present dabigatran may be suitable for patients with high stroke and bleeding risks such as frail older people with multiple comorbidities and polypharmacy in whom anticoagulation control is erratic or monitoring is not feasible. Until the price of dabigatran is reviewed, warfarin remains suitable for the majority of patients with NVAF.

Key points

- Cost of anticoagulation is largely driven by drug price for dabigatran and quality of INR control for warfarin.
- Cost of dabigatran to prevent one stroke per year is about four to five times that of warfarin.
- Majority of patients on warfarin therapy are not troubled by frequent blood testing.

References

Received 27 September 2011; accepted in revised form 4 January 2012

The frailty index in Europeans: association with age and mortality

ROMAN ROMERO-ORTUNO, ROSE ANNE KENNY

Department of Medical Gerontology, Trinity College Dublin, Dublin, Ireland

Address correspondence to: R. Romero-Ortuno. Tel: (+353) 1 428 4527; Fax: (+353) 1 410 3454. E-mail: romeror@tcd.ie

Abstract

Background: the frailty index (FI) is an approach to the operationalisation of frailty based on accumulation of deficits. It has been less studied in Europeans. Objective: to construct sex-specific FIs from a large sample of Europeans and study their associations with age and mortality.
The frailty index in Europeans

Introduction

Frailty is a non-specific state of dysregulation in multiple physiological systems, vulnerability to stressors and increased risk of adverse outcomes [1, 2]. Although frailty increases with age, it is more related to the biological than the chronological age of individuals [3]. In general, frailty is superior to age in identifying at-risk older people [4].

The frailty index (FI) has been proposed as an index of deficits (i.e. symptoms, signs, diseases and disabilities) that accumulate with age [5, 6]. An individual’s FI score reflects the proportion of potential deficits present in that person, and indicates the likelihood that frailty is present. The FI is a continuous variable and primarily does not classify people as frail or non-frail but rather assigns a score based on health status.

The FI has been regarded as an adequate indicator of the ageing-associated processes because it characterises these processes independently of, and more efficiently than, chronological age [7]. The construct validity of the FI is examined through its relationship to chronological age, and its criterion validity is examined in its ability to predict mortality, and in relation to other predictions including disability and use of healthcare resources [8].

The rate of deficit accumulation is sex sensitive [9] and the FI appears to be a sensitive age-independent indicator of sex-specific physiological decline and a sex-specific discriminator of survival chances [10]. On average, women accumulate more deficits than men of the same age, but their risk of mortality is lower [11].

The majority of studies on FI have been conducted outside Europe and there was a relative paucity of studies in the European context. The Survey of Health, Ageing and Retirement in Europe (SHARE, http://share-dev.mpisoc.mpg.de/) represented a unique opportunity to create a standard FI in Europeans and examine its properties vis-à-vis previous FI studies in non-European populations.

Methods

Setting

The study is based on the Survey of Health, Ageing and Retirement in Europe (SHARE, http://share-dev.mpisoc.mpg.de/). Based on probability samples in all participating countries, SHARE represents the non-institutionalised population aged 50 and older. Spouses were also interviewed if they were younger than 50 but we excluded them from our analyses. The first wave was collected between 2004 and 2005.

FI construction

Based on the first wave of SHARE, a 40-item FI was created as per the standard procedure [12]. Each of the 40 deficit variables was scored such that 0 = deficit absent and 1 = deficit present. The scores were added and divided by the total number of deficits evaluated (i.e. 40), to produce an FI between 0.0 (no deficits present) and 1.0 (all deficits present). For full information on the FI deficit variables and cut-off points, see the Supplementary data available in *Age and Ageing* online, Appendix 1.

Mortality data

Mortality data (i.e. dead, alive or missing) were collected during the second wave of the study (2005–06). The mean follow-up period between wave 1 and wave 2 was 2.4 years.

