A comparison of health-related quality of life of elderly and younger insulin-treated adults with diabetes

PAULA M. TRIEF1, MICHAEL J. WADE2, DENISE PINE3, RUTH S. WEINSTOCK4

1Departments of Psychiatry and Medicine, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
2Veterans’ Affairs Medical Center, 800 Irving Avenue, Syracuse, NY 13210, USA
3Psychiatry, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
4Division of Endocrinology, Diabetes & Metabolism, SUNY Upstate Medical University, Veterans’ Affairs Medical Center, 750 E. Adams Street, Syracuse, NY 13210, USA

Address correspondence to: P. M. Trief. Fax (+1) 315 464 3163. Email: triefp@upstate.edu

Abstract

Background: diabetes is a significant disease of elderly people, an age group whose numbers will double over the next 20–30 years. Yet studies which assess diabetes-related quality of life have rarely included elderly participants.

Objectives: to compare and contrast the health-related quality of life of elderly (≥ 65 years) and younger individuals with diabetes using reliable and valid assessment tools.

Methods: 191 adults (≥ 30 years) with diabetes currently on an insulin regimen were recruited. Medical and demographic data were gathered from the medical chart. Participants completed a generic quality of life measure (SF-36) and 3 diabetes-specific measures. Statistical analyses compared adults (30–64 years) to elderly adults (≥ 65 years).

Results: on the generic SF-36, physical and mental summary scores did not differ. However, elderly participants reported greater role limitations due to physical problems, and better social function. On diabetes-specific measures, elderly participants reported higher satisfaction with diabetes-related aspects of their lives, less diabetes-related emotional distress, and better ability to cope with their diabetes.

Conclusions: the differences that did emerge between the two groups suggest that, though experiencing more limitations in their ability to function in their roles, elderly individuals with diabetes may still feel that they can cope with these limitations and thus manage the distress and lifestyle demands of the diabetes. The value of subscale analysis of the SF-36 and use of diabetes-specific health-related quality of life measures is also affirmed.

Keywords: diabetes mellitus, quality of life, elderly, SF-36

Introduction

Diabetes is a significant disease in advancing age. A United States survey found 19% prevalence in those aged 65–74 [1]; elderly people represent more than half of individuals with diabetes in a United Kingdom sample [2]. There is significant variance across ethnic groups, i.e., in the 60–74 age group, 11.3% of Caucasian-, 20.9% of African-, and 24.4% of Mexican-Americans have diagnosed diabetes [3]. Another 20–25% meet criteria for impaired glucose tolerance, 20–30% have undiagnosed diabetes [4, 5], leaving 25–40% of older adults with normal glucose tolerance [6].

In 20–30 years, the number of adults over 65 will double and the incidence of diabetes will soar [7]. The largest percentage increase will be in those ≥ 75 years [8]. Furthermore, increased life expectancy means more will suffer impaired quality of life due to complications. Older people with diabetes experience substantial co-morbidity [2, 9], physical disability [10] and psychosocial morbidity including impaired cognitive function [2, 11], poorer social independence [2], and increased medical service use [12]. These factors have led some to recommend treatment guidelines specific to elderly adults [13].

The majority of research on diabetes focuses on blood glucose (glycemic) control as the major endpoint and most significant outcome. Although one study found some positive changes in health-related quality of life (HRQoL) after short-term (12 weeks) treatment [14], it has been somewhat surprising to find that, in most studies
that have looked at the relationship between improved glycemic control and quality of life, no direct relationship has been demonstrated [15–18]. Thus, it has been argued that HRQoL is important to assess independent of glycemic control, as it defines how patients live and cope with their illness [19, 20].

Researchers are beginning to explore HRQoL of elderly patients with diabetes. However, diabetes-specific HRQoL measures have not included elderly patients in validation samples. The average age in the landmark Diabetes Control and Complications Trial (DCCT), introducing the Diabetes Quality of Life Scale (DQOL), was 28 ± 7 (range = 13–40) [21]. A study comparing the DQOL to the Medical Outcomes Study Health Survey (SF-36) reported average ages of 44 ± 16 (type 1) and 60 ± 12 (type 2) [22]. The Appraisal of Diabetes Scale (ADS), a measure of cognitive appraisal, was developed with a male population, average age of 58 [23]. Similarly, the Problem Areas in Diabetes scale (PAID), a measure of diabetes-related psychosocial distress, assessed participants with average ages of 36.3 [24] and 52.3 [25].

