Parthenolide inhibits LPS-induced inflammatory cytokines through the toll-like receptor 4 signal pathway in THP-1 cells
Shuangshuang Li1,2, Xiangli Gao1, Xiaoxin Wu3, Zhigang Wu3, Linfang Cheng3, Lifen Zhu1, Dan Shen1, and Xiangmin Tong1,2,*

1Department of Hematology, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310003, China, 2Department of Hematology, Zhejiang Provincial People’s Hospital, Hangzhou 310003, China, and 3State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310003, China

*Correspondence address. Tel/Fax: +86-571-8589301; E-mail: tongxiangmin11@163.com

Received 25 November 2014; Accepted 20 January 2015

Abstract
Parthenolide (PTL) shows potent anti-inflammatory and anti-cancer activities. In the present study, the molecular mechanisms of PTL’s activities were explored in lipopolysaccharide (LPS)-induced human leukemia monocytic THP-1 cells and human primary monocytes. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt (MTS) assay was used to analyze the effect of PTL on THP-1 cell viability. Enzyme-linked immunosorbent assay was used to determine the effect of PTL on LPS-induced inflammatory cytokine secretion. Flow cytometry and quantitative real-time polymerase chain reaction were used to assess the effect of PTL on LPS-induced toll-like receptor 4 (TLR4) expression. Phosphorylation levels of signaling molecules were determined by western blot analysis. Results showed that PTL <12.5 μM did not significantly affect THP-1 cells viability. LPS treatment led to a marked up-regulation of interleukin (IL)-6, IL-1β, IL-8, IL-12p40, tumor necrosis factor-α, IL-18, and NO in THP-1 cells. However, PTL inhibited the expression of these cytokines in a dose-dependent manner, with IC50 values of 1.091–2.620 μM. PTL blocked TLR4 expression with an IC50 value of 1.373 μM as determined by the flow cytometry analysis, and this blocking effect was verified at both protein and mRNA levels. Up-regulation of phosphorylation levels of extracellular signal-regulated kinase 1/2, Jun N-terminal kinase, p38, nuclear factor κB (NF-κB) p65, and IkBα and up-regulation of expressions of other molecules (inducible nitric oxide synthase, TLR4, and TNF receptor-associated factor 6) induced by LPS were abolished by PTL in a dose-dependent manner. The anti-inflammatory mechanisms of PTL operate partly through the TLR4-mediated mitogen-activated protein kinase and NF-κB signaling pathways. Therefore, TLR4 may be a new target for anti-inflammation therapies.

Key words: anti-inflammation, inflammatory cytokine, MAPK, parthenolide, TLR4

Introduction
Toll-like receptors (TLRs) play a critical role in the innate immune system, particularly in the inflammatory response by recognizing pathogen-associated molecular patterns [1]. TLRs are essential for the protective immunity against infection, but inappropriate TLR responses contribute to acute and chronic inflammation [2]. TLR4, a member of the TLR family, is expressed on cell surface and mainly recognizes microbial membrane components such as lipids, lipoproteins, and proteins. TLR4 is identified as the lipopolysaccharide...
(LPS) receptor, which is critical in LPS-induced inflammatory actions [3]. LPS is a well-characterized inducer of inflammatory response and the pro-inflammatory activity of LPS-induced TLR4 expression plays an important role in pathological responses in autoimmune disorders and chronic inflammatory conditions, with the development of atherosclerosis, neurodegenerative diseases, and other chronic diseases [4]. Once activated, TLR4 initiates downstream signaling pathways [mitogen-activated protein kinases (MAPKs) and nuclear factor κB (NF-κB)], resulting in the release of cytokines such as interleukin (IL)-6, IL-1β, IL-8, IL-12p40, tumor necrosis factor (TNF)-α, IL-18, and NO, which then mediate the innate immune response and inflammatory response [5,6].

