Family History Score as a Predictor of Breast Cancer Mortality: Prospective Data from the Cancer Prevention Study II, United States, 1982–1991

Quanhe Yang,1 Muin J. Khoury,2 Carmen Rodriguez,3 Eugenia E. Calle,3 Lilith M. Tatham,3 and W. Dana Flanders4

A consistent predictor of a woman’s risk for breast cancer is a family history of the disease. Most studies of family history and breast cancer have used the number of affected relatives in the family to calculate relative risk, but they have not considered the heterogeneity of the familial risk for breast cancer in a systematic way. With the use of data from a large prospective mortality study of US adults, the authors compared simple classification of family history of breast cancer (yes/no) to the method of using a quantitative family history score method, which takes into account the effects of family structure, age, and birth cohort as predictors of breast cancer mortality. After 9 years of follow-up, 1,428 cases of fatal breast cancer were observed among 453,073 women with complete information on number and age of siblings and family history. With the use of the family history score, about one-third of women with a positive family history of breast cancer were at no higher risk for breast cancer mortality than those without a family history of the disease. As a quantitative measure of relative risk for each family, family history score gave a better fit to the data, and it provided an incremental improvement of predictive accuracy of developing fatal breast cancer. Family history score can also be used as a categorical variable to stratify families. This allows researchers to focus on which risk groups would benefit from conducting further genetic analysis and to test the effects of genetic factors, environmental exposure, and gene-environment interactions on the etiology of the development of breast cancer. Am J Epidemiol 1998; 147:652–9.

Studies have consistently shown (1–7) that women with a positive family history of breast cancer in a first-degree relative have a higher risk of developing breast cancer than women without a family history of the disease. The increased risk is further elevated if two first-degree relatives have the disease (1, 8–11). Highest risk is seen in women whose relatives developed breast cancer early in their lives (2, 8, 9, 12), but risk may be elevated even if the relative was affected when she was aged >70 years (3). Some reports (6, 12) have suggested a steady decrease in the association between a positive family history and the risk for breast cancer with increasing age, whereas others (13–16) have found no variation in risk across age groups. Some investigators (3, 13, 14) have argued that the excess risk is not large for most women with a family history of breast cancer, particularly women whose mothers had breast cancer that was diagnosed at an older age. Several studies (17–21) have shown that there is clear evidence for the role of three genes (BRCA1, BRCA2, and p53) as the etiologic basis for the greatly increased risk for breast cancer observed in some families.

Clearly, studies of family history and breast cancer indicate a high degree of heterogeneity of familial risk for breast cancer. Breast cancer is likely to be multifactorial, involving genetic factors, environmental exposure, and the gene-environment interaction. Many studies of family history and breast cancer define exposure as the number of affected first- or second-degree relatives (coded as 0, 1, or ≥2), sometimes
stratified by the relative's age at onset of the disease. This method of using family-history information does not take into account the possible effects of family structure, age, or racial differences among families with a positive family history in assessing familial risk for breast cancer. It also fails to consider systematically the heterogeneity of the familial risk for breast cancer, which may vary considerably among families.

In this study, we compare the method of using simple categories of observed numbers of cases of breast cancer in a family (0, 1, ≥2) with using a quantitative family history score (FHS) method to predict breast cancer mortality. We also examine the power of different methods of defining a positive family history of breast cancer in predicting fatal breast cancer. The study uses data from a large prospective mortality study, the Cancer Prevention Study II (CPS-II), carried out in the United States in 1982–1991. Although FHS has been used to study other chronic diseases (22–24), there is no prospective study, to our knowledge, which has used FHS as a predictor of fatal breast cancer.

MATERIALS AND METHODS
Cancer Prevention Study II

Women in this study were selected from the 676,526 female participants of the Cancer Prevention Study II, a prospective mortality study of about 1.2 million US men and women begun by the American Cancer Society in 1982. Participants were identified and enrolled by more than 77,000 American Cancer Society volunteers in all 50 states, the District of Columbia, and Puerto Rico (25). In 1982, participants completed a confidential questionnaire that included personal identifiers, demographic characteristics, personal and family history of breast cancer and other diseases, and various behavioral, environmental, occupational, and dietary exposures. The median age of female study participants in 1982 was 56 years; 75 percent of the women were aged 45–70 years, and none was younger than age 30 years.