Studies using generic HRQoL measures have shown greater functional impairments in groups of elderly diabetes patients compared to same-age controls [26, 27]. Wandell and Tovi found that a group of Swedish elderly diabetes patients scored worse on 7 of 13 generic HRQoL scales [28].

The purpose of this study was to compare HRQoL of elderly (≥65) to younger individuals with diabetes using generic and diabetes-specific tools.

Methodology

Participants

One hundred and ninety-one adults with diabetes, ≥30 years, were recruited at the Joslin Diabetes Center, SUNY Upstate Medical University, Syracuse NY. We chose 30 as cut-off to minimise the confounding effect of diabetes type, as most younger patients have type 1 diabetes. Participants had diabetes for >1 year, had no current psychiatric disorder, and were able to provide written informed consent. Only participants on an insulin regimen were included to minimize effect of type of treatment. A total of 280 eligible individuals were approached, 191 completed questionnaires, a 68% response rate. The chart was reviewed, providing demographic (age, race, gender, marital status, work status) and illness information (diabetes type, duration of diagnosed diabetes, number of complications). Participants did not differ significantly from non-participants on these demographic or illness variables. The study was approved by the Institutional Review Board of SUNY Upstate Medical University.

Glycemic control

Assessed by measuring glycated haemoglobin levels (HbA1C) using the Abbott IMX Glycated Hemoglobin Assay; HbA1C reflects average blood glucose over the preceding 3 months, and is widely accepted as a reliable and valid index of blood glucose control [29].

Health-related quality of life measures

Three measures (SF-36, DQOL, PAID) were chosen because, at time of data collection, they were believed to be excellent measures of their respective domains, i.e., SF-36 measures multiple domains that define HRQoL, and PAID and DQOL assess specific quality of life issues related to diabetes. ADS was chosen because the authors have used it in prior studies and found it to be valuable, a brief measure that provides a snapshot of diabetes-related coping.

Medical outcomes study health survey (SF-36)

This 36 item scale measures 8 aspects of functional health status: physical function, social function, pain, general health, mental health, vitality, and role function limitations due to physical or emotional problems [30]. Extensive use with chronically ill patients [31, 32], significant correlations with other HRQoL measures, and adequate internal consistency reliabilities (0.81–0.88) support its use [33].

Diabetes quality of life scale

The 46-item DQOL assesses diabetes-specific satisfaction, impact and worry [21]. Cronbach alphas reported for scales (0.67–0.92), test-retest reliabilities (0.80–0.90) and significant correlation with HRQoL measures support its reliability and validity [34]. As many of the ‘worry’ items are not relevant to older people, this scale was omitted.

Problem areas in diabetes scale

This 20-item measure of diabetes-specific emotional distress has high internal reliability (alpha = 0.95) and strong concurrent and discriminant validity [24, 25].

Appraisal of diabetes scale

This 7-item scale assesses thoughts about coping with diabetes. Internal consistency (alpha = 0.73) and test-retest reliability (r = 0.85, P < 0.0001) are good, while strong correlations with measures of anxiety, anger and diabetes-related hassles support its use [23].

Analyses

Physical Composite Scores (PCS) and Mental Composite Scores (MCS) were calculated for the SF-36, as previously described [35]. The PCS measures general physical health status, the MCS measures general mental health status. We split participants into two groups, participants aged 30–65 and those 65 years or older. Continuous participant characteristics were compared between the two groups using the Student’s t-test, categorical variables
were compared with Pearson’s Chi-square test with Yate’s continuity correction.

Initially, the means of each HRQoL measure were compared between groups using a one-way analysis of variance (ANOVA). Since several participant characteristics were unevenly distributed between the groups, we performed a multi-way analysis of co-variance (ANCOVA) where age was the classification factor and HRQoL was the dependent variable. Participant characteristics that were marginally predictive \((P \leq 0.20) \) of age were entered into the multi-way ANCOVA in a forward stepwise fashion and tested at the 0.15 level of significance. To confirm the independent association between HRQoL and age, we were liberal in setting the entry criteria \((i.e., P \leq 0.15) \) of participant characteristics into the model.

Since some HRQoL measures were not strictly normally distributed, normal scores were calculated from the original dependent variables. The ANCOVA models were re-run to determine whether using normal scores altered the original results. They did not. The robustness of ANCOVA against departures from normality held true for our data.

Since multiple comparisons were conducted, an adjustment to the Type I error rate was made, per hypothesis, to preserve the overall alpha level at 0.05. All primary HRQoL outcome tests of significance were two-tailed, alpha was set \(\text{a priori} \) at 0.05. Data analyses were performed using the SAS software (version 6.12).

