Amplified In Situ Hybridization With Peptide Nucleic Acid Probes for Differentiation of *Mycobacterium tuberculosis* Complex and Nontuberculous *Mycobacterium* Species on Formalin-Fixed, Paraffin-Embedded Archival Biopsy and Autopsy Samples

Pietro Zerbi, MD,1 Andreas Schønau, MScChemEng,2 Sara Bonetto, MD,1 Andrea Gori, MD,3 Giulio Costanzi, MD,1 Piergiorgio Duca, MD,4 and Luca Vago, MD1

Key Words: In situ hybridization; ISH; Tuberculosis; *Mycobacterium tuberculosis*; *Mycobacterium*; Peptide nucleic acid probe; PNA probe

Abstract

The aim of this study was to evaluate sensitivity and specificity of in situ hybridization (ISH) using peptide nucleic acid (PNA) probes and tyramide-based amplification for the differentiation between *Mycobacterium tuberculosis* (MTB) and mycobacteria other than tuberculosis (MOTT) on formalin-fixed, paraffin-embedded tissue samples. We performed ISH simultaneously with both probes on 86 specimens from different organs: 70 obtained at autopsy and 16 by biopsy, all with a histologic evidence of mycobacterial infection confirmed by Ziehl-Neelsen–positive staining. Taking culture as the “gold standard,” the sensitivity and the specificity of the MTB probe were 100% (41/41) and 95% (38/40), respectively. In only 2 cases ISH failed to identify mycobacteria. Culture results were not available in 3 cases. We propose ISH as a relatively simple and rapid method to differentiate mycobacteria on formalin-fixed, paraffin-embedded specimens (it is more specific than usual histologic stains) and as an alternative to polymerase chain reaction, allowing the morphologic evaluation of positive bacilli.

Mycobacterial infections are a worldwide emergency. Tuberculosis, caused by infection with species of the *Mycobacterium tuberculosis* complex (MTB), is still the most important cause of death from an infectious agent. During the last 2 decades, tuberculosis prevalence in the industrialized countries has increased both from the HIV infection epidemic and immigration from developing countries.1,2 Infections from *Mycobacterium* species other than *M tuberculosis* (MOTT) are commonly observed opportunistic diseases in people with AIDS. Pathologists frequently are asked for the diagnosis of mycobacterial infections on formalin-fixed, paraffin-embedded tissue samples. The evaluation of H&E-stained slides can give useful information from the morphologic features of the lesions, which are usually different in MTB and MOTT infections. Morphologic criteria, however, may be less informative in the setting of immunodeficiency, eg, in people with AIDS in whom the classic granulomatous reaction of MTB infection cannot be adequately mounted or when the presence of mycobacteria is associated with minimal tissue damage. The demonstration of mycobacteria on formalin-fixed, paraffin-embedded specimens can be difficult. The most widely used histochemical stain, Ziehl-Neelsen, is simple and fast, but it has a low sensitivity further reduced by formalin fixation and does not allow for differentiation between MTB and MOTT, which is relevant for planning the treatment. Alternative methods are based mainly on amplification of genomic sequences from extracted DNA or RNA. Polymerase chain reaction (PCR), amplifying several different tracts of the mycobacteria genome, has been used successfully.3-10 The PCR method is relatively fast, taking from several hours to a few days according to the length of
the extraction method, and far more sensitive than the Ziehl-Neelsen staining method, enabling differentiation between MTB and MOTT species. However, the method requires special equipment, its sensitivity can be affected by fixation, and, above all, it is accepted that specificity can be reduced by false-positive cases due to contamination during one of the steps of the procedure.11,12 Furthermore, as PCR can amplify a very low number of copies of mycobacterial genomic sequences, true-positive PCR results can be difficult to interpret when no morphologic hallmarks of the disease are found.

