Oral glucose tolerance test in the assessment of glucose-tolerance in the elderly people

SIR—Assessment of glucose tolerance in the elderly has been in the focus of research due to the increased incidence of diabetes type 2 in this population. Approximately 13% of adults older than 70 years have diabetes, and 11% of adults between the ages of 60 and 74 years remain undiagnosed [1]. Factors that may predispose to glucose intolerance in the aged are weight gain, decreased physical fitness, decreased insulin secretion and lack of glucagon suppression. The Baltimore Longitudinal Study of Aging documented a prominent decline in glucose tolerance after the age of 60 years with both fasting and postprandial concentrations being higher in elderly compared to younger subjects [2]. Although the prevalence of diabetes is highest among people older than 65 years of age, the prevalence of obesity in this age group is only 14%, compared to 24% for men and women in their fifties [3]. Obesity is a marker of insulin resistance. However, it appears that ageing may be associated with dissociation between obesity and glucose intolerance. Senescence, per se, is associated with a progressive decline in insulin clearance and a subtle decrease in insulin secretion [4]. It appears that older individuals do not have the ability to increase insulin secretion to the degree necessary to prevent glucose intolerance. Insulin-mediated glucose disposal also decreases with age and correlates significantly with the decreased physical activity in the elderly. Finally, irregularities in glucagon secretion may initiate glucose intolerance. Lack of suppression of glucagon secretion in the elderly may cause hyperglycaemia by increasing hepatic glucose release [5]. Therefore, the aim of the present study was to assess glucose tolerance in healthy, non-obese, moderately active elderly subjects.

Methods

Forty-eight subjects aged 60–90 years, were recruited from the outpatient geriatric clinic of the 'Zvezdara' University Hospital during their regular annual visit. All subjects underwent a medical evaluation which included a medical history. Subjects with cardiovascular, renal or hepatic disease, diabetes, endocrine disorders, or those on medication that could influence carbohydrate metabolism were excluded from the study. All participants were moderately active, meaning that they had two exercise sessions of 30 min/week or walked at least 1 km daily. They were non-obese, according to the body mass index (BMI) with less than 25 kg/m². All subjects had their waist circumference measured. A greater waist circumference, a marker of metabolic syndrome, was not an exclusion criterion. All participants were non-smokers and consumed alcohol moderately (less than 2 alcohol units/day). The control group consisted of 45 non-obese healthy care workers in the age group 30–45 years. Each participant gave an informed consent for participating in the study. The study was approved by the ethical committee of the 'Zvezdara' University Hospital.

A 75-g oral glucose tolerance test (OGTT) was performed in the morning after an overnight fast. Blood samples were collected from the venous catheter placed in the antecubital vein at 0, 60 and 120 min for glucose, insulin, c-peptide and glucagon levels. Participants remained seated for the entire testing period. Plasma glucose was measured using an automated glucose oxidase reaction (Glucose Analyser, Ames). Plasma samples were centrifuged at 4°C, separated and stored at −20°C until assay. Plasma insulin was determined by a commercially available radioimmunoassay (RIA) kit (Pharmacia, Uppsala, Sweden, normal reference range 0–20 mU/l). Plasma c-peptide was measured by RIA kit provided by Behring (normal reference range 0.3–0.9 nmol/l). Plasma glucagon concentrations were measured by RIA by use of reagents purchased from Novo Nordisk (normal reference range 50–220 pg/ml).
Research letters

Table 1. Physical characteristics of the participants with values of glucose, insulin, c-peptide and glucagon during the 75-g oral glucose tolerance test

