
doi: 10.1093/ageing/afr089
Published electronically 22 July 2011
© The Author 2011. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Effect of resistance training on physical performance and fear of falling in elderly with different levels of physical well-being

SIR—Several factors are involved in the maintenance of activities of daily living (ADL) in older adults. Skeletal muscle mass and strength are important factors for maintaining independence and quality of life in elderly. Several recent cross-sectional studies have shown the associations of muscle strength with physical fitness and disability [1, 2]. Loss of muscle mass (sarcopenia) is prevalent in older adults [3] and represents an impaired state of health with mobility disorders, increased risk of falls and fractures, impaired ability to perform ADL, disabilities and loss of independence [4–6].

Fear of falling is common in older adults. The prevalence varies from 21 to 85%, is higher in women than in men, and increases with age [7]. The risk factors of fear of falling are shown to be physical frailty [8], perception of poor health [9], obesity, cognitive impairment, depression, poor balance [10] and history of at least one fall [7].

Resistance training is an effective intervention to improve the physical function in older adults by increasing strength and physical performance [11]. However, it is still controversial whether resistance training is effective for all levels of elderly people. For example, we reported that decreased muscle power is a reliable predictor of falls only in frail elderly [12].

We hypothesised, therefore, that there is a differential effect of resistance training on physical performance according to the level of physical well-being. The aim of this study was to compare the effects of resistance training on skeletal muscle mass, physical performance and fear of falling in robust and frail elderly.

Methods

Participants

Participants were recruited by an advertisement in a local press. We used the following criteria to screen participants in an initial interview: aged ≥65 years, community dwelling, has visited a primary care physician within the previous 3 years, score of ≥8 by Rapid Dementia Screening Test [13], able to walk independently, willing to participate in group exercise classes for at least 6 months, access to transportation and no regular exercise in the previous 12 months.

We also used the interview to exclude participants based on the following exclusion criteria: severe cardiac, pulmonary, or musculoskeletal disorders, pathologies associated with an increased risk of falls (i.e. Parkinson’s disease or stroke) and use of psychotropic drugs. We obtained written informed consent from each participant in accordance with the guidelines approved by the Kyoto University Graduate School of Medicine and the Declaration of Human Rights, Helsinki, 1975.

Frailty definition

The frailty classification was based on a composite of previous work. The Timed Up and Go (TUG) is a simple test developed to screen basic mobility performance and has been shown to be significantly associated with ADL in frail older adults [14]. It has been reported that elderly with a TUG score greater than 13.5 s can have an increased risk of falling [15]. Frailty was defined as a TUG score ≥13.5 s. Based on key components of the screening examination (TUG score greater than 13.5 s), 159 elderly adults were classified as the frail group, whereas 178 elderly adults were classified as the robust group because they had a TUG score of ≤13.5 s.

Resistance training

All participants underwent resistance training sessions twice a week for 50 weeks. All participants performed the seated row, leg press, leg curl and leg extension exercises on resistance-training machines. Training loads were chosen using the 10-repetition maximum (10-RM, the maximal weight that can be lifted 10 times). Participants used the 10-RM for 3 sets of 10 repetitions for each machine exercise. Participants were required to adjust the training weight to ensure failure at the 10-RM. It took approximately 1 h to finish all sessions, with 15-min warm-up at the beginning and 10-min cool-down stretch at the end.

Bioelectrical impedance analysis measurement

A bioelectrical impedance data acquisition system (Physion MD; Physion Co. Ltd, Kyoto, Japan) was used to determine
the bioelectrical impedance of the right upper and lower limbs [16]. This system applies a constant current of 800 mA at 50 kHz through the body. Participants lay supine with their arms and legs extended and relaxed during bioelectrical impedance measurement. Leg lean mass (LLM) per whole-body weight was used for the analysis.

Measurement of physical performance
All participants underwent five measurements upon entry into the study (pre-test), which included 10-m walk test, TUG test, single leg standing (SLS), functional reach (FR) and 5-chair stand. The order of performing these tests was random. For each performance task, the participants performed two trials, and an average score was calculated from these two trials. All baseline and pre-test measurements were completed prior to randomisation.

Measurement of fear of falling
Falls Efficacy Scale (FES) [17] is the most frequently used surrogate measure for fear of falling in older adults. The reliability and validity of FES have been previously reported [17]. FES was measured at baseline and at 12 months. FES is based on the operational definition of fear as ‘low perceived self-confidence at avoiding falls during essential, relatively nonhazardous activities’. Briefly, participants were asked how concerned they were about the possibility of falling while performing 10 different activities on a 4-category scale from 1 (not at all concerned) to 4 (very concerned). If participants indicated that they did not perform or were unable to perform the activity, they were encouraged to respond hypothetically. FES emphasises mainly indoor, home-based activities.

Required sample size
We designed the effect size of the current study to be 0.4. With a significance level of 0.05, a power of 80%, and a moderate effect size (0.4), a minimum of 100 participants were needed in both the intervention and control groups. Accounting for a potential 20% attrition rate, a total of 240 participants were recruited for this study, which was deemed large enough to detect statistically significant differences.