Statistical analyses

Statistical analyses were conducted with SPSS 16.0, separately for each sex. A histogram of the FI was produced to assess its distribution. The FI (Y-axis) was plotted against age (X-axis) and the curve estimation procedure was used to assess the relative fit of linear and non-linear (i.e. quadratic, cubic, exponential) regression models. The sample was divided into age categories (i.e. 50s, 60s, 70s, 80s and ≥90) and their mean FIs with 95% confidence intervals.
(CIs) were calculated, as well as their mortality rates. We also calculated the FI quartiles within age categories and their associated mortality rates. To assess the relative contributions of age and the FI towards mortality (in the total sample and within age subgroups), we used binary logistic regressions, unadjusted, and adjusted for age or FI as appropriate.

Results
The first wave of SHARE included 29,905 participants aged ≥50 years from 12 countries (Austria, Germany, Sweden, Netherlands, Spain, Italy, France, Denmark, Greece, Switzerland, Belgium, and Israel). There were 16,217 females (54.2%) with a mean (SD) age of 64.8 (10.4) years, and 13,688 males (45.8%) with a mean (SD) age of 64.3 (9.8) years.

The FI was obtained for every participant, but none had values for all 40 variables included in the FI. Thirty-nine variables had the recommended <5% of missing data [13]. Grip strength had 10.1% of missing data, but it was retained as it is known to be an important objective marker of frailty [14, 15]. As done by others [13], missing values for each variable were imputed using the non-missing mean of the variable. The correlation between the original FI and the imputed FI was extremely high (adjusted linear $R^2 = 0.99$, $P < 0.001$), so the original one was used. For full
<table>
<thead>
<tr>
<th>Age</th>
<th>Mean Fl (95% CI)</th>
<th>n (%)</th>
<th>Mortality rate (%)</th>
<th>Fl quartiles (within age group)</th>
<th>n (%)</th>
<th>Mortality rate (%)</th>
<th>Fl: unadjusted OR for mortality (95% CI, P)</th>
<th>Fl: age-adjusted OR for mortality (95% CI, P)</th>
<th>Age: unadjusted OR for mortality (95% CI, P)</th>
<th>Age: Fl-adjusted OR for mortality (95% CI, P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td>0.14 (SD 0.13)</td>
<td>16217</td>
<td>1.6</td>
<td>0.03 > Fl</td>
<td>1224</td>
<td>0.0</td>
<td>382.5 (18.7–7833.0) P < 0.001</td>
<td>302.6 (14.2–6446.7) P < 0.001</td>
<td>1.1 (1.0–1.2) P = 0.131</td>
<td>1.1 (0.9–1.3) P = 0.226</td>
</tr>
<tr>
<td>50s</td>
<td>0.10 (0.09–0.10)</td>
<td>6083</td>
<td>0.3</td>
<td>0.03 ≤ Fl < 0.08</td>
<td>1774</td>
<td>0.2</td>
<td>721.3 (34.2–1483.7) P < 0.001</td>
<td>302.6 (14.2–6446.7) P < 0.001</td>
<td>1.1 (1.0–1.2) P = 0.131</td>