<table>
<thead>
<tr>
<th></th>
<th>Elderly</th>
<th>Control</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>48</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>77.4 ± 6.32</td>
<td>34.2 ± 5.6</td>
<td>P<0.01</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>75.65 ± 3.81</td>
<td>74.2 ± 2.32</td>
<td>NS</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.91 ± 3.81</td>
<td>23.8 ± 1.2</td>
<td>NS</td>
</tr>
<tr>
<td>Waist (cm)</td>
<td>96.26 ± 4.95</td>
<td>90.1 ± 5.32</td>
<td>P<0.05</td>
</tr>
<tr>
<td>Fasting blood glucose (mmol/l)</td>
<td>5.05 ± 1.60</td>
<td>4.76 ± 0.90</td>
<td>NS</td>
</tr>
<tr>
<td>Blood glucose at 60 min (mmol/l)</td>
<td>9.04 ± 1.85</td>
<td>8.4 ± 1.60</td>
<td>NS</td>
</tr>
<tr>
<td>Blood glucose at 120 min (mmol/l)</td>
<td>6.34 ± 1.20</td>
<td>5.3 ± 1.15</td>
<td>P<0.01</td>
</tr>
<tr>
<td>Fasting serum insulin (mmol/l)</td>
<td>12.6 ± 4.21</td>
<td>12.6 ± 5.58</td>
<td>NS</td>
</tr>
<tr>
<td>Serum insulin at 60 min (mmol/l)</td>
<td>76.86 ± 4.1</td>
<td>111.06 ± 9.36</td>
<td>P<0.01</td>
</tr>
<tr>
<td>Serum insulin at 120 min (mmol/l)</td>
<td>52.66 ± 4.97</td>
<td>33.65 ± 3.98</td>
<td>P<0.05</td>
</tr>
<tr>
<td>Fasting serum c-peptide (mmol/l)</td>
<td>0.72 ± 0.23</td>
<td>0.70 ± 0.30</td>
<td>NS</td>
</tr>
<tr>
<td>Serum c-peptide at 60 min (mmol/l)</td>
<td>2.08 ± 0.59</td>
<td>2.61 ± 0.43</td>
<td>P<0.01</td>
</tr>
<tr>
<td>Serum c-peptide at 120 min (mmol/l)</td>
<td>1.85 ± 0.62</td>
<td>1.81 ± 0.12</td>
<td>NS</td>
</tr>
<tr>
<td>Fasting serum glucagon (pg/ml)</td>
<td>161.76 ± 3.84</td>
<td>145.07 ± 6.16</td>
<td>P<0.05</td>
</tr>
<tr>
<td>Serum glucagon at 60 min (pg/ml)</td>
<td>150.38 ± 3.87</td>
<td>127.55 ± 5.90</td>
<td>P<0.01</td>
</tr>
<tr>
<td>Serum glucagon at 120 min (pg/ml)</td>
<td>148.72 ± 4.95</td>
<td>127.70 ± 3.40</td>
<td>P<0.05</td>
</tr>
</tbody>
</table>

Statistical Analysis

All analyses were done with the use of the statistical software package SPSS, version 10.0. Differences in baseline characteristics between elderly and control subjects were tested by Student’s t-test. Pearson's correlation coefficients were calculated to evaluate the relation between age or waist circumference and glucose or hormone levels during OGTT. Linear regression analysis was performed for variables with significant relationship. Data were presented as mean ± SD; a P value <0.05 was considered statistically significant.

Results

Physical characteristics of subjects are presented in Table 1. A significant difference was observed in the waist circumference between the elderly and younger subjects, although BMI and weight were not significantly different. The rise in blood glucose levels following an OGTT was not significantly different in the 1st hour, but was significantly higher in the 2nd hour in the group of elderly subjects. The response was, however, within normal limits according to the WHO criteria [6] indicating normal glucose tolerance in both elderly and control subjects. Insulin response during OGTT was significantly lower in elderly subjects in the 1st hour. During the 2nd hour, insulin levels declined significantly in both groups, but less so in the group of control subjects (Table 1). Hence, insulin levels were significantly lower in the 1st hour and significantly higher in the 2nd hour of OGTT in elderly subjects. C-peptide levels increased significantly in both groups, but less so in the elderly in the 1st hour of OGTT. C-peptide levels were similar in elderly and younger subjects at 120 min, but the fall in c-peptide levels from 60 to 120 min was greater in younger subjects, again, maybe indirectly indicating insulin resistance. Fasting serum glucagon levels were significantly higher in the elderly. They remained significantly higher and unsuppressed during the OGTT in the group of elderly subjects.

