Regulation of proteasomes in prion disease

Ting Zhu, Sher Hayat Khan, Deming Zhao, and Lifeng Yang*

State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China

*Correspondence address. Tel/Fax: +86-10-62732987; E-mail: yanglf@cau.edu.cn

The hallmark of prion disease is the accumulation of misfolded protein PrPSc, which is toxic to neuronal cells. The proteasome system is responsible for the rapid, precise, and timely degradation of proteins and plays an important role in cellular protein quality control. Increasing evidence indicates impaired activity of proteasomes in prion diseases. Accumulated PrPSc can directly or indirectly affect proteasome activity. Misfolded protein may influence the assembly and activity of 19S regulatory particle, or post-translational modification of 20S proteasome, which may adversely affect the protein degradation activity of proteasomes. In this review, we summarized the recent findings concerning the possible regulation of proteasomes in prion and other neurodegenerative diseases. The proteasome system may enhance its degradation activity by changing its structure, and this activity can also be increased by related chaperones when neuronal cells are subject to stress. When the proteasome system is inhibited, degradation of protein aggregates via autophagy may increase as a compensatory system. It is possible that a balance exists between the proteasome and autophagy in vivo; when one is impaired, the activity of the other may increase to maintain homeostasis. However, more studies are needed to elucidate the relationship between the proteasome system and autophagy.

Keywords proteasome; autophagy; prion disease; neurodegenerative disease

Introduction

Prion diseases are a group of neurodegenerative diseases in animals and humans that have common pathological hallmarks, including spongiform vacuolation, neuronal loss, and astrocytic and microglial proliferation. These diseases have a long delay in the onset of symptoms, hindering early detection. An underlying feature associated with the development of prion diseases is the presence of a misfolded protein PrPSc, the isoform of endogenous cellular prion protein (PrPC) in brain and lymphoid tissues. When aggregated, protease-resistant PrPSc seeds are believed to act as a template to promote the conversion of normal PrPC to the pathological state, PrPSc, which is rich in β-sheets and resistant to degradation [1,2].

The proteasome system is a large multicatalytic, cytoplasmic, and nuclear protease complex that has many forms. All forms contain the core 20S proteasome, which is a hollow, barrel-shaped structure consisting of α- and β-subunits arranged in four rings. Many regulators, such as PA700(19S), PA28αβ(11S), nuclear PA28γ, or PA200, bind to 20S proteasome to form different proteasomes, which function in protein degradation, cell cycle control, DNA repair, chromosome stability, transcriptional activation, signal transduction, antigen presentation, and so on. The ubiquitin proteasome system (UPS) consists of the 19S regulator and 20S proteasome and acts in cellular quality control by degrading misfolded, unassembled, or damaged proteins that could otherwise potentially form aggregates [3]. Accumulation of ubiquitin conjugates or inclusion bodies involved in disease-characteristic proteins have been detected in various neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), Huntington’s diseases (HD), spinal and bulbar muscular atrophy, and prion diseases [4]. The UPS may be associated with these diseases. Lindquist and collaborators [5] have shown that the UPS is a potentially important player in prion pathogenesis. Inhibiting UPS with a proteasome inhibitor leads to PrPSc-like isoforms in cells. The authors explained that PrPSc is derived from misfolded PrPC that is retrogradely transported to the cytosol for degradation by proteasomes. The proteasome inhibitor prevents this process, and accumulated PrPC is converted into a PrPSc-like isoform. This conversion continues even after removal of the proteasome inhibitor from the medium, finally leading to cell death and transmission to neighboring cells [5]. UPS substrates, such as IκB, p27, and p53 accumulate in prion-infected mouse brains, indicating an impairment of the UPS. Aggregated β-sheet-rich...
PrP and PrP^{Sc} can inhibit the proteolytic activities of the 26S and 20S proteasomes; even low concentrations of aggregated PrP can inhibit peptide hydrolysis by the 20S proteasome [6]. UPS activity is not only directly decreased by PrP^{Sc}, but also indirectly modulated via other mechanisms in prion disease.

