16, 2012

Introduction

Ca2+, a key second messenger involved in cell signaling as well as a cytotoxin, regulates virtually all cellular processes, including proliferation, differentiation, growth, apoptosis, and cell death [1]. The resting cytosolic Ca2+ concentration of ~100 nM is about 10,000 folds lower than the interstitial Ca2+ concentration. This enormous gradient is rigorously controlled to prevent ambiguity in cell signaling and cell death due to Ca2+ overload [2]. An increase in the cytosolic Ca2+ concentration could translate mechanical signals such as cellular deformation and chemical signals (e.g. hormones, neurotransmitters, and growth factors) into a variety of cellular actions such as regulation of enzyme activities, neurotransmitter release, salt and water secretion, contraction, proliferation, and cell death [1,2]. Therefore, maintaining the balance of intracellular Ca2+ level could ensure the survival and function of a cell.

In the inner ear, prominent expression of Ca2+ has been observed in the cochlear tissues, such as inner hair cells (IHCs) and outer hair cells (OHCs), stria vascularis (STV), Reissner’s membrane, and interdental cells. IHCs and OHCs sequester Ca2+ into cytosolic stores. Ca2+ stores in IHCs and OHCs express ryanodine receptors and inositol-1,4,5-trisphosphate receptors, which permit highly localized releases of Ca2+ into the cytosol and thereby can function as amplification mechanisms for Ca2+-mediated cell signaling [3,4]. Homeostasis of intracellular Ca2+ is crucial for normal hair cells’ development and functions. Recent data indicated that transmitter release from hair cells requires Ca2+ influx through voltage-gated Ca2+ channels [5,6]. In auditory hair cells, most of the voltage-gated Ca2+ current appears to be carried by L-type channels [7]. The data obtained from CaV1.3 knockout mice also demonstrated the importance of this channel for mature IHCs function after the onset of the hearing [7]. In view of the above findings, it is reasonable to speculate that L-type calcium channels (CaV1) play an important role in balancing intracellular Ca2+ concentration. CaV1 are present in four forms, referred to as CaV1.1 (α1S), CaV1.2 (α1C), CaV1.3 (α1D), and CaV1.4 (α1F) [8].

As one main CaV1, the CaV1.3 gene has been found in a variety of cells including ventricular cardiac muscle, smooth muscle, neuroendocrine cells, photoreceptors, amacrine cells, and hair cells of the inner ear where it mediates synaptic transmission [8]. Although CaV1.3 channels were
first cloned in the early 1990s, low-level expression in heterologous systems limited the study of CaV1.3 channels. The study of this L-type calcium channel was mainly focused on the property of electrophysiology. Much less is known about the expression and distribution of CaV1.3 channels in the whole cochlea. In the present study, therefore, we attempted to evaluate the distribution of CaV1.3 channels in rat cochlear tissues and identify the expression of CaV1.3 channels in basilar membrane (BM) including the organ of corti, spiral ganglion cell (SGC), STV including spiral ligament (SL) at both mRNA and protein levels.

Materials and Methods

Animals
Six adult Sprague-Dawley rats (200–250 g) and 20 neonatal Sprague-Dawley rats (P3–P5) were purchased from Tongji Medical College of Huazhong University of Science and Technology (Wuhan, China). The care and experimental treatment of animals was approved by the Animal Research Committee, Tongji Medical College, Huazhong University of Science and Technology.

Immunohistochemistry
The temporal bones of six mature rats were removed immediately after euthanasia and were fixed by injection with 4% paraformaldehyde in 0.1 mM phosphate-buffered saline (PBS, pH 7.4) into the round and oval window and were kept in this fixative overnight at 4°C. The cochleae were then washed with PBS and decalcified in 10% sodium ethylenediaminetetraacetic acid (EDTA) (adjusted pH to 7.4) for 7 days, then immersed in gradient sucrose solutions: 2 h in 10% sucrose, 2 h in 20% sucrose as well as 12 h in 30% sucrose and then frozen in Tissue-Tek Optimal Cutting Temperature (OCT) compound (Sakura Finetek USA Inc., Torrance, USA). Serial mid-modiolar cryosections of 10 μm were cut and mounted on glass slides. Representative sections were used for immunofluorescence.