Results

Participants

Participants ranged in age from 30–81 years. Sixty-three percent had type 2 diabetes, 51% were male, 95% were white. The majority (61%) were retired; they had been diagnosed with diabetes for an average of 15.8 years. Sixty-nine percent had at least one specific diabetes-related complication, i.e., retinopathy, neuropathy, nephropathy, foot infections, amputations, cardiac disease, and/or stroke. Average HbA1c was 7.9% (S.D. = 1.7%). All participants were using insulin, the type 2 subjects were also prescribed other diabetes-related medications.

Comparisons between the groups (see Table 1) on baseline demographic characteristics showed that the elderly group was less likely to be employed and to have type 1 diabetes, had diabetes for a longer time \((18.3 \text{ versus } 13.5 \text{ years}) \), and, on average, were in better glycemic control \((7.5\% \text{ versus } 8.2\%) \). When significant, the factors of diabetes type, duration of diabetes, glycemic control and employment status, as well as other demographic factors \((\text{e.g. number of complications}) \) were controlled for in subsequent statistical analyses.

Quality of life of elderly people with diabetes

Table 1. Subject characteristics according to age

| Characteristic | (30–64 years) \((n = 100) \) | ≥ 65 years \((n = 91) \) | \(P \)-value
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>46.9 ± 8.2</td>
<td>70.5 ± 4.2</td>
<td>1.000</td>
</tr>
<tr>
<td>Gender-male</td>
<td>51 (51)</td>
<td>46 (51)</td>
<td>0.523</td>
</tr>
<tr>
<td>Race-white</td>
<td>96 (96)</td>
<td>85 (93)</td>
<td>0.119</td>
</tr>
<tr>
<td>Marital</td>
<td>59 (60)</td>
<td>65 (71)</td>
<td>0.195</td>
</tr>
<tr>
<td>Employed</td>
<td>45 (45)</td>
<td>2 (2)</td>
<td>0.001</td>
</tr>
<tr>
<td>DM type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 1</td>
<td>52 (52)</td>
<td>18 (20)</td>
<td><0.001</td>
</tr>
<tr>
<td>Duration of DM (years)</td>
<td>13.5 ± 10.2</td>
<td>18.3 ± 11.7</td>
<td>0.003</td>
</tr>
<tr>
<td>No. of complications</td>
<td>1.4 ± 1.2</td>
<td>1.7 ± 1.2</td>
<td>0.123</td>
</tr>
<tr>
<td>Glycemic control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Haemoglobin A1c)</td>
<td>8.2 ± 1.9</td>
<td>7.5 ± 1.5</td>
<td>0.007</td>
</tr>
</tbody>
</table>

\(^\text{Continuous variables are compared using the Student’s } t\text{-test and expressed as the mean ± standard deviation, whereas categorical variables are compared with Pearson’s Chi-square test with Yate’s continuity correction and represented as the sum and percentage of the total.} \)

Age and diabetes-specific quality of life (Table 2)

DQOL

Controlling for complications, type and HbA1c, the elderly group reported significantly higher satisfaction with diabetes-related aspects of their lives \((71.3 \text{ versus } 63.5, P=0.008) \), but the groups did not differ on perceived impact of diabetes \((68.4 \text{ versus } 66.4, P=0.580) \).

PAID

Controlling for type and HbA1c, the elderly group reported significantly less diabetes-related emotional distress \((56.2 \text{ versus } 72.1, P \leq 0.001) \).

Age and generic HRQoL (SF-36) (Table 2)

The mean PCS for adults was 41.1 (S.D. = 9.2), and for elderly adults was 38.9 (S.D. = 10.1), a mean physical

The mean MCS for adults was 43.3 (S.D. = 7.9), for elderly adults was 45.2 (S.D. = 7.9), a mean mental health status below the general population. While significantly lower than a recent finding of 42.6 (S.D. = 11.4) in an elderly Medicare sample [36], these findings are comparable to the published SF-36 norm for individuals with diabetes of 39.30 (S.D. = 11.32) [35].

Age and diabetes-specific quality of life (Table 2)

DQOL

Controlling for complications, type and HbA1c, the elderly group reported significantly higher satisfaction with diabetes-related aspects of their lives \((71.3 \text{ versus } 63.5, P=0.008) \), but the groups did not differ on perceived impact of diabetes \((68.4 \text{ versus } 66.4, P=0.580) \).

PAID

Controlling for type and HbA1c, the elderly group reported significantly less diabetes-related emotional distress \((56.2 \text{ versus } 72.1, P \leq 0.001) \).
Controlling for type, HbA1c and complications, the elderly group reported significantly better appraisal of, or ability to cope with, diabetes (18.1 versus 19.7, \(P = 0.032\)).