Statistical analysis
We analysed the effects of resistance training on all outcome measures using a mixed 2 (group: robust and frail groups) × 2 (time: pre-intervention, post-intervention) ANOVA. A 0.05 type 1 error rate was chosen a priori to indicate statistical significance. A post hoc paired t-test for within-group comparisons was performed to compare each dependent variable. The Bonferroni procedure was used to adjust the type 1 error rate of each analysis to 0.025 (0.05/2) as an indication of statistical significance to guarantee an overall type 1 error rate of 0.05. Data were entered and analysed using the Statistical Package for Social Science (Windows version 18.0).

Results
We screened 412 elderly and enrolled 337 (81.8%) who met the inclusion criteria for the trial and agreed to participate (Figure 1A). Most of the elderly who did not meet the inclusion criteria (n = 66) were excluded because they had exercised regularly for 6 months prior to the screening. Nine people who might have been eligible for the study declined after telephone screening. Of the 337 individuals who were enrolled in this study, 307 (91.1%) completed the 12-month

Figure 1. (A) Flow chart showing the disposition of participants throughout the trial. (B) LLM after resistance training in the robust and frail groups was significantly increased from baseline (P < 0.05). (C) The frail group had significantly greater improvements in fear of falling (P < 0.025).
intervention along with the second interview and the tests at the end of the study. Among them 148 in the robust group (93%) and 159 in the frail group (89%) completed the study. All 100 scheduled intervention sessions were completed. The median relative adherence was 92% (25–75th percentile, 85–95%) for the robust group and 92% (85–95%) for the frail group. No health problems, such as cardiovascular and musculoskeletal complications, occurred during the training sessions or testing. Minor problems were observed in both groups such as aching muscles after the first training session and fatigue. All the problems were managed easily by adjustment of the intervention and were improved during subsequent interventions.

Effect of the resistance training on outcome measures

LLM after resistance training in the robust and frail groups was significantly increased from the baseline ($P < 0.05$) (Table 1, Figure 1B). Pre- and post-intervention group statistics and group × time interactions are summarised in Table 1. A statistically significant group × time interaction was observed for TUG, FR and fear of falling ($P < 0.05$) (Figure 1C). Bonferroni-corrected paired-sample t-tests demonstrated a significant effect of the resistance training on TUG, FR and fear of falling in the frail group ($P < 0.025$).

Discussion

In this study, we showed that LLM was improved by the resistance training programme in both groups. However, the effect on physical function was limited to frail elderly defined by TUG. The role of muscle strength on physical function is supported by numerous cross-sectional studies that have shown a strong association between low muscle strength and decreased mobility in elderly [18]. On the

| Table 1. Functional fitness items by group at pre- and post-intervention |
|---|------------------|------------------|------------------|------------------|------------------|
| Item | Robust group ($n = 148$) | Frail group ($n = 159$) | Group × Time | E/S | P-value | E/S | P-value | F-value 1. Time effect 2. Group × Time |
| Mean SD | mean SD | mean SD | | | | | | |
| Age, years | 75.1 7.7 | 76.1 8.3 | 0.440 | | | | | |
| Height, cm | 157.7 10.1 | 156.7 9.1 | 0.266 | | | | | |
| Weight, kg | 58.2 11.1 | 56.8 10.9 | 0.280 | | | | | |
| Gender, female π (%) | 74 (50.0%) | 82 (51.5%) | 0.436 | | | | | |
| Fall incidence, π (%) | 48 (32.4%) | 77 (48.4%) | 0.003 | | | | | |
| Leg lean mass, kg/weight | 0.160 0.024 | 0.162 0.024 | 0.27 0.002 | 0.448 | 32.1** | | | |
| Walking time, s | 10.0 1.9 | 10.2 2.1 | 0.16 0.11 | | | | | |
| Percent change, % | 0.05 0.09 | 0.17 0.021 | 0.04 0.11 | | | | | |
| Timed up and go test, sec | 9.9 1.8 | 10.1 2.5 | 0.32 0.004 | 0.002 | 6.1* | | | |
| Percent change, % | 0.9 18.1 | 16.1 3.9 | −14.5 37.6 | | | | | |
| One leg standing, s | 9.8 11.8 | 9.2 13.9 | 0.16 0.160 | 0.987 | 0.1 | | | |
| Percent change, % | −47.3 173.4 | 46.8 248.3 | 1.4 | | | | | |
| Functional reach, cm | 23.5 5.9 | 23.4 5.9 | 0.46 <0.001 | 0.029 | 7.5** | | | |
| Percent change, % | −7.2 46.4 | 23.6 48.1 | 8.0** | | | | | |
| Five chair stand, s | 11.2 3.2 | 11.5 4.7 | 0.17 0.144 | 0.004 | 1.6 | | | |
| Percent change, % | 5.0 31.3 | 15.1 8.6 | 3.1 | | | | | |
| Fear of falling, points | 36.6 4.4 | 37.1 3.9 | 0.51 <0.001 | <0.001 | 26.2** | | | |
| Percent change, % | 1.5 7.3 | 12.9 23.3 | 15.4** | | | | | |

E/S, effect size.