A significant correlation was observed between waist circumference and insulin level at 60 min (R = 0.301; P = 0.013), age and glucose level at 120 min (R = 0.403; P = 0.001), and age and insulin level at 60 (R = −0.339; P = 0.005) and 120 min (R = 0.341; P = 0.004), age and c-peptide level at 60 min (R = −0.378; P = 0.001), and age and glucagon level at 60 (R = 0.345; P = 0.004) and 120 min (R = 0.257; P = 0.034). Linear regression analysis revealed a strong relation of waist circumference with insulin level at 60 min, age with glucose level at 120 min, age with insulin level at 60 and 120 min, age with c-peptide level at 60 min, and age with glucagon level at 60 and 120 min.

Discussion

Our study has shown that maintenance of glucose tolerance in non-obese healthy elderly subjects differs from that in non-obese younger subjects. Higher fasting and stimulated glucose levels during OGTT may be the consequence of abdominal obesity or hormonal changes: lack of suppression of glucagon in the presence of relative insulin insufficiency.

Age-related increase in adiposity and decrease in physical activity are related to decreased insulin action with ageing [7]. Elderly participants in our study were moderately physically active, but had a significantly greater waist circumference than younger subjects. This may indicate greater visceral obesity, in spite of normal weight. Goodpaster et al. [8] have shown in the Pittsburgh Study that regional adipose tissue distribution is the key determinant of insulin resistance. That visceral obesity, more than age, correlates with glucose intolerance, has also been shown in the study of Imbeault et al. [9]. Hence, normal weight elderly with abdominal
Glucose intolerance in the elderly may be a consequence of the decrease and delay in insulin rise, or an increase in glucagon secretion and action.

The effect of age on insulin secretion has not been well defined. Basal insulin secretion, measured by the c-peptide level, and insulin secretory response to any increment in plasma glucose are decreased with age [10]. This is in line with insulin and c-peptide responses in the 1st hour of OGTT in our study. Higher insulin levels in the 2nd hour of OGTT in the elderly could indicate a defect in the insulin action or insulin clearance. The study of Basu et al. [11] elegantly showed that the age-associated deterioration in glucose tolerance is a consequence of insulin secretion, action and clearance.

Irregularities in glucagon response to postprandial hyperglycaemia may exist many years before glucose intolerance gets manifest [12]. Our elderly subjects had higher fasting and stimulated glucagon levels. Lack of suppression of glucagon could cause higher glucose levels by impairing glucose and insulin-induced inhibition of endogenous glucose production [13]. However, the role of glucagon in the development of glucose intolerance is dependent on insulin secretion. When insulin secretion is adequate, glucagon increase does not cause hyperglycaemia [14]. If relative insulin deficiency is present, such as in the elderly, lack of glucagon suppression can impair glucose tolerance [15].

Key points
- Maintenance of glucose tolerance in non-obese healthy elderly subjects differs from that in non-obese younger subjects.
- Higher fasting and stimulated glucose levels during OGTT in the elderly may be the consequence of abdominal obesity, in spite of normal body mass index.
- Ageing is associated with a decrease in insulin secretion, action and clearance.
- Glucose intolerance in the elderly may be a consequence of lack of glucagon suppression in presence of relative insulin insufficiency.

Conflicts of interest

None

Rada M. Stevic1, Teodora Belic Zivkovic2, Predrag Erceg1, Dragoslav Milesevic1, Nebojsa Despotovic1, Mladen Davidovic1*

1Department of Medicine, Gerontology Clinic, ‘Zvezdara’ University Hospital, Medical School University of Belgrade, Belgrade, Serbia

Email: davidovic@eunet.yu

2Department of Medicine, Division of Endocrinology, ‘Zvezdara’ University Hospital, Medical School University of Belgrade, Belgrade, Serbia

*To whom correspondence should be addressed

References

Research letters

 glucagon on glucose tolerance in humans. Am J Physiol 1999;
 277: E283–90.

doi:10.1093/ageing/afm076

End-of-life care for older patients dying in
an acute general hospital—can we do better?

SIR—The successful provision of a high standard of care
to the dying in our population represents a significant
healthcare challenge, a challenge influenced by patient age,
disease process, place of care, and by the expertise of the
professionals caring for patients at the end of life.

Recent estimates predict that by the year 2020, 26% of the
UK population will be aged 65 years and older [1, 2]. It is also
known that the majority of patients who die in acute hospital
care are over 65 years of age [3]. Though it is recognised that
excellent end-of-life care is provided in the hospice setting
[4], there is less evidence relating to the provision of this care
in hospitals.