Every 2 years, from 1982 through 1988, volunteers made personal inquiries to determine whether or not study participants were living and to record the date and place of all deaths. Automated linkage using the National Death Index (NDI) was used to extend follow-up through December 31, 1991 (26) and to identify women who had died among the 13,219 women lost to follow-up between 1982 and 1988. Mortality follow-up was completed through December 31, 1991; at that time, 615,009 women (90.9 percent) were still living and 59,439 (8.8 percent) had died, while, for 2,078 women (0.3 percent), follow-up stopped in September 1988 because of insufficient data for NDI linkage.

Population for analysis

From the initial group of 676,526 participants, we excluded from the analysis 3,275 women (12 breast cancer deaths) with incomplete information on race, 56,861 women (3,048 breast cancer deaths) who had prevalent cancer (except nonmelanoma skin cancer) at study entry in 1982, and 163,317 women (581 breast cancer deaths) with incomplete family history information. After 9 years of follow-up, 1,428 eligible cases of fatal breast cancer were observed among 453,073 women. We treated these women as 453,073 families and assumed that no two women were from the same family. Among 1,428 eligible cases, 170 (11.9 percent) had family history of breast cancer. We used only mother's and sisters' information for the analysis and excluded all males from the family in order to calculate the family history score.

Data on family history of cancer

Information about history of cancer in the parents and siblings (up to six siblings) was elicited on the 1982 questionnaire. This information included the following: whether the parents and siblings were still living; the age and sex of siblings and, if deceased, their age at death; and whether a diagnosis of cancer had been made in family members, the type of cancer, and the age at which the diagnosis was made.

Derivation of family history score

Breast cancer risk among families was measured using a statistic that describes deviations from expected risk for each family, and which takes into account family structure and the risk covariates of family members (age, sex, race, and birth cohort) (22, 27, 28). We calculated the standardized statistic for the jth family as follows:

$$T_i = \frac{\sum_j O_{ij} - \sum_j E_{ij}}{\sqrt{\sum_j E_{ij}(1 - E_{ij})}}$$

where O_{ij} is the observed breast cancer status for the jth member in family i (0 or 1), E_{ij} is the expected risk for breast cancer for the jth member in family i, and T_i is the family history score for family i.

The expected risk for breast cancer for each person in a family was obtained by multiplying age-, race-, and time-specific US cancer incidence rates from the Surveillance, Epidemiology, and End Results (SEER) program by age-, race-, and birth cohort-specific...
person-years at risk. Person-years at risk were accumulated until age at interview or age at death for people without breast cancer or age when a diagnosis of breast cancer was made for people with breast cancer. We estimated the cumulative incidence (risk) for breast cancer and the risk of a person developing breast cancer by a specific age as follows (29):

\[E_{ij} = 1 - \exp[- \sum_k \text{ID}_i \Delta t], \quad (2) \]

where \(k \) is the age group, \(\text{ID} \) is the incidence density in the \(k \)th age group, and \(\Delta t \) is the age interval. For people aged \(\geq 65 \) years in 1982, we used 1973 SEER breast cancer incidence rates, and for people <65 years of age at interview, we used 1982 SEER breast cancer incidence rates. The calculation of the expected occurrence of breast cancer takes into account age, race, and birth cohort differences in breast cancer incidence.

A negative family history score indicates that a family contains fewer women with breast cancer than would be expected, and a positive value indicates that a family contains more women with breast cancer cases than expected. The magnitude of a negative value was mainly determined by the family size and average age of the family members. The larger families with an older average age among family members without family history of breast cancer had a larger negative FHS value because the expected value of breast cancer for those families was high (equation 1). Similarly, the smaller families with younger average age and with family history of breast cancer had larger positive FHS value. In the CPS-II data set, all families with a negative FHS value had no family history of breast cancer. The relative risks of developing fatal breast cancer among families with negative FHS value was calculated by classifying FHS into 10 groups. This analysis showed no trend and risks remained stable among these groups (results not shown). In the present study, therefore, we set the FHS for the families with negative FHS value equal to zero because the main purpose of the study was to compare different methods of defining positive family history of breast cancer to predict future cases of breast cancer mortality (22, 23).