Here, we reviewed the regulation of proteasomes in prion disease and the relationship between the proteasome system and autophagy in prion diseases and other neurodegenerative diseases.

Prion Diseases

Prion diseases are a family of fatal neurodegenerative disorders that affect humans and animals and share the same pathological characteristics: spongiform vacuolation, severe neuronal loss, and astrocytic and microglial proliferation. In humans, normal PrP^C is a highly conserved, host-encoded cell surface glycosylphosphatidylinositol-linked glycoprotein containing 253 amino acids, which are cleaved to produce a mature PrP^C of 208 amino acids after translocation into endoplasmic reticulum (ER) and then to Golgi for trimming and modification of the sugar moieties prior to transport to the cell membrane. Accumulating evidence suggests that PrP^C has neuroprotective functions and that loss of PrP^C could impair cellular responses to oxidative stress [7–10]. However, loss of PrP^C is unlikely to be the cause of prion-mediated pathology, as knockout of PrP^C did not result in neurodegeneration [11,12]. The ‘protein-only’ hypothesis was proposed decades ago to explain the surprising transmission mechanism of prion diseases. Now, it is widely accepted that the abnormal isoform of PrP^{Sc} is the exclusive infectious agent of prion diseases. PrP^{Sc} acts as a template that promotes the conversion of PrP^C to PrP^{Sc}. The difference between these isoforms lies purely in the monomer conformation and its state of aggregation. Although they share the same amino acid sequence, PrP^C is soluble, monomeric, and rich in α-helical structure, whereas PrP^{Sc} is characterized by increased β-sheet structure, detergent insolubility, and partial resistance to proteolysis [13–17].

Considerable evidence demonstrated that PrP^{Sc} can be generated in vitro in the absence of genetic material. PrP^{Sc} is able to self-propagate by stimulating the conversion of PrP^C to PrP^{Sc} [18–21]. Despite extensive studies, the precise mechanism for PrP^{Sc} replication is still unclear. It is highly likely that prion replication requires exposure to tiny quantities of PrP^{Sc} to trigger the autocatalytic conversion of host PrP^C to PrP^{Sc} [22], as breaking large PrP^{Sc} aggregates to many smaller seeding-competent polymers resulted in an exponential accumulation of PrP^{Sc}, a seeding–nucleation mechanism [23,24]. This seeding–nucleation process has been reproduced in vitro, and when inoculated into animals, it led to prion disease characteristics [19–21].

The Proteasome System

The proteasome system is a large multicatalytic, cytoplasmic, and nuclear protease complex. It is responsible for the majority of non-lysosomal protein degradation within eukaryotic cells and necessary for cell viability [25–28]. There are many forms of the proteasome, but all forms contain the core 20S proteasome which is a hollow, barrel-shaped structure consisting of α- and β-subunits arranged in four rings, with each ring comprising seven subunits. The two outer rings are α-rings and the N-termini of seven α-subunits form a ‘gate’ that regulates substrate entry. Every inner β-ring contains three active subunits (β1, β2, and β5) facing a sequestered proteolytic chamber [29–32]. Usually, the 20S proteasome exists in a latent form in cells, because the ‘gate’ is almost closed, preventing penetration of substrates into the β-ring where they would be hydrolyzed. The latent proteasome is activated by multiple regulators, such as PA700(19S), PA28αβ(11S), REGγ(PA28γ), and PA200, which attach to the end of the 20S proteasome. Furthermore, a special form of the core proteasome is synthesized by substituting the proteolytically catalytic β1, β2, and β5 subunits with β1i, β2i, and β5i subunits, respectively, to form the ‘immunoproteasome’, which is linked to the 11S regulator (Fig. 1). Both the immunoproteasome and 11S are induced by interferon-γ and involved in antigen processing [33,34].