Accumulating evidence indicates that chronic inflammation plays a critical role in several chronic degenerative pathologies, including cardiovascular diseases, renal damage, and cancer [7,8]. Several anti-LPS or anti-cytokine clinical trials have been conducted, but none has so far been successful. Parthenolide (PTL), a sesquiterpene lactone (SL) originally purified from the shoots of feverfew (Tanacetum parthenium), has shown potent anti-cancer and anti-inflammatory activities [9]. Some observations revealed that the anti-inflammatory property of PTL in THP-1 cells, a human leukemia monocytic cell line, is partly due to its inhibition of inducible nitric oxide synthase (iNOS) promoter activation [9]. What’s more, there is a study showing that PTL can attenuate NF-κB activation after an LPS challenge in rat myocardium [10]. Other studies indicated its inhibition of inflammatory cytokines secretion such as NO, IL-6, and TNF-α release and related signaling pathways such as MAPK and NF-κB activation in central nervous system diseases [11,12]. However, the mechanism of PTL inhibition of TLR4 and related molecules involved in pro-inflammatory signaling pathways remains unclear. Findings in RAW 264.7 macrophages suggested that PTL modulated toll-like-interleukin-1 receptor domain-containing adapter inducing interferon-β (TRIF)-dependent downstream signaling pathways such as MAPK and NF-κB of TLRs can be used in anti-chronic inflammatory diseases [13,14].

Innate immune recognition of microbial components and its critical role in host defense against infection have been intensively studied in recent years. Monocytes are key cells of the innate immune system and are responsible for the initiation, progression and resolution of inflammation, pathogen clearance, wound healing, and tissue homeostasis [6,15]. THP-1 is widely used as a model to study inflammatory response. Based on the findings in RAW264.7 macrophages [13,14], whether PTL plays a role in THP-1 cell line and primary monocytes after an LPS challenge, and whether its anti-inflammatory effects function through TLR4 signaling pathway are studied. LPS-induced THP-1 cells are used as a model to investigate the anti-inflammatory effects of PTL and to explore the underlying mechanism. Our results showed that PTL inhibits LPS-induced inflammation mainly by affecting TLR4 signaling, suggesting that targeting TLR4 expression may be a novel approach for anti-inflammatory treatment and cancer prevention and therapy.

Materials and Methods

Cell culture and treatment

THP-1 cells were purchased from American Type Culture Collection (ATCC; Rockville, USA). Fresh bone marrow samples were obtained from two newly diagnosed acute myelocytic leukemia (AML) patients and one healthy volunteer. Bone marrow mononuclear cells were harvested using Ficoll-Hypaque density centrifugation (Lymphoprep; Cedarlane Laboratories, Burlington, USA) and then collected and subject to subsequent isolation of human primary monocytes by the MACS magnetic separation system with a Human Monocyte IsolationKit II (Negative isolation; Miltenyi Biotec, Bergisch Gladbach, Germany). CD14+ cells were >95% pure as determined by flow cytometry [15]. THP-1 cells or primary monocytes (5 x 10⁴ cells/ml in 24-well plates) were maintained in a humidified incubator at 37°C under 5% CO₂, in RPMI-1640 medium containing 100 IU/ml penicillin, 100 μg/ml streptomycin, 2 mM glutamine (Invitrogen, Carlsbad, USA), and 10% fetal bovine serum (FBS; PAA, Morningside, Australia). Cells were pretreated with PTL for 2 h and divided into five different treatment groups: cells without LPS (Sigma, St Louis, USA) or PTL (Sigma) as the control group; cells treated with LPS (1 μg/ml) alone; and cells treated with PTL at different concentrations (0.75, 3, and 12 μM) in the presence of LPS. Cells treated with PTL for another 4–18 h were analyzed by western blot analysis, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and flow cytometry.

Cell viability assay

The cytotoxic effects of PTL were determined before further studies. Briefly, THP-1 cells (5 x 10⁴ cells/well) in 96-well plates (Promega, Madison, USA) were treated with PTL (0, 12.5, 25, and 50 μM) for 24 h and cell viability was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt (MTS) assay. An electron coupling reagent, phenazine methosulfate (PMS), was also used in the assay. After incubation for the indicated time in the appropriate medium, 20 μl of MTS/ PMS mixture was added to each well and incubated for 2 h. Viable cells reduced MTS into formazan. Absorbance was determined at 490 nm for each well using a spectrophotometer. The background absorbance from the control wells was subtracted from the measured absorbance values. Three duplicate studies were performed for each experimental condition.

Evaluation of cytokine secretion by ELISA

The inhibitory effect of PTL on IL-6, IL-1β, IL-8, IL-12p40, TNF-α, IL-18, and NO production in THP-1 was determined by ELISA kit (R&D Systems, Minneapolis, USA) with the mean minimum detectable doses of 0.7, 1, 3.5, 15, 1.6, 1, and 0.25 pg/ml, respectively. THP-1 cells were treated as described earlier. The supernatants were then collected from cell cultures and stored at −20°C until further use for determining the levels of the various cytokines. All tests were carried out in strict accordance with manufacturer’s instructions, and each sample was analyzed in triplicate.