There are primarily two methods used to calculate the family history score. Either method is based on a comparison of the observed number of cases in a family with the expected number during the observation period, taking into account some covariates of family (22, 27). We present our results using the method of calculating FHS developed by Chakroborty et al. (27). Williams et al. (22) proposed a slightly different method to calculate FHS which used a correction term in the formula to approximate the normal distribution. The usage of correction term set the FHS of all families with expected values <0.5 to zero. Williams et al. (22) compared these two methods and concluded that their outcomes were similar. For our analysis, both methods gave similar rankings of positive FHS with different magnitudes of the score. Regardless of which method we used, the results (the relative risk for breast cancer obtained by FHS) remained unchanged.

Statistical analysis

To assess the association between a family history of breast cancer and fatal breast cancer, we used two different approaches. First, we classified families by the observed number of cases of breast cancer in first-degree relatives as follows: no family history of breast cancer, one first-degree relative with breast cancer, and two or more first-degree relatives with breast cancer (only 0.4 percent of families with a positive family history of breast cancer had three or more first-degree relatives with breast cancer). Second, we classified all families by FHS into four groups: zero FHS, and three equal groups (33 percent each group) with a low, medium, or high FHS among families with positive FHS. We compared the relative risk of developing breast cancer as measured by these two different methods of measuring family history. We used the proportional hazards model to calculate hazard ratios (30) while adjusting for the effects of the following multiple risk factors: menopausal status, age at menarche, age when first living child was born, history of breast cysts, oral contraceptive use, other estrogen use, body mass index, diethystilbestrol (DES), education, religion, race, alcohol use, smoking status, and among postmenopausal women, the age at which periods stopped. We then stratified the data on the basis of age at enrollment.

Because the estimates of the adjusted relative risks (odds ratios) obtained by logistic regression were virtually identical to those obtained by proportional hazard model, we used logistic regression to examine the goodness-of-fit and the accuracy of different methods of defining a family history of breast cancer in predicting the development of fatal breast cancer. Cox and Snell (31) and Nagelkerke (32) have proposed a generalized coefficient of determination \(R^2 \) and an adjusted generalized coefficient of determination \(R^2_{\text{adj}} \) to give an objective measure of how well each model fits the data. The \(R^2 \) and \(R^2_{\text{adj}} \) are analogous in interpretation to \(R^2 \) in linear regression analysis (32). The receiver operating characteristic (ROC) curve displays graphically the discriminatory ability of a logistic model. The ROC curve rises quickly with high predictive accuracy. Thus, the area under the curve (C
statistic) approaches one for a model with higher predictive accuracy (33). The value of C statistics range from 0 to 1.

RESULTS

As of 1982, 32,937 women (7.3 percent) reported that breast cancer had been diagnosed in either their mother or their sister(s). Figure 1 shows the frequency distribution of breast cancer family history score across all families. The FHS ranged from a minimum of 0 to a maximum of 46.2. The distribution of positive FHS was skewed to the right with a mean FHS of 5.2 (standard deviation, 2.2). To examine the relation between the observed number of relatives with breast cancer in the families and the FHS, we tabulated the observed number of relatives with breast cancer in each of four FHS categories: zero, low (lowest 33 percent of positive FHS’s), medium (middle 33 percent of positive FHS’s), and high (highest 33 percent of positive FHS’s) (table 1). As expected, all families without a family history of breast cancer had a zero FHS. Among families with a family history of breast cancer, the higher FHS’s were associated with an increased number of relatives who had breast cancer. The kappa statistics of \(\kappa = 0.65 \) (standard error = 0.0015) and \(z = 430 \) indicate that there is a good degree of agreement between the two approaches of classifying family history of breast cancer (34).

The families in which more women had more breast cancer tended to be larger (more sisters) and older on average than those families in which fewer women had breast cancer, and a larger proportion of the families were white (table 2). The average expected number of breast cancer cases calculated by cancer incidence rates was also higher for the families with a positive history of breast cancer than for the families without a history of breast cancer (table 2). On the other hand, the families with higher positive FHS’s tended to be smaller in terms of number of family members (i.e., there were fewer sisters in these families) and, on average, younger, and a larger proportion of the families were from other racial groups. Among families with positive FHS’s, FHS’s were negatively correlated with expected number of breast cancer cases (table 2).