The UPS

The UPS functions in cellular quality control by degrading misfolded, unassembled, or damaged proteins that could otherwise form potentially toxic aggregates [35]. Degradation of proteins via the UPS pathway involves two successive steps: conjugation of multiple moieties of ubiquitin and degradation of the tagged protein by the 26S proteasome [36]. Ubiquitin is an 8.5 kDa protein composed of 76 amino acids, and conjugation of ubiquitin occurs through a series of enzyme-mediated reactions. Initially, ubiquitin-activating enzyme (E1) activates the C-terminal Gly of ubiquitin that is then transferred to ubiquitin-conjugating enzymes (E2), with many different ubiquitin protein ligases (E3). Ubiquitin is continuously ligated to lysine residues of protein substrates, and these intricate processes ensure selective protein conjugates that are subsequently recognized and degraded by the 26S proteasome. Finally, ubiquitinated protein is hydrolyzed into short peptide fragments and amino acids, while polyubiquitin chains are released from targeted proteins and disassembled to monomeric ubiquitin molecules that can be recycled [37,38].

The 26S proteasome is composed of two subcomplexes, a core 20S proteasome and a 19S regulatory particle. Electron microscopy analysis showed that each 20S proteasome is capped by one or two 19S particles [39]. The 19S regulatory
The particle is composed of 19 different canonical subunits and can be divided into two subcomplexes, lid and base, which play important roles in processing ubiquitinated substrates. These roles include binding, deubiquitinating and unfolding ubiquitinated proteins, and translocating them into the 20S proteasome for degradation [40]. The lid consists of 10 non-ATPase subunits (Rpn3, Rpn5–9, Rpn11, Rpn12, and Rpn15). Among them, Rpn11 is a deubiquitinating enzyme (DUB), which deubiquitinates substrates prior to their degradation. The base contains six distinct ATPase subunits (Rpt1–6) and three non-ATPase subunits (Rpn1, Rpn2, Rpn13). Connection between lid and base are stabilized by Rpn10. The six ATPase (Rpt1–6) subunits form a heterohexameric ring and constitute the molecular motor for the proteasome. When 19S ATPase binds a nucleotide, the conserved C-terminal HbYX motifs dock into the pockets between the adjacent α-subunits of 20S, functioning as a ‘key in a lock’ to destabilize the closed conformation and open the gate of the 20S proteasome. Rpn10 and Rpn13 are ubiquitin (Ub) receptors and can recognize polyubiquitinated substrates [41–44].

Assembly of the 19S regulator involves many chaperones (p28, S5b, and p27), which individually associate with specific pairs of ATPase subunits to form three different models: the p28-Rpt3-Rpt6-Rpn14 complex, the S5b-Rpt1-Rpt2-Rpn1 complex, and the p27-Rpt5-Rpt4 complex. The chaperones regulate the associations between these complexes and dissociations before 26S proteasome formation. The chaperones may accelerate the assembly of the 26S proteasome, although they are not necessary in the conventional process, but are probably required when more efficient proteasomes are needed [45].
Proteasomes in Prion Disease

UPS impairment and its role in prion diseases

Studies suggested that functional impairment in the UPS may be important in prion diseases [6,29]. A null mutation of Mahogunin, a putative E3 ubiquitin-protein ligase, resulted in a transmitted form of spongiform neurodegenerative disease in mice that histologically mimics prion disease [46,47], whereas another E3 ubiquitin ligase, Hectd2, is linked to prion disease incubation time in mouse and is associated with sporadic and variant Creutzfeldt–Jakob disease (CJD) and kuru in humans [48]. Ubiquitination of total brain proteins increased significantly with the development of clinical symptoms in mouse brain infected with ME7 scrapie via a train, which is associated with failure of the proteasome system. While ubiquitinated PrP is only detected at the terminal stage of prion disease, it is a late event phenomenon and occurs after the formation of protease-resistant PrPSc [8].