In situ hybridization (ISH) also has been performed on selected clinical specimens to demonstrate and to identify mycobacteria.13 Recently, the use of peptide nucleic acid (PNA) probes has been reported for the identification of culture-grown mycobacteria14-16 and then applied for diagnostic purposes on sputum specimens.17

Materials and Methods

Study Population

A total of 86 Ziehl-Neelsen–positive samples were examined, 70 of which were obtained at autopsy and 16 by biopsy. All were routinely formalin-fixed and paraffin-embedded. The length of fixation varied from 2 days to 1 month for autopsy tissues, while biopsy specimens were fixed for a maximum of 3 days. Sources and numbers of the organs are listed in Table 1.

All autopsy and 15 biopsy samples were from HIV-positive patients. All autopsy samples were from patients who had positive blood culture results for mycobacteria within 1 month before death. Isolates included in the study were identified by the AccuProbe rRNA hybridization assay (GenProbe, San Diego, CA) or phenotypic classification by using standard biochemical assays.18 The numbers and types of mycobacteria are given in Table 2. Blood culture results also were available for 13 patients of the biopsy group.

In Situ Hybridization

Serial 4-µm-thick sections were cut and deparaffinized in xylene, followed by 5-minute stepwise immersions in methanol alcohol in descending concentrations, ending in distilled water. To block endogenous peroxidase, 15-minute incubation in 2% H2O2 in 80% methanol alcohol was performed during deparaffinization.

Pretreatment was in 2 phases: 15 minutes in a solution of proteinase K (10 µg/mL) in 50 mL of tris(hydroxymethyl)aminomethane (Tris) buffer at 37°C; and two 5-minute periods in a microwave oven at 780 W in a jar containing citric acid (1 mmol/L concentration). Slides were refreshed for approximately 30 minutes, then dehydrated in ethanol alcohol and air-dried. Fifty microliters of the PNA probe,14 diluted in hybridization buffer19 to a final concentration of 5 nmol/L (MOTT probe) or 10 nmol/L (MTB probe), was applied to each slide, covered with a cover glass, and
then placed in a humidity chamber in an oven at 55°C and
riddized for 90 minutes. Cover glasses were removed in
distilled water, and then 30 minutes of stringent washing in
Tris-buffered saline containing Tween 20 (TBST) buffer in
an oven at 55°C was performed. Slides were rinsed in water
and TBST buffer twice for 10 minutes each and incubated
with a peroxidized antibody, anti–fluorescein isothiocyanate
(P5100, DAKO A/S, Glostrup, Denmark), diluted 1:1,000 in
TBST buffer for 30 minutes. Subsequently, slides were
rinsed in TBST buffer 3 times for 5 minutes each; incubated
with biotinyl tyramide for 15 minutes; rinsed in TBST buffer
time for 5 minutes each; incubated with streptavidin
diluted 1:50 in Tris buffer; rinsed in TBST buffer, Tris-
buffered saline buffer, and Tris buffer for 3 minutes each;
and then incubated with diaminobenzidine for 10 minutes.
Slides were stained with hematoxylin for 30 seconds.

Statistical Analysis
Using the 2 probes simultaneously allowed us to
consider for the calculation of sensitivity and specificity only
cases with a positive result for one probe and a negative
result for the other. A double-positive or a double-negative
result is inconclusive and, therefore, was not considered for
statistical analysis. The sensitivity and specificity of ISH
were calculated taking culture as the “gold standard.” The
95% confidence intervals were computed using the exact
binomial distribution approach.

Results
In situ hybridization gave a positive result in 68 of 70
autopsy cases and in all biopsy cases. We found simulta-
neous positivity for MTB and MOTT in none of the cases.
Taking culture results as the gold standard for identification
of mycobacteria, all autopsy and biopsy cases classified as
MTB infections were positive for MTB by ISH (34/34 and
7/7, respectively) Table 3. Among the 36 autopsy MOTT
culture-positive cases, 32 were positive with the MOTT
probe. Two cases had a blood culture positive for
Mycobacterium avium 3 weeks and 1 week, respectively, before
death, but a positive ISH result for MTB. The morphologic
features of both cases were considered suggestive of MTB
infection. Furthermore, these 2 cases were studied by
performing a nested PCR on extracted DNA for an IS6110
sequence of MTB complex, for which the result was posi-
tive, and a PCR for a sequence common to MTB and MOTT,
which gave a negative result.