Evaluation of TLR4 by flow cytometry

The expression levels of TLR4 were monitored after different treatments with PTL and LPS. THP-1 cells were treated as indicated above then collected, washed twice with phosphate-buffered saline (PBS), re-suspended in 100 μl of PBS containing 2% FBS, and finally stained with rabbit monoclonal antibody against TLR4 (Cell Signaling, Beverly, USA) for 2 h. After being washed twice with PBS, cells were incubated with goat anti-rabbit IgG-FITC (Cell Signaling) for 1 h and washed twice with PBS, finally re-suspended in 100 μl of PBS containing 2% FBS. Unstimulated cells and LPS stimulated cells without PTL were used as controls. Flow cytometry was performed with a 488 nm laser coupled to a cell sorter (FacsCalibur; BD Biosciences, San Jose, USA).

Western blot analysis

THP-1 cells were treated as indicated and then collected and lysed with a lysis buffer (20 mM Tris–HCl, pH 7.5, containing 150 mM...
The extraction of nuclear and cytoplasmic protein was carried out using nuclear and cytoplasmic extraction reagents (Pierce, Rockford, USA) according to the manufacturer’s instructions. The concentration of protein in each cell lysate was determined using a bicinchoninic acid protein assay kit (Pierce). Twenty micrograms of cell protein lysates per sample were mixed with 2x sodium dodecyl sulfate (SDS) loading buffer containing dithiothreitol and heated at 100°C for 10 min before being resolved by SDS–polyacrylamide gel electrophoresis. Proteins were transferred to polyvinylidene fluoride membranes and blocked for 2 h at room temperature with Tris-buffered saline (TBS) containing 0.1% Tween-20 (TBST) and 5% non-fat milk, and then incubated overnight with primary antibodies (1:1000; Cell Signaling) at 4°C. After thorough washes, membranes were incubated at room temperature for 1 h with horseradish peroxidase-conjugated secondary antibodies (1:5000; Cell Signaling) at 4°C. After thorough washes, membranes were incubated at room temperature for 1 h with horseradish peroxidase-conjugated secondary antibodies (1:5000; Cell Signaling), and then detected using Electro-Chemi-Luminescence western detection reagents and a VersaDocMP5000 imaging system (Bio-Rad, Hercules, USA).

Quantitative real-time PCR
For qRT-PCR, THP-1 cells and primary monocytes were treated as indicated and total RNA was extracted using Trizol reagent (Invitrogen, Carlsbad, USA). qRT-PCR was carried out using SYBR Green I (Peqlab, Erlangen, Germany). Primer sequences for human TLR4 were (product size 147 bp): 5′-TGGAAGTTGAACGAATGGAATGTG-3′ and 5′-ACCAGAAGTGCTACACAGATACT-3′. Primer sequences for GAPDH were (product size 280 bp): 5′-GAGATCCCTCACAATCTAATG-3′ and 5′-TGTAGCTTCCACGATACCAA-3′. PCR was performed with 40 cycles on a Linegene real-time PCR detection system (Bioer Technology, Hangzhou, China) as follows: initial denaturation at 94°C for 3 min; denaturation at 94°C for 30 s; annealing at 60°C for 30 s; and extension at 72°C for 60 s. Finally, products were stained with ethidium bromide and electrophoresed through a 2% agarose gel. Data were analyzed using the 2−ΔΔCT method [16,17]. The level of TLR4 mRNA was normalized to that of GAPDH mRNA.

Statistical analysis
All experiments were performed three times. Results were expressed as mean ± standard deviation (SD). The method of one-way analysis of variance was used for analysis of statistical significance and P < 0.05 was considered to be statistically significant.

Results
The cytotoxic effect of PTL on THP-1 cells
The cytotoxic effects of PTL were first evaluated. The viability of THP-1 cells after incubation with different concentrations of PTL for 24 h was determined by MTS assay (Fig. 1). Exposure to 0–12.5 μM PTL for 24 h did not affect the viability of THP-1 cells, while PTL concentrations >12.5 μM (P < 0.05) markedly decreased the viability. Therefore, PTL concentrations <12.5 μM were suitable to evaluate the selective pharmacological action of PTL without interfering with normal cell function. An IC50 = 12.5 μM (10% inhibiting concentration) was calculated using Prism. Hence, we chose concentrations under 12.5 μM (0.75, 3, and 12 μM) in the subsequent experiments.