N2a-M cells treated with cyclosporin A produce protease-resistant, ‘prion-like’ PrP aggresomes as well as disease-linked proline mutants when proteasomes were inhibited [49]. In addition, three mutant prion proteins (PrP V203I, PrP E211Q, and PrP Q212P) associated with familial prion disease accumulated in the cytosol in response to proteasomal inhibition and eventually assembled into aggresomes [50]. Prion-infected neuronal cells became apoptotic after mild proteasome impairment and formed large aggresomes that contain PrPSc, heat shock chaperone 70, ubiquitin, proteasome subunits, and vimentin [51].

Although many studies have already shown that the UPS is impaired in neurodegenerative disease, the precise mechanism for such impairment is not clear. A significant decrease in proteasome activity was observed in the hippocampus and para-hippocampal gyrus, superior and middle temporal gyri, and inferior parietal lobule of AD patients. Post-translational modification may be responsible for the loss of proteasome activity in the AD brain [52]. Surprisingly, Kristiansen et al. [53] found that PrPSc could directly inhibit the catalytic core β-subunits of the 26S proteasome, and recombinant aggresome PrPSc, heat shock chaperone 70, ubiquitin, proteasome subunits, and vimentin [51].

The 19S regulator particle is the key component of the 26S proteasome. Except for opening the 20S gate, it is also responsible for recognizing, unfolding, and translocating ubiquitinated substrate into the 20S proteasome. ATP is necessary for the assembly by 19S, as well as for substrate unfolding and translocation into the 20S proteolytic chamber when cells are subject to stress. Low ATP availability may influence the function of the 19S, and therefore, regulating the function of the 19S particle may influence the activity of the 26S proteasome [57]. Shim et al. [58] reported that nuclear factor (NF)-κB activation acts as an inhibitor of the 26S proteasome. Tumor necrosis factor-α, interleukin-1β, and lipopolysaccharide each can increase S5b/PSMD5 protein expression by activating NF-κB pathways. This enhances the interaction between S5b/PSMD5 and S7/PSMC2, interferes with the assembly of the 19S particle, and eventually decreases the activity of the 26S proteasome. These processes provide insight into proteasome inhibition in neurodegenerative diseases.

Proteasome regulation in oxidative stress

Oxidative stress is induced by reactive oxygen species (ROS) or free radicals and has been implicated in aging and in the pathogenesis of several neurodegenerative disorders [59]. Studies have shown that prion proteins impair the cellular response to oxidative stress, and prion-infected hypothalamic neuronal GT1 cells were more susceptible to imposed oxidative stress and showed increased lipid peroxidation and signs of apoptosis [9]. Exposure of neuronal cells to the PrP106–126 fragment, the likely etiological agent for a series of encephalopathies and a peptide that mimics the neurotoxicity of PrPSc, leads to a 70% decrease in the intracellular concentration of glutathione and BCL-2 expression [60]. Exposure of neuronal cell cultures to PrP106–126 can also reduce glutathione reductase activity and increase the sensitivity of the cells to H2O2 [61].

The proteasome system plays a vital role in the cellular response to oxidative stress, because ROS can target and damage many proteins that then become cytotoxic and also play an important role in the selective recognition and degradation of oxidized proteins [62–64]. Previous studies showed that E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugating enzymes, and the 26S proteasome are highly sensitive to oxidative stress, whereas the 20S proteasome is stable and important in the degradation of oxidized proteins [65,66]. Oxidative stress can induce the dissociation of the 20S core particle from 19S regulators, which may involve many regulators and inhibit the 26S proteasome activities. This process finally causes the accumulation of ubiquitinated proteins. However, this process is also beneficial for adapting to oxidative stress, because dissociation of the 26S proteasome can release additional free 20S proteasome that is...
required for the degradation of oxidized proteins. Meanwhile, several chaperones such as proteosome-interacting protein Ecm29 can associate with the 19S proteasome, which induces the disassembly of the 26S proteasome and prevents its re-assembly during oxidative stress [67]. Grune et al. [68] showed the regulation of cellular proteasomes at different timepoints during oxidative stress. In the first hour, HSP70 chaperone binds to and preserves 19S regulators, which mediates the dissociation of the 26S proteasome, generating extra-free 20S proteasomes to degrade oxidized proteins as an initial response to oxidative stress. Then, HSP70 is released from 19S regulators, and the 26S proteasome is reconstituted from 1 to 3 h. Finally, the transcription/translation of the 20S proteasome, PA28, and immunoproteasome is increased to facilitate the degradation of more oxidized proteins (Fig. 1) [68].