Cochlea sections were incubated in 0.5% Triton X-100 for 15 min at 37°C. The sections were then washed thrice with PBS and blocked for 1 h by 5% bovine albumin serum (BSA; Boster, Wuhan, China) at room temperature. Antibodies were diluted in 5% BSA. The primary antibody was rabbit anti-CaV1.3 channels polyclonal antibody (1:1000; Santa Cruz Biotechnology, Santa Cruz, USA). After incubation at 4°C for 24 h, sections were washed thrice in PBS and afterwards incubated with DyLight™ 488 conjugated goat anti-rabbit immunoglobulin G (IgG) (1:600; Multi-Sciences Biotech Co. Ltd, Hangzhou, China) at 37°C for 2 h in the dark. After three washes in PBS, the sections were incubated with 10 μg/ml propidium iodide (PI) (Sigma, St Louis, USA) for 10 min at 37°C. After a final wash with PBS, the slides were covered with glass cover slips. Control incubations were routinely processed without primary antibody. Immunolabeling was observed and imaged with an Olympus Fluoview 500 IX 71 confocal microscope (Tokyo, Japan). Images were digitally recorded at the same magnification and time of exposure.

Western blot analysis
The tissues of BM, SGC, and STV were, respectively, separated by microdissection from 10 neonatal rats and the kidney of a rat was obtained as a positive control. The samples were pooled to obtain equalized protein (20 μg) as follows: total protein extracts were lysed with 50 mM Tris–HCl (pH 7.4), 300 mM NaCl, 1% Nonidet P-40, 10% glycerol, 1 mM EDTA, 1 mM Na3VO4, and protease inhibitor cocktail (Roche, Basel, Switzerland). All the procedures were performed on ice. The cochlea homogenate were centrifuged (13,800 g, 4°C, 30 min), and protein concentration in the supernatant was determined by BCA protein assay. Equal amounts of protein were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and transferred to a nitrocellulose membrane (Millipore, Billerica, USA). Membranes were probed with rabbit anti-CaV1.3 channels polyclonal antibody (1:1000; Santa Cruz Biotechnology) overnight at 4°C and also incubated with β-actin antibody (1:2000; Sigma) as internal control. After being rinsed in Tris-buffered saline with 0.02% Tween (TBS-T), the membranes were incubated with horseradish peroxidase-conjugated anti-rabbit IgG (1:3000; Sigma) for 2 h at room temperature and finally developed using enhanced chemiluminescence (ECL) reagents (Pierce, Rockford, USA). All western blots were performed in duplicate and visualized using a chemiluminescence system (PTC-200; Bio-Rad Laboratories, Hercules, USA).

Reverse transcription-polymerase chain reaction
The tissues of BM, SGC, and STV from 10 neonatal rats and a kidney were separately dissected under the dissecting microscope. Total RNA was isolated by using TRIzol® reagent (Invitrogen, Carlsbad, USA) following the manufacturer’s protocol and was used for first-strand cDNA synthesis using ReverTra-Plus-TM (Toyobo, Osaka, Japan) in the presence of oligo-dT, dNTPs, and RNase inhibitor. The sequence of primers used was as follows: glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), forward: 5’-GTGGTGGTGAACGGATTGG-3’, reverse: 5’-GACTGTGCCGTTGAACTTG-3’ and CaV1.3 (CACNA1D), forward: 5’-CATCATGCTCAA CACGCTCT-3’, reverse: 5’-TATCAACGACGCTACGGAC A-3’. The PCR was carried out by pre-incubation at 95°C for 2 min and then was cycled 40 times at 95°C (1 min), 58°C (30 s), 72°C (45 s), followed by a 10-min extension step at 72°C. GAPDH was used as a housekeeping gene. The PCR products were separated by electrophoresis on a
2% agarose gel and visualized by ethidium bromide staining.

Statistical analyses
All the data were presented as the mean ± standard error of mean (SEM). One-way analysis of variance (one-way ANOVA) with Tukey’s correction was used for statistical analysis. *P* < 0.05 was considered to be statistically significant.