Inhibitory effect of PTL on the LPS-induced up-regulation of inflammatory factor production in THP-1 cells
To evaluate the inhibitory effect of PTL on LPS-mediated production of inflammatory cytokines, the levels of IL-6, IL-1β, IL-8, IL-12p40, TNF-α, IL-18, and NO in the supernatant of THP-1 cells were determined by ELISA. These inflammatory cytokines play important roles in human immunity and inflammatory response. Cells were pretreated with various concentrations of PTL (0.75, 3, and 12 μM) in the presence or absence of LPS (1 μg/ml) for 18 h and then inflammatory cytokines in the supernatants were detected by ELISA (Table 1). PLS treatment led to a marked up-regulation of the levels of IL-6, IL-1β, IL-8, IL-12p40, TNF-α, IL-18, and NO in THP-1 cells. However, PTL inhibited the up-regulation in a dose-dependent manner, with IC50 (50% inhibiting concentration) values of 2.620, 2.594, 1.858, 2.137, 1.091, 2.518, and 2.175 μM, respectively. These results indicated that PTL can affect LPS-mediated pro-inflammatory responses in THP-1 cells.

Pretreatment with PTL attenuates LPS-induced TLR4 expression
Figure 2A shows that LPS significantly stimulated TLR4 expression in THP-1 cells. PTL inhibited the LPS-induced up-regulation of TLR4 in a dose-dependent manner. The IC50 value of PTL on LPS-induced TLR4 expression was 1.373 μM. Results expressed as mean fluorescence intensity in Fig. 2B showed that PTL at 3 and 12 μM significantly diminished LPS-induced TLR4 expression compared with LPS-stimulated group (P < 0.01). The inhibition rates of PTL on TLR4 expression at 3 and 12 μM were 61.54 and 65.53%, respectively. Western blot analysis (Fig. 2C) and relative density (Fig. 2D) showed that the expression of TLR4, LPS-induced up-regulation of adaptor protein TLR4, and effector iNOS were all inhibited by PTL in a dose-dependent manner (P < 0.01). Although these results show that PTL down-regulates TLR4 expression, it is still unclear how this drug affects TLR4 expression. To clarify this problem, mRNA levels of TLR4 were evaluated by qRT-PCR in THP-1 cells and human primary monocytes. As shown in Fig. 2CE, LPS-induced TLR4 expression at both protein and mRNA levels, and pretreatment with PTL could block TLR4 expression in a dose-dependent manner.

Figure 1. The effect of PTL on the viability of THP-1 cells. THP-1 cells (5×10^5 cells/well) were treated with PTL (0, 12.5, 25, and 50 μM) for 24 h. Cell viability was determined by MTS assay. Data are from three independent experiments (the mean ± SD). *P < 0.05 vs. the control group (cells without PTL treatment). **P < 0.01 vs. the control group (cells without PTL treatment).
As shown in Fig. 2F, PTL at 3 and 12 μM could obviously inhibit TLR4 mRNA expression (P < 0.01). As shown in Fig. 2G,F, in human primary monocytes, TLR4 mRNA levels were simultaneously up-regulated after an LPS challenge. The TLR4 mRNA level from AML patients (cases 1 and 2) was slightly higher than that from the healthy volunteer (case 3), which was partly due to the activation of monocytes in AML patients. However, pretreatment with 3 μM PTL could inhibit LPS-induced TLR4 mRNA expression both in AML primary monocytes and normal primary monocytes. The result indicated that PTL also exhibited anti-inflammatory properties in human primary monocytes both in AML patients and healthy people, which was in line with the results from THP-1 cell line. These results indicated that PTL inhibits TLR4 expression

Discussion

TLR signaling is principally divided into two pathways: MyD88 (myeloid differentiation factor 88)-dependent and TIRF-dependent, according to the primary adaptor usage [4,5,13]. TLR4 participates in both signaling pathways. In the canonical pathway, TLR4 recruits MyD88 to the receptor complex, initiating recruitment of IRAK-1 and IRAK-4, followed by its adaptor protein TRAF6 [13]. This results in the phosphorylation of TGF-beta-activated kinase 1 (TAK1) and finally the activation of NF-κB and MAPKs to induce pro-inflammatory cytokines release. We assumed that PTL inhibits inflammatory genes and transcription factors by blocking the signaling receptor TLR4. Therefore, we chose the activation of these two signaling pathways and expression level of their target genes, for example, IL-6, IL-1β, IL-8, IL-12p40, NO, TNF-α, and IL-18 were determined by ELISA. Data are from three independent experiments (the mean ± SD).