In summary, the regulation of the proteasome may be very important for cells’ adaptation to oxidative stress in neurodegenerative diseases. Initial survival during oxidative stress may require immediate dissociation of the 26S proteasome into free 20S proteasome to degrade oxidized proteins, and subsequent adaption may depend on the synthesis of the 20S proteasome. Meanwhile, the 26S proteasome is reconstituted and ATP-stimulated proteolysis is restored [68]. However, the exact mechanism remains unclear and needs to be demonstrated in neurodegenerative diseases.

Relationship between the UPS and Autophagy in Neurodegenerative Diseases

Autophagy in prion diseases and other neurodegenerative diseases

Autophagy, especially macroautophagy, is a highly conserved process that involves rearrangement of subcellular membranes to sequester cytoplasm and organelles for delivery to lysosome-forming autophagosomes/autophagic vacuoles (AVs) for degradation and recycling [69]. Autophagy is a fundamental bulk degradation process for organelles and cytoplasmic proteins. Beyond the significant function of basal autophagy in the health of organisms, including humans, the importance of autophagy is even more evident in nervous system diseases, including AD, PD, HD, and prion diseases [70,71]. Increased numbers of AVs are a feature of many neurological diseases. Giant AVs have been detected in neurons of mice with CJD and scrapie-infected hamsters, and the ultrastructural features of autophagy in these two experimental models are similar. Moreover, multivesicular bodies and AVs have been observed in prion-infected cultured neurons and in various forms of human prion diseases [72–74]. Xu et al. [75] suggested that microtubule-associated protein 1 light chain 3 (LC3) is converted from a cytosolic form to an autophagosome membrane-bound form. Moreover, autophagy substrate sequestosome 1 (SQSTM1) and polyubiquitinated proteins are down-regulated in the brain of scrapie-infected hamsters and in human genetic prion diseases, indicating that the autophagy system is enhanced, likely via the mammalian target of rapamycin pathway.

However, loss of autophagy in the central nervous system (CNS) causes neurodegeneration in mice. Autophagy-related 7 (Atg7) gene knockout in the CNS of mice leads to behavioral defects, massive neuronal loss in the cerebral and cerebellar cortices, and accumulation of polyubiquitinated proteins in neurons as inclusion bodies [76], indicating that autophagy is essential for neuron survival. The Atg8a protein level is decreased in the aging CNS, and Atg8a mutant flies have a reduced lifespan and neurodegenerative phenotype, including ubiquitinated protein accumulation and increased sensitivity to oxidative stress. In contrast, an enhanced level of Atg8a expression extends the average adult lifespan and promotes resistance to oxidative stress, preventing the accumulation of protein aggregates [77], and up-regulation of autophagy may be beneficial for the healthy CNS under stressful conditions that involve oxidant exposure, protein misfolding, and aging. In addition, a series of studies suggested that neurodegenerative disease-causing proteins are frequently degraded by autophagy. The results from immunoelectron microscopy showed that disease-related proteins are delivered to AVs in cultured cells, showing that autophagy contributes to the degradation of multiple disease-related proteins [78]. PrPSc does not co-localize with autophagosomes in the brain of scrapie-infected hamsters, whereas PrPSc does co-localize with autophagosomes in a prion-infected cell line after treatment with Bafilomycin A [75]. In prion-infected mice, imatinib treatment during the early phase of peripheral infection delays both neuroinvasion of PrPSc and the onset of clinical disease by activating lysosomal degradation of PrPSc [79]. Moreover, studies have also shown that both lithium and trehalose can enhance PrPSc clearance in prion-infected cells via the induction of autophagy, whereas the amount of PrPSc increases in cells treated with autophagy inhibitors [71,80–82].