*a*As calculated by comparing pre- and post-intervention.

*b*As calculated by group comparison.

*$p < 0.05$.

$p < 0.01$.
other hand, muscle strength does not depend solely on muscle mass, and the relationship between strength and mass is not linear [19]. Rantanen et al. reported that the relationship between muscle strength and physical disability in older adults is non-linear [20]. The discrepancy between these results may stem from the heterogeneity of subjects. In this study, we stratified subjects into robust and frail elderly groups. In frail elderly, the 50-week resistance training programme was effective for the improvement of LLM and physical performance. In contrast, there was no correlation between the change in LLM and physical performance in robust elderly undergoing the resistance training programme. These results suggested that our resistance training programme is not effective for the improvement of physical performance in robust elderly. Furthermore, resistance training improved muscle strength, but did not improve physical performance in the relatively healthy elderly [21]. On the other hand, in frail elderly, improvements in leg power, independent of strength, appear to make an important contribution to clinically meaningful improvements in physical performance [22].

Resistance training improved balance function, such as FR in frail elderly. Improved balance function with resistance training is hypothesised to occur by reduced motor-unit discharge variability [23]. However, SLS was not improved. These results suggested that balance improvement after power training may be explained, in part, by adaptations in force control. However, resistance training per se is not effective for balance function. For the improvement of balance function, it is useful to add not only the resistance training but also balance training, such as Tai Chi Chuan [24].

In addition to improving physical performance, the resistance training programme was effective for decreasing fear of falling, but only in the frail group. It is considered important to reduce fear of falling by targeting downstream factors such as physical functioning [25] or predictors of those factors [26]. Thus, our study has an important implication for the reduction in fear of falling in frail elderly.

There are several limitations to this study that warrant mention. First, although we used only TUG to define frailty, TUG may not be enough to define frailty. For example, the short physical performance battery evaluates balance, gait, strength and endurance by examining an individual’s ability [27]. It has been recently recommended by an international working group to use a functional outcome measure in clinical trials in frail older adults [28]. Second, we did not measure muscle force. The relationship between LLM and muscle strength is still unclear and needs to be addressed in future studies. Third, no follow-up was conducted. Evidence regarding the long-term effect of exercise on fall prevention is limited, and, therefore, this issue also needs to be addressed. Finally, a control group was lacking. The participants in both groups may have had higher motivation and interest in health issues than the general elderly population.

This is the first study to demonstrate that the effects of a resistance training programme on physical performance differed according to the level of physical well-being. Future work should determine whether tailor-made interventions can effectively improve physical function in both robust and frail elderly.

Key points
- The current trial compared the effects of resistance training between robust and frail elderly on skeletal muscle mass, physical performance and fear of falling.
- Skeletal muscle mass after resistance training was significantly increased from the baseline in both groups.
- The resistance training programme was more effective for the improvement of physical performance and fear of falling in frail elderly than in robust elderly.

Acknowledgements
We would like to acknowledge Nippon-Shooter Co. Ltd, for their contribution to data collection and Mr Minoru Ikeda for helpful advice.

Conflicts of interest
None declared.

MINORU YAMADA*, HIDENORI ARAI, KAZUKI UEUMURA, SHUHEI MORI, KOUTATSU NAGAI, BIUCHI Tanaka, YUSUKE TERASAKI, MAMORU IGUCHI, TOMOKI AOYAMA

Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, 53, Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan

Tel: (+81) 75 751 3909; Fax: (+81) 75 751 3964.

Email: yamada@hs.med.kyoto-u.ac.jp

*To whom correspondence should be addressed

References
Transient ischaemic attack, vascular risk factors and cognitive impairment: a case-controlled study

SIR—Cognitive impairment, especially difficulties with temporal orientation and verbal recall, is associated with the increasing number and severity of vascular risk factors (VRFs) such as hypertension and diabetes [1–3] which can result in an associated impairment of the cerebral microcirculation causing white matter volume changes linked to large artery stiffness [4, 5]. These cognitive deficits can be detected by using simple standard screening tools [6] such as the Mini Mental State Examination [7], Montreal Cognitive Assessment (MoCA) [8] and the DemTec [9], and have been shown to be related to the development of both subclinical (mild) or established vascular disorders [7–12]. However, our understanding of the relation between transient ischaemic attacks (TIAs) and cognitive status is incomplete. We hypothesised that subjects with newly diagnosed TIA would have evidence of an associated mild cognitive impairment; this being a manifestation of the same pathological process underlying the pathogenesis of the vascular event being initiated and accelerated by VRFs. The aims of the current study were, therefore, (i) to examine whether patients with first ever TIA and no history of stroke have evidence of cognitive impairment and, if so, whether the extent of the impairment was greater than expected compared with an age-, sex-matched control population without VRFs and (ii) to determine which VRFs are associated with cognitive impairment.

Methodology

We conducted a case–controlled study between August and November 2008 in a University Hospital in UK (catchment population 750,000). Cases were defined as those patients with first ever TIA aged ≥45 years, assessed in a