P < 0.05 vs. LPS alone.

** **P < 0.01 vs. LPS alone.

Table 1. Inhibitory effect of PTL on the LPS-induced up-regulation of inflammatory factor production

<table>
<thead>
<tr>
<th>Groups</th>
<th>LPS (μg/ml)</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>IC_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTL (μM)</td>
<td>0</td>
<td>0</td>
<td>0.75</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cytokines</th>
<th>LPS (pg/ml)</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>IC_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td>108.67 ± 21.035</td>
<td>667.23 ± 107.345</td>
<td>499.30 ± 38.048*</td>
<td>297.57 ± 33.524**</td>
<td>153.42 ± 18.924**</td>
<td>2.620</td>
</tr>
<tr>
<td>IL-18</td>
<td>99.30 ± 50.287</td>
<td>117.10 ± 98.646</td>
<td>101.28 ± 62.045</td>
<td>448.99 ± 79.275**</td>
<td>162.83 ± 52.118**</td>
<td>2.594</td>
</tr>
<tr>
<td>IL-8</td>
<td>284.44 ± 549.972</td>
<td>354.55 ± 632.1952</td>
<td>253.31 ± 125.208*</td>
<td>122.33 ± 157.348**</td>
<td>501.11 ± 693.889**</td>
<td>1.858</td>
</tr>
<tr>
<td>IL-12p40</td>
<td>2.67 ± 3.214</td>
<td>986.90 ± 115.626</td>
<td>744.78 ± 103.198*</td>
<td>408.72 ± 67.193**</td>
<td>93.87 ± 20.436**</td>
<td>2.157</td>
</tr>
<tr>
<td>TNF-α</td>
<td>55.45 ± 12.893</td>
<td>419.54 ± 725.267</td>
<td>238.42 ± 198.462**</td>
<td>130.90 ± 180.048**</td>
<td>291.51 ± 153.898**</td>
<td>1.091</td>
</tr>
<tr>
<td>IL-18</td>
<td>10.95 ± 2.460</td>
<td>453.7 ± 71.199</td>
<td>355.30 ± 24.912*</td>
<td>174.00 ± 21.856**</td>
<td>103.27 ± 34.675**</td>
<td>2.518</td>
</tr>
<tr>
<td>NO</td>
<td>12.06 ± 13.298</td>
<td>730.48 ± 95.744</td>
<td>573.96 ± 77.048*</td>
<td>263.33 ± 69.338**</td>
<td>90.87 ± 46.648**</td>
<td>2.175</td>
</tr>
</tbody>
</table>

THP-1 cells were pretreated with PTL (0.75, 3, and 12 μM) for 2 h and further incubated in the presence or absence of LPS (1 μg/ml) for 18 h. Levels of IL-6, IL-18, IL-8, IL-12p40, NO, TNF-α, and IL-18 were determined by ELISA. Data are from three independent experiments (the mean ± SD).

*P < 0.05 vs. LPS alone.

**P < 0.01 vs. LPS alone.
expression levels in THP-1 cells when compared with the control group. PTL inhibited this up-regulation in a concentration-dependent manner, which was in line with previous studies [10,13,14]. Therefore, we concluded that PTL may inhibit LPS-induced inflammation through inhibition of the TLR4 signaling pathway.