Diabetes type and quality of life (Table 3)

Because diabetes type is associated with age, and age predicts some aspects of HRQoL, it is likely that type might also predict quality of life. In all statistical analyses, we controlled for diabetes type. Nevertheless, we felt it worthwhile to look at the relationship between diabetes type and HRQoL. Table 3 indicates that, on the generic SF-36, type 2 participants report significantly poorer physical function (36.3 versus 44.7, \(P \leq 0.001\)), less vitality (48.7 versus 53.6, \(P = 0.012\)) and more role limitations due to emotional problems (51.8 versus 72.9, \(P = 0.001\)), but better social function (59.1 versus 49.1, \(P \leq 0.001\)). On diabetes-specific measures, type 2 participants reported lower satisfaction (62.6 versus 69.8, \(P < 0.001\)). We also tested the interaction coefficient between age and type for each measure and found no statistically significant interactions. This implies that age is not dependent on diabetes type when predicting HRQoL.

Discussion

Quality of life of elderly individuals with diabetes was hypothesized to differ from that of younger adults. This was found to be true for certain domains, and most clearly true for diabetes-specific quality of life.

Elderly individuals reported more limitations due to physical problems in ability to function in their roles, but better social function. When diabetes-specific domains were assessed, elderly adults stated they are coping better, and experience less distress and greater satisfaction with aspects of their lives related to diabetes.

It is often assumed that aging is associated with more distress and pessimism, due to physical, social and emotional losses, an assumption supported by classic well-being
research [37, 38]. However, recent work has shown that older persons are not unhappier [39, 40], well-being may even improve with age [41–43]; generating the hypothesis that older adults regulate their emotions more effectively and gear their lives towards minimising negative emotions while maximizing positive ones [43]. This hypothesis may help explain our findings. Diabetes is a burdensome disease, involving many lifestyle changes. Our data suggest that maximising coping skills and social resources may help elderly adults cope with the difficult demands of the disease, and maintain lower levels of emotional distress.

Since the study is cross-sectional one cannot state that aging leads to less distress and better coping. This may reflect a cohort phenomenon. Or, people who survive into their 70’s may live longer because of distress levels and ways of coping. Only longitudinal studies that follow patients through their life spans will answer these questions. Also, our participants were all on an insulin regimen. The recent finding that insulin-treated individuals score worse on HRQoL measures [26] means that we cannot generalise to non-insulin-treated individuals. Similarly, we do not have specific information about complications and non-diabetic co-morbidities; this limits our ability to explore the impact of these factors on HRQoL and to make comparisons to published norms that might have reflected a different participant sample.

The data points to several measurement issues. It highlights the value of examining SF-36 subscales, and not relying solely on physical and mental composite scores. The PCS and MCS have been criticised for not being independent of each other [44], yet it is becoming common to rely on them. Also, the value of diabetes-specific HRQoL measures, suggested by others [15, 45], has been supported. However, one must question whether these measures, standardised on younger adults, are truly valid with elderly patients, a concern raised by others [46, 47]. Future work should explore the validity of these measures, and pursue the development of HRQoL measures specifically relevant to elderly individuals.

The study suggests that elderly individuals with diabetes face adaptation problems related to declines in ability to function in their roles. However, their coping skills, social relationships or other factors may act as buffers and prevent high levels of distress that often accompany diabetes. Interventions for older adults with diabetes could be designed to build on these strengths.

Key points

- A comparison of health-related quality of life (HRQoL) of elderly and younger insulin-treated adults with diabetes reveals several significant differences.
- Elderly people reported greater general role limitations due to physical problems.
- Elderly people reported less diabetes-specific emotional distress, better coping and satisfaction with diabetes-related lifestyle changes.
- The value of subscale analysis of the SF-36 and use of diabetes-specific HRQoL measures is affirmed.

Acknowledgements

This study was supported in part by a grant from the Department of Medicine of SUNY Upstate Medical University and by research funds of the Central New York Research Corporation.

References

14. Testa MA, Simonson DC. Health economic benefits and quality of life during improved glycemic control in patients

16. Mehta Z. Quality of life in type 2 diabetic patients is affected by complications but not by intensive policies to improve blood glucose or blood pressure control (UKPDS 37).

17. Mehta Z. Quality of life in type 2 diabetic patients is affected by complications but not by intensive policies to improve blood glucose or blood pressure control (UKPDS 37).

Received 10 January 2003; accepted 7 May 2003