<td>1.1 (0.9–1.3) P = 0.226</td>
</tr>
<tr>
<td>60s</td>
<td>0.13 (0.12–0.13)</td>
<td>4970</td>
<td>0.8</td>
<td>0.05 > Fl</td>
<td>1111</td>
<td>0.4</td>
<td>164.8 (23.1–1177.2) P < 0.001</td>
<td>140.9 (19.1–1038.6) P < 0.001</td>
<td>1.2 (1.0–1.3) P = 0.011</td>
<td>1.1 (1.0–1.3) P = 0.027</td>
</tr>
<tr>
<td>70s</td>
<td>0.18 (0.18–0.19)</td>
<td>3461</td>
<td>2.1</td>
<td>0.08 > Fl</td>
<td>778</td>
<td>0.5</td>
<td>85.6 (23.3–315.0) P < 0.001</td>
<td>55.5 (14.6–210.9) P < 0.001</td>
<td>1.2 (1.1–1.3) P < 0.001</td>
<td>1.2 (1.1–1.3) P < 0.001</td>
</tr>
<tr>
<td>80s</td>
<td>0.26 (0.25–0.27)</td>
<td>1460</td>
<td>5.8</td>
<td>0.13 > Fl</td>
<td>351</td>
<td>0.6</td>
<td>154.1 (39.0–608.7) P < 0.001</td>
<td>137.0 (34.2–548.3) P < 0.001</td>
<td>1.1 (1.0–1.2) P = 0.005</td>
<td>1.1 (1.0–1.2) P = 0.046</td>
</tr>
<tr>
<td>90+</td>
<td>0.36 (0.34–0.39)</td>
<td>243</td>
<td>20.6</td>
<td>0.19 > Fl</td>
<td>52</td>
<td>0.8</td>
<td>95.1 (10.4–867.7) P < 0.001</td>
<td>71.0 (7.7–650.5) P < 0.001</td>
<td>1.2 (1.1–1.4) P = 0.006</td>
<td>1.2 (1.1–1.3) P = 0.027</td>
</tr>
<tr>
<td>Males</td>
<td>0.11 (SD 0.11)</td>
<td>13688</td>
<td>2.6</td>
<td>0.02 > Fl</td>
<td>1053</td>
<td>0.2</td>
<td>1112.0 (570.5–2167.4) P < 0.001</td>
<td>610.0 (81.9–4545.1) P < 0.001</td>
<td>1.1 (1.1–1.1) P < 0.001</td>
<td>1.1 (1.1–1.1) P < 0.001</td>
</tr>
<tr>
<td>50s</td>
<td>0.08 (0.08–0.08)</td>
<td>5153</td>
<td>0.8</td>
<td>0.02 ≤ Fl < 0.06</td>
<td>1284</td>
<td>0.6</td>
<td>543.5 (107.0–2761.4) P < 0.001</td>
<td>463.7 (89.7–2396.5) P < 0.001</td>
<td>1.1 (1.0–1.2) P = 0.026</td>
<td>1.1 (1.0–1.1) P = 0.131</td>
</tr>
<tr>
<td>60s</td>
<td>0.10 (0.10–0.10)</td>
<td>4471</td>
<td>1.8</td>
<td>0.05 ≤ Fl < 0.11</td>
<td>1531</td>
<td>0.8</td>
<td>1158.1 (154.4–8415.2) P < 0.001</td>
<td>267.6 (85.1–841.5) P < 0.001</td>
<td>1.1 (1.1–1.2) P < 0.001</td>
<td>1.1 (1.0–1.2) P = 0.019</td>
</tr>
<tr>
<td>70s</td>
<td>0.14 (0.14–0.15)</td>
<td>2996</td>
<td>4.2</td>
<td>0.05 ≤ Fl < 0.11</td>
<td>1132</td>
<td>1.1</td>
<td>356.7 (115.4–1101.9) P < 0.001</td>
<td>267.6 (85.1–841.5) P < 0.001</td>
<td>1.1 (1.1–1.2) P < 0.001</td>
<td>1.1 (1.0–1.2) P = 0.003</td>
</tr>
<tr>
<td>80s</td>
<td>0.20 (0.19–0.21)</td>
<td>954</td>
<td>10.0</td>
<td>0.09 > Fl</td>
<td>242</td>
<td>7.9</td>
<td>109.7 (26.6–451.7) P < 0.001</td>
<td>84.7 (20.1–357.1) P < 0.001</td>
<td>1.2 (1.1–1.3) P < 0.001</td>
<td>1.1 (1.0–1.2) P = 0.003</td>
</tr>
<tr>
<td>90+</td>
<td>0.28 (0.24–0.31)</td>
<td>114</td>
<td>15.8</td>
<td>0.14 > Fl</td>
<td>28</td>
<td>7.1</td>
<td>23.9 (0.8–677.8) P = 0.063</td>
<td>24.7 (0.8–733.0) P = 0.064</td>
<td>1.0 (0.8–1.2) P = 0.928</td>
<td>1.0 (0.8–1.2) P = 0.903</td>
</tr>
</tbody>
</table>
Discussion