Two results were inconclusive. Both were classified as
MOTT infections based on culture results and had not been
identified by ISH: one because the slides were considered
not interpretable on morphologic examination owing to
excessive proteolytic effect, and the other because the slides
were repeatedly negative with both MTB and MOTT probes.
The latter also was negative by ISH for glyceraldehyde 3-
phosphate dehydrogenase messenger RNA and by PCR, thus
suggesting probable loss of the RNA target.

In the 13 biopsy cases with culture identification, ISH
gave concordant results (7/7 MTB cases and 6/6 MOTT
cases). The 3 other cases without cultural data were classi-
ﬁed by ISH as MTB (n = 2) and MOTT (n = 1) infections.
As expected, morphologic evaluation of ISH staining
was simple in cases with a high bacterial load and even at
low magnification (×20), while a prolonged high magnifica-
tion scan was required in some paucibacillary cases. Related
to Ziehl-Neelsen staining, ISH seemed to identify a compa-
rable or somewhat lower number of mycobacteria in all cases
but one (a lung specimen with MTB infection). In most of
the cases, however, true-positive staining was morphologi-
cally distinguishable from the background of ISH reaction

With culture as the gold standard, the overall sensitivity of
PNA ISH for MTB identification was 100% (41/41; 95%
conﬁdence interval [CI], 93%-100%) and the overall speci-
ficity (which also means the capacity of detection of MOTT
cases), 95% (38/40; 95% CI, 83%-99%) (Table 3).

Discussion
We applied ISH with PNA probes and tyramide ampli-
fication for the identiﬁcation of mycobacterial infections on
formalin-fixed, parafﬁn-embedded tissues. Until now, ISH
had been applied in sporadic cases of suspected mycobacte-
rial infection.13 We planned a retrospective evaluation of the
sensitivity and speciﬁcity of PNA probes for differentiation
of MTB and MOTT infections on Ziehl-Neelsen–positive
autopsy and biopsy samples routinely treated for

Table 3

<table>
<thead>
<tr>
<th>Culture Result</th>
<th>MTB+</th>
<th>MOTT+</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>In situ hybridization result</td>
<td>41</td>
<td>2</td>
<td>43</td>
</tr>
<tr>
<td>MTB+/MOTT-</td>
<td>0</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>MOTT+/MTB-</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MTB-/MOTT-</td>
<td>Not interpretable</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
<td>42</td>
<td>83</td>
</tr>
</tbody>
</table>

MTB, _Mycobacterium tuberculosis_; MOTT, mycobacteria other than tuberculosis.