Table 3 compares the effects of using different methods of defining a positive family history on the relative hazard for breast cancer mortality by age group (we derived the adjusted relative hazard by using a proportional hazard model and controlling for other covariates). Using the usual definition of “any

<table>
<thead>
<tr>
<th>FHS*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>≥3</th>
<th>Kappa statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>420,136</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\kappa = 0.65)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>10,979</td>
<td>104</td>
<td>0</td>
<td>(\text{SE} = 0.0015)</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>10,871</td>
<td>1,585</td>
<td>130</td>
<td>(z = 430)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>9,268</td>
<td>1,689</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>420,136</td>
<td>31,118</td>
<td>1,899</td>
<td>190</td>
<td></td>
</tr>
</tbody>
</table>

* All families with positive family history score (FHS) were divided into 3 equal groups, i.e., 1 = low FHS, first 33%; 2 = medium FHS, second 33%; and 3 = high FHS, third 33%.

† SE, standard error.

affected mother or sisters" resulted in the calculation of risks positively associated with a positive family history of breast cancer, with the magnitude of the relative hazard increasing with the age of the participants. With the use of the family history score, about one-third of the families with a positive family history (lower 33 percent of FHS families) were not at significantly higher risk for death from breast cancer than those families with no family history of the disease. As discussed earlier, compared with women whose families had high FHS's, women whose families had low FHS's were more likely to be from families with more and older family members; these families had a higher expected number of breast cancer cases. The simple method of classifying families by the number of the women with breast cancer would not be able to distinguish these families which had a positive family history of breast cancer but were not at higher risk of breast cancer mortality. In addition, the FHS also showed a dose-response relationship with the increasing risk for breast cancer mortality. In addition, the FHS also showed a dose-response relationship with the increasing risk for breast cancer mortality overall and in each age group. The adjusted relative hazard of breast cancer increased from 1.0 (95 percent confidence interval 0.8-1.4) for women from families with a low FHS to 2.3 (95 percent CI 1.8-2.9) for women from families with a high FHS.

TABLE 2. Family characteristics by different methods of classifying family history of breast cancer: Cancer Prevention Study II, United States, 1982-1991

<table>
<thead>
<tr>
<th>Family history of breast cancer</th>
<th>No. of families</th>
<th>Average family size* (SD)t</th>
<th>Mean age (years) of family members (SD)</th>
<th>% white</th>
<th>No. of affected relatives (SD)</th>
<th>Expected no. of cases (SD)</th>
<th>Mean FHSf (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>420,136</td>
<td>3.3 (1.3)</td>
<td>60.4 (9.9)</td>
<td>93.8</td>
<td>0.0</td>
<td>0.048 (0.027)</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>31,118</td>
<td>3.6 (1.3)</td>
<td>61.1 (9.1)</td>
<td>96.4</td>
<td>1.0</td>
<td>0.049 (0.030)</td>
<td>5.0 (2.0)</td>
</tr>
<tr>
<td>2</td>
<td>1,689</td>
<td>4.5 (1.2)</td>
<td>62.6 (8.0)</td>
<td>97.3</td>
<td>2.0</td>
<td>0.063 (0.030)</td>
<td>8.6 (4.1)</td>
</tr>
<tr>
<td>≥3</td>
<td>130</td>
<td>5.5 (1.1)</td>
<td>62.2 (7.7)</td>
<td>97.7</td>
<td>3.0</td>
<td>0.073 (0.034)</td>
<td>12.5 (4.1)</td>
</tr>
<tr>
<td>FHS‡</td>
<td>0</td>
<td>420,136</td>
<td>60.4 (9.9)</td>
<td>93.8</td>
<td>0.0</td>
<td>0.048 (0.027)</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>10,979</td>
<td>4.6 (1.2)</td>
<td>66.4 (7.0)</td>
<td>97.6</td>
<td>1.0</td>
<td>0.082 (0.025)</td>
<td>3.3 (0.5)</td>
</tr>
<tr>
<td>2</td>
<td>10,975</td>
<td>3.3 (1.0)</td>
<td>61.4 (7.7)</td>
<td>96.3</td>
<td>1.1 (0.1)</td>
<td>0.042 (0.011)</td>
<td>4.8 (0.4)</td>
</tr>
<tr>
<td>3</td>
<td>10,983</td>
<td>2.9 (1.1)</td>
<td>55.8 (9.1)</td>
<td>95.5</td>
<td>1.2 (0.4)</td>
<td>0.026 (0.018)</td>
<td>7.6 (2.2)</td>
</tr>
<tr>
<td>All families</td>
<td>453,073</td>
<td>3.3 (1.3)</td>
<td>60.5 (9.9)</td>
<td>94.0</td>
<td>0.08 (0.28)</td>
<td>0.049 (0.027)</td>
<td>0.38 (1.5)</td>
</tr>
</tbody>
</table>

* The family includes mothers and sisters only.
† SD, standard deviation; FHS, family history score.
‡ All families with positive FHS were divided into 3 equal groups, i.e., 1 = low FHS, first 33%; 2 = medium FHS, second 33%; and 3 = high FHS, third 33%.