Autophagy as a compensatory mechanism for proteasome impairment

Autophagy and the UPS are two major cellular protein degradation systems that were previously believed to be distinct, although increasing evidence suggests that they are functionally interrelated [83]. In particular, they share certain substrates and regulators, and several observations have indicated that autophagy may provide an alternate, compensatory route of degradation when the UPS is impaired. Most misfolded soluble proteins are preferentially degraded by the proteasome, but insoluble aggregates are difficult for the proteasome to degrade and even impair its function. Therefore, aggregates are mainly degraded via autophagy, and this is true for large aggregates in cultured cells [57]. One study showed that when aggregation-prone misfolded proteins overwhelm the UPS in cultured cells, single
aggregates were tagged by ubiquitin and then translocated to the microtubule-organizing center to form aggresomes, which were eventually degraded by autophagy (Fig. 1) [84]. In addition to the formation of aggresomes, impairment of the UPS has been found to induce autophagy. Ding et al. [83] demonstrated that autophagy is activated when the proteasome is inhibited, and this is important for controlling ER stress and preventing cell death in cancer cells. In contrast, autophagy inhibition leads to increased levels of soluble UPS clients and compromised UPS activity [85]. However, Atg5- or Atg7-deficient mice exhibited massive neuronal loss and polyubiquitinated proteins as inclusion bodies. Moreover, these mice showed no deficiencies in UPS function, suggesting that some ubiquitin-tagged proteins may normally be degraded by autophagy (termed ‘selective autophagy’) [76,86].

Regulators involved in the links between autophagy and the UPS

Although increasing evidence has already demonstrated the coordination between the UPS and autophagy, the exact processes involved are poorly understood. Recently, several regulators have been reported to play important roles in mediating this crosstalk [78].

HDAC6 is a class II HDAC and a microtubule-associated deacetylase. In addition to histone deacetylation, it has been shown to deacetylate multiple non-histone proteins including α-tubulin, Hsp90, cortactin, peroxiredoxin, and Ku70. Different from other HDAC family proteins, HDAC6 also contains a ZnF-UBP domain at its C-terminus, which has a higher affinity for ubiquitinated proteins than other ubiquitin-binding proteins, even Rpn10 [90]. HDAC6 mediates the transport of ubiquitinated proteins along microtubule tracks to aggresomes for eventual degradation by autophagy, and HDAC6 also plays an essential regulatory role in the fusion of autophagosomes and lysosomes (Fig. 1) [91]. Autophagy acts as a compensatory degradation system when the UPS is impaired in Drosophila melanogaster, and HDAC6 is an essential link in this interaction. Moreover, over-expression of HDAC6 can rescue the degeneration associated with UPS dysfunction in vivo in an autophagy-dependent manner [88]. Therefore, HDAC6 may be an efficient medicinal target for the treatment of AD.

p97/VCP is an AAA-ATPase chaperone that has ‘segre-gase’ activity and is involved in disassembling various complexes, including HDAC6-polyubiquitin complexes. In the presence of ATP, p97 can dissociate HDAC6-polyubquitin complexes and transfer the polyubiquitin to Rpn10, which indicates that p97/VCP prevents the formation of aggregates and accelerates protein degradation by proteasomes (Fig. 1). Hence, a finely tuned equilibrium in HDAC6 and p97/VCP concentration determines the fate of polyubiquitinated proteins [90].