Because NF-κB belongs to a downstream signaling component of TLR4, the expressions of NF-κB p65 and IκBα can reflect TLR4 activation. In line with these observations, western blot results showed that at concentrations of 3 \(\mu M \) \((P < 0.05)\) and 12 \(\mu M \) \((P < 0.01)\), PTL obviously altered the protein levels of p-NF-κB p65 and p-IκBα.
Interestingly, it was found that LPS markedly increased the levels of cytokines including IL-6, IL-1β, IL-8, IL-12p40, TNFα, IL-18, and NO (Table 1), these cytokines induced by LPS can also reflect TLR4 activation after an LPS challenge. However, PTL mediated a dose-dependent inhibition of LPS-induced inflammatory cytokines in THP-1 cells. According to previous studies, NF-κB plays a critical role in inflammatory responses by regulation of iNOS protein expression level and secretion of pro-inflammatory cytokines [9,10,12]. The expressions of these pro-inflammatory cytokines are primarily regulated at the transcriptional level by the NF-κB pathway [24–26]. NO, generated by iNOS during inflammation, has various pro-inflammatory effects and is a final effector in inflammatory response [9,12]. Collectively, PTL inhibits cytokines stimulated by LPS through TLR4-mediated signaling pathway, which is indicated by that fact that LPS-induced TLR4 protein and mRNA expression are significantly blocked by PTL pretreatment.

In addition to the NF-κB signaling pathway, MAPK pathways, including ERK, p38, and c-JNK, also participate in LPS-induced cytokine release and inflammatory responses in THP-1 cells. As MAPKs are also downstream signaling components of TLR4, the expression of ERK, p38, and c-JNK can reflect the activation of TLR4 by LPS. In this study, western blot analysis (Fig. 4) shows that LPS increased the phosphorylation levels of ERK, p38, and JNK. However, PTL blocked the expression of these molecules in a dose-dependent manner. These results indicated that the TLR4-mediated MAPK pathway was also involved in the effect of PTL on LPS-induced inflammation. PTL could inhibit the activation of ERK, p38, and JNK stimulated by LPS/TLR4 signaling. Some studies have suggested that NF-κB and MAPKs are closely regulated by LPS-induced inflammatory cytokines [26,27]. Down-regulation of these cytokines and inhibition of related signal pathways would be of therapeutic benefit in treating inflammatory diseases [28]. TAK1, a member of the MAPK kinase family, was an upstream signaling molecule of NF-κB. Studies have suggested that suppression of LPS-induced TAK1 phosphorylation results in the inhibition of NF-κB activation [29,30]. In addition, MyD88, an accessory protein of LPS-induced inflammation signaling, has been reported that SLs such as alantolactone can block its expression and play a role in LPS-induced anti-inflammation [31]. However, the effect of PTL on these molecules (TAK1 and MyD88) is still unclear. Further work is needed to clarify this point. Based on our recent data, we suggest that TLR4 may play a critical role in LPS-induced inflammation, and alterations in TLR4 expression may serve a novel window in anti-inflammatory response.

An important relationship has long been recognized between the immune system and cancer, and chronic inflammation has been implicated in many cancers, including adult carcinomas, pancreatic cancer, and colon cancer [5,32,33]. However, the molecular and cellular mechanisms mediating this relationship remain unresolved. Tumor-associated inflammation can drive tumor development by the recruitment of leukocytes, the production of cytokines and chemokines, and the consequent increase of angiogenesis, tumor cell survival and metastasis [33]. In this study, we investigated the TLR4-mediated NF-κB and MAPK signaling pathways that are involved not only in inflammatory responses but also in the progress and development of
cancer [32–34]. As shown in this study, PTL can inhibit both NF-κB and MAPK signaling activation through the LPS/TLR4 pathway, indicating that PTL could be a potential TLR4 target agent for clinical application in inflammation and cancer therapy [35]. Moreover, studies have revealed that NF-κB is constitutively active in AML cells but not in normal hematopoietic cells, and its inhibition correlates with leukemia-specific cell death, which makes PTL as a single agent in leukemia therapy due to its strong inhibitory effect on NF-κB [36–38].

Our results in human primary monocytes from AML patients were consistent with these findings. In addition, previous study has also revealed that PTL shows a high level of cytotoxicity towards B-chronic lymphocytic leukemia cells [38]. Given the fact that bacterial inflammation is a common complication in leukemia patients, PTL pretreatment may be a promising therapy for leukemia [35–38]. Taken together, PTL may play an important role in anti-leukemia process. Further studies regarding the relationships among PTL, inflammation and leukemia are important. The search for the direct targets of PTL will greatly help to better understand its pharmacological anti-inflammation and anti-cancer properties.

Funding

This work was supported by a grant from the Zhejiang Medical Health and Science Foundation of China (No. 2012KYA080).

References