In anticipation of these predicted demographic changes,
statutory and specialist bodies [1, 2, 5–9] have produced
guidelines and recommendations suggesting how better end-
of-life care should be provided to older people in all care
settings. These documents highlight the current inequity of
access to good end-of-life care, the societal, professional,
organisational and statutory obstacles to improvement in this
area, and to outline how these inequities should be remedied.

One such document, the Liverpool Care Pathway for the
Dying Patient (LCP) [4, 10] provides an evidence-based
framework for the delivery of care to dying patients, promotes
excellent documentation of all aspects of the care provided
and lends itself easily to the audit process. Originally designed
to enable transfer of the hospice model of care to other care
settings, the LCP is used increasingly in the hospital sector.

The purpose of this study is 3-fold. We wish to review the
extent to which evidence of the care being provided to older
patients dying in an acute hospital was documented, to ascertainment whether or not the future implementation of the LCP
on the wards of the Department of Medicine for the Elderly
(DME) would benefit patients and staff, and to ascertain whether any of the admissions to hospital of patients who
subsequently died there might have been avoided and these
patients more appropriately managed within the community.

Method

This study is a retrospective case-note review of the medical
and nursing notes and drug charts of those patients who
died under the care of the DME at University Hospital

Aintree in a selected month. The cohort of patients was
identified and their case-notes retrieved by the hospital
medical records department. The chief investigator (FT) used
a proforma developed by the authors to retrieve the required
data from the case-notes relating to each patient’s final
admission only. Data retrieved included basic demographic
information, evidence of family and professional support
in the community prior to admission, the reason for
admission, diagnosis(es), and detailed information relating
to the care provided to patients as they approached death, as
documented in the case-notes.

Results

Twenty-five patients died during the study period and were
included in the study. Their demographic data are presented
in Table 1. Evidence of domestic and community support
was poorly documented. Patients had a range of primary
diagnoses while several had multiple active disease processes.

Only one patient had a malignant diagnosis.

The details of care provided at the end of life are presented
in Table 2. Recognition that a patient’s death was imminent,
occurred most frequently between 24 and 48 h prior to
death, and the likelihood that the death of their relative
was approaching was discussed with family members in the
majority of cases. Of note, there was no documentation

Table 1. Demographic data (n = 25)

<table>
<thead>
<tr>
<th>Gender</th>
<th>Yes</th>
<th>No</th>
<th>Do not know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>18 (72%)</td>
<td>7 (28%)</td>
<td>0</td>
</tr>
<tr>
<td>Mean age</td>
<td>82.4 years (S.D. 10.3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Admitted from</th>
<th>Home</th>
<th>Nursing home</th>
<th>Family home</th>
<th>Sheltered accommodation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16 (64%)</td>
<td>5 (20%)</td>
<td>2 (8%)</td>
<td>2 (8%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marital status</th>
<th>Single</th>
<th>Married</th>
<th>Widowed/ separated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 (12%)</td>
<td>7 (28%)</td>
<td>15 (60%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Community support</th>
<th>Yes</th>
<th>No</th>
<th>Do not know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Living alone</td>
<td>10 (36%)</td>
<td>12 (48%)</td>
<td>3 (11%)</td>
</tr>
<tr>
<td>District nurses involved</td>
<td>5 (20%)</td>
<td>11 (44%)</td>
<td>9 (36%)</td>
</tr>
<tr>
<td>Social services involved</td>
<td>5 (20%)</td>
<td>13 (52%)</td>
<td>7 (28%)</td>
</tr>
<tr>
<td>Primary diagnosis</td>
<td>Lower respiratory tract infection</td>
<td>8 (32%)</td>
<td></td>
</tr>
<tr>
<td>Acute cardiac event</td>
<td>6 (24%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>6 (24%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sepsis</td>
<td>2 (8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other*</td>
<td>3 (12%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admission necessary</td>
<td>Yes</td>
<td>19 (76%)</td>
<td></td>
</tr>
<tr>
<td>Possibly not</td>
<td>6 (24%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Adenocarcinoma of sigmoid colon (1), old age (1), general deterioration (1).