Results

Distribution of CaV1.3 channels
Several lines of evidence have suggested that CaV1.3 channels play an essential role in Ca^{2+} homeostasis. Therefore, immunohistochemistry was used to determine whether CaV1.3 channels were present in the inner ear. The immunoreactivity of CaV1.3 channels in the cochlea is presented in Figure 1. In the cochlear sections, CaV1.3 channels were prominently localized in the hair cells [Fig. 1(A,C,G,I)] and SL including the limbus laminae spiralis (LLS) [Fig. 1(A,C,J,L)], and the immunoreactivity of CaV1.3 channels in IHCs was more stronger than that in OHCs [Fig. 1(A,C,G,I)]. Intense labeling of CaV1.3 channels were also observed in the cytomembrane and neurite of SGCs [Fig. 1(D,F)]. Medium intense labeling was occasionally detectable in supporting cells [Fig. 1(G,J)]. In the STV, a positive staining reaction for these channels was detected in the marginal cells, intermediate cells, and basal cells [Fig. 1(A,C,J,L)].

CaV1.3 channels expression at protein level in cochlea
Western blotting was performed to determine the expression of CaV1.3 channels at protein level in the cochlea. We detected a 199-kDa band corresponding to CaV1.3 channels while a 43-kDa band corresponding to β-actin in BM, STV, and SGC [Fig. 2(A)]. Normalized to the densitometry values of β-actin in each sample, the relative levels of CaV1.3 channels protein were presented in Fig. 2(B). Data obtained here indicated that there was a different expression of CaV1.3 channels protein in the rat cochlear tissues (one-way ANOVA, *F* = 18.425, df = 3, *P* < 0.001). There was remarkable difference in BM compared with STV (Tukey’s test, *q* = 9.746, *P* < 0.001). Meanwhile, we noticed that the expression of CaV1.3 channels displayed difference between STV and SGC (Tukey’s test, *q* =

![Image of CaV1.3 channels in rat cochlea](Figure 1)

Expression of CaV1.3 channels (A,D,G,J) can be seen in green. The nuclei are stained with PI in red (B,E,H,K). (C,F,I,L) show an overlap of CaV1.3 channels (green) and PI (red). Note CaV1.3 channels are mainly expressed in hair cells (both OHCs and IHCs; A,C,G,I), LLS (A,C), SGC (D,F), SL (A,C,J,L) and STV (A,C,J,L). OHCs: red arrow; IHCs: blue arrow; SGC: white arrow; STV: yellow arrow. Scale bar: A–C, 50 μm; D–L, 20 μm.
However, there was no significant difference in the expression of CaV1.3 channels between BM and SGC (Tukey’s test, \(q = 2.014, P = 0.192 \)). These results suggested that the expression of CaV1.3 channels in individual rat cochlear tissue is different at protein level.

CaV1.3 channels expression at mRNA level in cochlea

The relative mRNA expression of CaV1.3 channels in different tissue of cochlea was also compared using RT-PCR. The results of RT-PCR showed the presence of a unique 209-bp band corresponding to CaV1.3 channels and a unique 171-bp band corresponding to GAPDH in BM, SGC, STV, and kidney [Fig. 3(A)]. As demonstrated in the figure, the expression of CaV1.3 channels mRNA presented more in BM than in SGC, and it was weakly expressed in STV [Fig. 3(B)]. Normalized to GAPDH, there was a different expression of CaV1.3 channels at mRNA level in the rat cochlea and kidney (one-way ANOVA, \(F = 185.247, df = 3, P < 0.001 \)) [Fig. 3(B)]. There was a remarkable difference in BM (Tukey’s test, \(q = 27.376, P < 0.001 \)) and SGC (Tukey’s test, \(q = 24.719, P < 0.001 \)) compared with STV. Meanwhile, we noticed that the expression of CaV1.3 channels displayed difference in cochlear tissues compared with kidney (Tukey’s test, \(P < 0.05 \)). In addition, there was no significant difference in the expression of CaV1.3 channels between BM and SGC (Tukey’s test, \(q = 2.657, P = 0.097 \)). The results indicated that the expression of CaV1.3 channels mRNA was detected both in cochlea tissues and kidney. The distribution of the calcium channels was characterized by tissue specificity.