P62/SQSTM1 is another regulator that links autophagy with the UPS, and it harbors a ubiquitinated-associated (UBA) domain at its C-terminal. This UBA domain can combine with ubiquitinated proteins, p62 and NBR1 (neighb-or of BRCA1 gene 1), co-aggregate with ubiquitinated misfolded proteins, and mediate their degradation by selective autophagy [92]. p62 is present in all types of ubiquitinated intracellular protein inclusions found in neurodegenerative diseases, and p62-null mice fail to form ubiquitin-positive protein aggregates in response to misfolded protein stress and exhibit age-related neurodegeneration [78,93]. Researchers have shown that p62 has broad functions in stress situations, such as proteasome impairment, oxidative stress, and increased misfolded protein burden. p62 forms transient, stress-induced ‘p62 bodies’ containing ubiquitinated, misfolded proteins with NBR1 [94–96]. Kaniuk et al. [97] and Lamark and Johansen [98] demonstrated that oxidative stress-induced p62 bodies in pancreatic cells of diabetic rats could only be cleared by autophagy.

Recently, more and more researchers are studying the relationship between autophagy and the UPS, and it has become apparent that the two degradation systems are coordinated. However, the mechanisms and molecular players that regulate the crosstalk between these systems still need to be elucidated, especially in neurodegenerative diseases.

Conclusion

A shared characteristic of many neurodegenerative disorders is the accumulation of misfolded proteins that cannot be removed from neurons and eventually form aggregates. For example, AD is the most common neurodegenerative disease, and hyperphosphorylation of tau protein (p-tau) leads to the formation of paired helical filament/neurofibril-lary tangles which accumulate in cells. In contrast, amyloid-β peptide forms oligomers and senile plaques which are deposited outside the cells [91]. PD is the second
most common progressive neurodegenerative disorder, and its hallmark is the Lewy bodies which contain ubiquitin-positive protein aggregates and is accumulated in the cytoplasm [99]. In prion disease, normal PrPC transforms into the poorly soluble PrPSc, which leads to the accumulation of PrPSc aggregates. These accumulated proteins are toxic and eventually induce dysfunction and death of neuronal cells.

The proteasome system is a rapid, precise, and timely processing system for many cellular proteins, and it is present in all types of cells in the CNS. Proteasomes degrade multiple substrates including misfolded and damaged proteins and induce the catabolism of oxidized low-density lipoprotein, which is important for cell differentiation, cell cycle procession, circadian rhythms, apoptosis, inflammation, and other biological process. The proteasome is overwhelmed in neurodegenerative diseases, and can be impaired by directly inhibiting the entrance of substrate to the 20S proteasome or down-regulating specific components. In addition, proteasome activity can be decreased indirectly by other chaperones that participate in the assembly of proteasome. Although the exact mechanism underlying the regulation of proteasome activity remains poorly understood, aberrant proteasome activity is directly associated with the pathogenesis of prion diseases. Therefore, the regulation and normal functioning of the proteasome system is critical for neuronal cells.

Increasing evidence shows that inhibiting proteasome activity can trigger autophagy, which may be the complementary pathway for impairment of proteasomes. However, when an activated autophagic system reaches saturation, it may be impaired, indicating that autophagy has gone awry in neurodegenerative diseases, including AD, PD, HD, ALS, and others [100]. Consequently, more work is needed to elucidate whether a balance exists between the proteasome and autophagy in vivo. In such a balance, when one is impaired, the activity of the other pathway is increased to some extent in order to maintain homeostasis. A better understanding of the relationship between the proteasome and autophagy will be beneficial in the treatment of neurodegenerative diseases, in which the proteasome is impaired.

Funding

This work was supported by the Natural Science Foundation of China (project nos. 31172293 and 31272532), the Ministry of Agriculture Program of China (no. 2013-S11).

References

Regulation of proteasomes in prion disease