TABLE 3. Comparison of the effect of different family history definitions on the risk of fatal breast cancer: Cancer Prevention Study II, United States, 1982-1991

<table>
<thead>
<tr>
<th>Age (years) of participants</th>
<th>Unadjusted</th>
<th>Fully adjusted§</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Relative hazard</td>
<td>95% CI</td>
</tr>
<tr>
<td>40-49</td>
<td>2.3</td>
<td>1.6-3.4</td>
</tr>
<tr>
<td>50-59</td>
<td>1.8</td>
<td>1.4-2.4</td>
</tr>
<tr>
<td>≥60</td>
<td>1.3</td>
<td>0.96-1.6</td>
</tr>
<tr>
<td>All ages</td>
<td>1.7</td>
<td>1.4-2.0</td>
</tr>
</tbody>
</table>

* FHS, family history score; CI, confidence interval.
† All families with positive FHS were divided into 3 equal groups, i.e., 1 = low FHS, first 33%; 2 = medium FHS, second 33%; and 3 = high FHS, third 33%.
‡ The relative hazard cannot be calculated because there were no cases of breast cancer in the category.
§ Estimates were adjusted for menopausal status, age at menarche, age when first living child was born, history of breast cysts, oral contraceptive use, other estrogen use, body mass index, diethylstilbestrol (DES), education, religion, race, alcohol use, smoking status, and, among postmenopausal women, the age at which periods stopped.

Am J Epidemiol Vol. 147, No. 7, 1998
Both R^2 and adjusted R^2 were larger when we used the family history score in the model as a continuous variable than when we used the number of observed affected relatives in the family to predict breast cancer mortality. The C statistics also increased from 0.73 to 0.75, representing a 5 percent increase of the area under the ROC curve (table 4). We found the same pattern when we compared using three equal positive FHS categories to predict breast cancer mortality with the categories 0, 1, or ≥2 for the observed number of cases of breast cancer in the family. For the 130 families in which ≥3 first-degree relatives had breast cancer, none of the women participants developed fatal breast cancer, so we were unable to calculate the odds ratios by logistic regression. Instead, we combined these families with those in which ≥2 relatives had breast cancer (table 4). It is clear that by using FHS in the analysis the models fit the data better and gave an incremental improvement of predictive accuracy than would have resulted from classifying the family on the basis of the number of women in the family with breast cancer.

DISCUSSION

In this study, we used the relative hazard, which was virtually identical to the relative risk, to evaluate the FHS as a predictor of breast cancer mortality. Our analyses suggest that FHS gave a better fit to the data and provided a higher degree of predictive accuracy of breast cancer mortality than simply predicting that risk by designating family history as either positive or negative.

Because FHS is a continuous variable, every family was ranked by the FHS and used in the analysis. Studies conducted for other diseases (23, 35) have suggested that, when estimating the relative risk of any specific risk factor in disease, using continuous FHS ranking to control for effects of family history should be more powerful than using either the observed number of breast cancer cases in a family or a 2–3 category grouping based on the number of affected individuals.

We calculated FHS on the basis of information about nuclear families. Presumably, the possible effects of family structure and age on familial risk of breast cancer would be greater among extended families than among nuclear families. The number of breast cancer cases would be greater among extended families than among nuclear families. The value of using FHS to assess the impact of a positive family history on breast cancer risk should increase with a greater number of relatives and with the complexity of the pedigrees. In our study, we assumed that the 1,428 eligible cases (i.e., with 170 cases who had family history of breast cancer) were from different families. If those cases were not from different families, the family history score could overestimate the strength of association of FHS with fatal breast cancer mortality.