* Sensitivity of the MTB probe and specificity of the MOTT probe: 41/41 = 100%
(95% confidence interval, 93%-100%). Specificity of the MTB probe and
sensitivity of the MOTT probe: 38/40 = 95% (95% confidence interval, 77%-97%).
morphologic evaluation. PNA probes are hydrophobic analogues of nucleic acid, with a repetitive aminoacidic sequence instead of the sugar backbone of DNA and RNA. Fluorescein-labeled PNA probes have been applied for the identification of cultured bacteria and on sputum, showing high sensitivity and specificity. The simultaneous use of MTB and MOTT probes gives an internal control of the reaction by considering as true-positive results only those that were positive with one probe and negative with the other, although a double positivity actually may indicate a true double infection. The major advantage of ISH is that it allows morphologic evaluation of the positive signals, which highly contributes to avoiding false-positive results. The main drawbacks of the method are probably the failure of MOTT probes to recognize some MOTT species, which are, however, rarely found in our epidemiologic setting, as well as the fact that probes recognize RNA molecules, which can be partly or entirely destroyed during the fixation and inclusion steps. Moreover, these probes identify only the whole bacteria, ie, an active infection, which can further reduce the sensitivity of the test compared with PCR for mycobacterial DNA; however, it implies a higher specificity and a more simple interpretation of the positive results.
The sensitivity of ISH was 100%, i.e., ISH correctly identified all MTB infections. The specificity was lower (95%) as 2 cases were identified by culture as <i>M. avium</i> infections but had a histopathologic pattern suggestive of MTB infection and a PCR-positive result for <i>M. tuberculosis</i> with a nested PCR on extracted DNA (although a less sensitive PCR method for a sequence common to both <i>M. tuberculosis</i> and <i>M. avium</i> failed to amplify the microbial DNA). Accordingly, the sensitivity of ISH for MOTT had the same value, being lower than that of the MTB probe.

Our results demonstrate a very high sensitivity of the method, taking culture results as the gold standard. We had only 1 false-negative result, and another result could not be evaluated as we were unable to find pretreatment conditions allowing acceptable morphologic preservation of the section. The first case was a Ziehl-Neelsen–positive <i>M. avium</i> lymph node infection, which was presumably diagnosed as a MOTT infection according to the histopathologic pattern. This false-negative result probably was due to loss of the integrity of mycobacterial ribosomal RNA, as supported by the negative result with ISH for the messenger RNA of glyceroldehyde 3-phosphate dehydrogenase. Taking these 2 cases into account, the sensitivity of the MOTT probe decreased slightly to 90% (95% CI, 77%-97%).

In none of the cases did we observe double positivity. As indicated, one of the major potential problems of ISH, i.e., preservation of morphologic details after the pretreatment and posttreatment steps of the protocol, did not allow identification in only 1 case. The use of an enzymatic proteolytic treatment followed by microwave incubation offers the best compromise between sensitivity and morphologic preservation compared with either enzymatic or microwave treatment in different concentrations and at different temperatures (data not shown). It is impossible to eliminate the tyramide amplification step, as ISH alone has a very low sensitivity, and, furthermore, amplification highly reduces the need for stronger proteolytic treatment and tissue damage. In the present study, we chose to work with biotinyl-tyramide and peroxidase-labeled streptavidin. We preferred the conventional optic examination to a fluorescein detection method, because in our opinion, the optic examination gives the possibility of a better evaluation of the relationship between positive signals and tissue structures. However, we agree that this choice may be conditioned by personal preferences. Anyway, the interpretation of the reaction was possible with few or no problems in most autopsy cases, all showing a high bacterial load. By contrast, the morphologic interpretation can require prolonged scanning of the slides at high magnification in paucibacillary cases and in samples, for example, bone marrow biopsy specimens, in which the number of positive bacteria can be exceedingly low.

To our knowledge, this is the first study that demonstrates the reliability of a tyramide-amplified PNA-ISH procedure for the molecular differentiation of mycobacterial species on formalin-fixed, paraffin-embedded tissues.

From the 1Pathology Unit, Institute of Biomedical Sciences, “L. Sacco” University of Milan, Milan, Italy; 2Department of Probe Application, DAKO A/S, Glostrup, Denmark; 3Clinic of Infectious Diseases, University of Milan; and 4Medical Statistics and Biometry, DISP LITA Vialba, University of Milan.

Supported by a grant from Istituto Superiore di Sanità, Rome, Italy, Progetto Tuberculosis.

Address reprint requests to Dr Vago: Anatomia Patologica, Ospedale “L. Sacco,” via G.B. Grassi 74, 20157 Milan, Italy.

Acknowledgments: We thank DAKO A/S for providing probes and some of the reagents. We are grateful to Luciana Ottini for excellent technical assistance.

References