Discussion

Previous studies showed that the voltage-dependent \(\text{Ca}^{2+} \) channels (VDCCs) regulate neurotransmitters release and cellular excitability, which are essential for excitable cells [9,10] and CaV1.3 channels, as the major VDCC of auditory hair cells, are essential for normal hair cell development and synaptic transmission [7,11]. The CaV1.3 knockout mice showed congenital deafness and consequent degeneration of auditory hair cells due to nearly complete absence of CaV1.3 channels in hair cells [7,12]. Furthermore, the recent study showed that CaV1.3 channels are required for normal hearing and cardiac pace-making in human, and that loss-of-function in only a subset of channels is sufficient to cause a human channelopathy (termed SANDD syndrome, sinoatrial node dysfunction and deafness) with a cardiac and auditory phenotype that closely resembles that of Cacna1d \(^{-/-}\) mice [13]. In view of these, CaV1.3 channels contribute greatly to auditory functions and the expression pattern of these calcium channels in the cochlea might be expected to correlate with the homeostasis of \(\text{Ca}^{2+} \) signaling in the inner ear.
Although numerous studies have investigated CaV1.3 channels in the mammalian inner ear focusing on the property of electrophysiology in the earlier years, there is still an absence of information regarding the differential expression in whole cochlea tissue and the significance of that. The results in this study suggested that CaV1.3 channels were expressed in the rat cochlea, with a selective localization among cell types. As reported in previous studies, we also detected the expression of CaV1.3 channels both in IHCs and OHCs [11,12] and spiral ganglion neurons[14]. Besides this, immunohistochemistry results also revealed that CaV1.3 channels were not only localized in STV, but expressed in SL, and LLS. Furthermore, RT-PCR and western blot analysis also indicated that CaV1.3 channel gene (CACNA1D) had tissue specificity. The expression of CaV1.3 channels were mainly in the BM and SGC and moderate expression was observed in SL and STV. Why is the expression of this calcium channel different in cochlear tissues? We speculate that the differential and specific expression of CaV1.3 channel potentially aims to maintain the Ca$^{2+}$ concentration in cochlea.

In the inner ear, the endolymph is an unusual extracellular fluid for its high K$^+$, low Na$^+$, and low Ca$^{2+}$ concentration. Endolymph contains 20 μM Ca$^{2+}$, which is very low compared with other extracellular fluids such as perilymph or plasma which contain 1–2 mM Ca$^{2+}$ [15–18]. For normal auditory function, the endolymphatic Ca$^{2+}$ concentration can neither be too low nor too high. Elevated Ca$^{2+}$ concentration blocks transduction and the generation of microphonic potentials but reduced Ca$^{2+}$ concentration suppresses microphonic potentials as well [19–21]. In addition, a large increase in the Ca$^{2+}$ concentration in the endolymph concomitant with a fall in the endocochlear potential (EP) was induced by transient asphyxia or the intravenous administration of diuretics, and the increase of Ca$^{2+}$ concentration was inhibited by the endolymphatic application of a membrane-permeable Ca$^{2+}$ chelator, such as egtazic acid (EGTA)-acetoxymethyl-ester [22]. Meanwhile, there was significant inhibition of the transient asphyxia-induced decrease in the EP by the application of nifedipine through the endolymph or a vertebral artery, but not through the perilymph [23]. On the contrary, there was much evidence confirming that Ca$^{2+}$ absorption from endolymph appears to be driven at least in part by the EP, since the endolymphatic Ca$^{2+}$ concentration is somewhat correlated with the magnitude of the EP [17,24].

In summary, our research indicated differential expression pattern of CaV1.3 channels in the rat cochlea. CaV1.3 channels were mainly present in the hair cells, SGC, marginal cells in the STV, SL, and LLS in the cochlea. The differential distribution of CaV1.3 channels may be determined by the demands of Ca$^{2+}$ homeostasis, EP regulation and normal hair cells function in the cochlear tissues. However, the major mechanism responsible for CaV1.3 channels in the regulation of the positive EP needs further identification. Meanwhile, further experiments are required to clarify the role of CaV1.3 channel in the inner ear, especially in the regions where those non-sensory cells are located. It may provide a new way for us to get a better understanding of the property and the role of CaV1.3 channels in auditory physiology and pathology.

Acknowledgement

We would like to thank Rong Chen, at Nan Chang University, for improving the quality of the manuscript in English.

Funding

This work was supported by a grant from the National Natural Science Foundation of China (30672307).

References