We operationalised an FI in a large representative sample of community-dwelling Europeans. This adds to the existing literature because most studies on FI have been conducted outside Europe. Previous studies based on SHARE had used a definition based on frailty phenotype, and they also showed age-independent associations with their study outcomes [16, 17].

From a theoretical perspective, our scatter plots are consistent with the fact that, in humans, trajectories of health and functioning with age are extremely variable among individuals, owing to marked population heterogeneity [18]. It is known that the accumulation of deficits has both an age-independent (background) component and an age-dependent (exponential) component, akin to the well-known Gompertz-Makeham model for the risk of mortality [19], a generalised form of which is interpreted as a law of the dependency of mortality upon ‘vitality’ rather than on age [20].

The properties of the European FI are consistent with those of FIs operationalised elsewhere. In a representative, cross-sectional, Canadian survey Rockwood et al. showed that the FI was well fitted by a gamma distribution and increased exponentially with age [21]. Data from the National Long Term Care Survey in the USA showed that the FI exhibits accelerated increase with age until oldest ages, and longitudinal analysis confirmed the accelerated accumulation of deficits in ageing individuals [22]. The Health and Retirement Survey showed that the FI for cohorts born before 1942 exhibited quadratic increases with age and accelerated increases in the accumulation of health deficits [23]. Interestingly, the quadratic regression had better fit than the exponential regression in our population.

Regarding mortality, our results are consistent with previous studies showing that at all ages, a higher FI was associated with higher mortality [13, 24], and that the FI predicts death better than chronological age [22]. In the Chinese Longitudinal Healthy Longevity Survey, the FI was a robust predictor of mortality at advanced ages and the relationship between frailty and mortality was independent of age and other covariates [25].

The sex differences seen with our FI were also found elsewhere. In a Mexican population, women showed significantly higher mean FI values than men in the age groups younger than 80 years [26]. However, in a similar population, the association of the FI with mortality was found to be stronger among men [27]. In a Chinese population, the FI was higher in women than men for each age group, and women had an estimated 20% lesser chance of dying at a given time than did men of the same chronological age and degree of frailty [28]. Likewise, in the Beijing Longitudinal Study of Aging, deficits were more lethal in men than in women, although women had a higher mean level of frailty [29]. Various hypotheses try to explain these well-known sex differences in FI-associated mortality [30].

In conclusion, the properties of our FI were in keeping with those of FIs derived elsewhere. If the European FI is operationalised in practice, our findings may serve as a reference to help European practitioners identify at-risk patients who need priority access to resources.

Key points

- The FI has been less studied in Europeans.
- We constructed sex-specific FIs from a large sample of Europeans.
- We studied the FI associations with age and mortality.
- The FI had the expected properties.

Conflicts of interest

None declared.

Ethical approval

We undertook a secondary analysis of data obtained under the SHARE Data Access Rules (http://share-dev.mpisoc.mpg.de/data-access-documentation/research-data-center-data-access.html). Originally, SHARE received ethical approval by the University of Mannheim’s Internal Review Board. All participants consented to the study.

Funding

This paper uses data from SHARE release 2.5.0, as of 24th May 2011. The SHARE data collection has been primarily funded by the European Commission through the 5th framework programme (project QLK6-CT-2001-00360 in the thematic programme Quality of Life), through
Supplementary data

Supplementary data mentioned in the text is available to subscribers in Age and Ageing online.

References

Received 27 November 2011; accepted in revised form 14 March 2012.