TABLE 4. Summary of estimates from proportional hazard and logistic regression analyses by different family history classifications: Cancer Prevention Study II, United States, 1982–1991

<table>
<thead>
<tr>
<th>Family History</th>
<th>Proportional hazard analysis</th>
<th>Logistic regression analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Relative hazard*</td>
<td>95% CI†</td>
</tr>
<tr>
<td>Observed breast cancer cases‡</td>
<td>1.49</td>
<td>1.30–1.73</td>
</tr>
<tr>
<td>FHS‡,†</td>
<td>1.10</td>
<td>1.07–1.13</td>
</tr>
<tr>
<td>Observed no. of breast cancer cases§</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.59</td>
<td>1.36–1.27</td>
</tr>
<tr>
<td>≥2</td>
<td>1.71</td>
<td>0.94–3.09</td>
</tr>
<tr>
<td>FHS§</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.06</td>
<td>0.78–1.43</td>
</tr>
<tr>
<td>2</td>
<td>1.64</td>
<td>1.27–2.14</td>
</tr>
<tr>
<td>3</td>
<td>2.31</td>
<td>1.80–2.96</td>
</tr>
</tbody>
</table>

* Estimates were adjusted for menopausal status, age at menarche, age when first living child was born, history of breast cysts, oral contraceptive use, other estrogen use, body mass index, diethylstilbestrol (DES), education, religion, race, alcohol use, smoking status, and, among postmenopausal women, the age at which periods stopped.
† CI, confidence interval; FHS, family history score.
‡ Observed breast cancer cases and FHS used as continuous variables.
§ Observed breast cancer cases and FHS used as categorical variables. All families with positive FHS were divided into 3 equal groups, i.e., 1 = low FHS, first 33%; 2 = medium FHS, second 33%; and 3 = high FHS, third 33%.
We excluded from our study 26 percent of CPS-II participants for whom family history information was incomplete; it is possible that the relative risk could differ between those with completed family information and those without it, and such a difference could bias the results. A previous study using a full data set of CPS-II on family history, age, and risk for breast cancer (6) showed similar relative risks for breast cancer by age groups to those in our study. Such findings may suggest that the families for whom family information is incomplete were more likely to be not substantially different from other families. It should also be pointed out that the endpoint of CPS-II was to determine breast cancer mortality. By deleting all breast cancer cases at baseline (1982), we limited fatal cases to those which were diagnosed and had become fatal within 9 years of follow-up. This represented a group of more aggressive breast cancer cases. It is unclear how FHS would predict breast cancer mortality at a longer period of follow-up. In addition, the ability of FHS to predict breast cancer incidence remains unknown.

Other studies (36–38) have shown that the family history of breast cancer, even among first-degree relatives, is not perfectly reported. To assess the extent of possible underascertainment, we compared the reported prevalence of breast cancer among first-degree relatives of CPS-II participants with estimates of expected prevalence based on breast cancer age-specific prevalence rates from the Connecticut Tumor Registry (39). The reported prevalence of a mother with breast cancer was 99 percent of the expected prevalence and the reported prevalence of sister(s) with breast cancer was 86 percent of the expected. If the probability of developing fatal breast cancer is nondifferential between reported families and not-reported families with family history of breast cancer, the estimates of relative risk using FHS will be diluted toward null. Differential probabilities of developing fatal breast cancer between reported and not-reported families would affect the estimation in either direction.

The FHS method has been shown to be capable of identifying “high-risk families” (families with positive family history of breast cancer) who may have no increased risk for breast cancer and of identifying an unaffected women’s increased risk of developing breast cancer in the future. This knowledge would provide a better rationale for identifying the women who are most likely to be at high risk for fatal breast cancer. As a quantitative measure of relative risk for each family, the FHS can be used as a covariate in risk factor analysis or as a categorical variable to stratify families by FHS. For example, if we classify the positive FHS into 20 groups (five percentiles), compared with women without family history of breast cancer, the adjusted risk (95 percent CI) of breast cancer increased from 1.0 (0.7–1.5) for women in the first five percentile groups to 2.1 (1.3–3.1) for women in the tenth five percentile group to 5.4 (1.7–17.2) for women in the last five percentile groups. This method of cross-classifying families may allow researchers to better identify those women who would benefit from further genetic analysis and to test the effects of genetic factors, environmental exposures, and gene-environment interaction on breast cancer etiology.

ACKNOWLEDGMENTS

The authors thank J. David Erickson and Jim Buehler for their helpful suggestions and Michael Atkinson for his technical assistance. They also thank two anonymous reviewers for their constructive comments.

REFERENCES

