
APPENDIX 1 – General Results for Branching Processes: 

We view an epidemic as a discrete-time branching process beginning with I0 infected 

individuals, and where time is indexed by n. Thus the total number of infections that have 

occurred by generation n represents the total number that have occurred once the 

transmission lineage stemming from each initially infected individual has passed through 

exactly n generations (or else it has gone extinct prior to this occurring). Let N denote a 

random variable representing the number of new infections generated by a single infected 

individual. The mean and variance of N are denoted by  and v  respectively. Using  

to denote the random variable representing the total cumulative epidemic size by 

generation n, we then have  

2 Tn

 E Tn   1   n  1

1   
I0        (S1.1) 

and 

 var[Tn ]  v 2 1   2n  1  1   2n 1 n

1     3 I0.     (S1.2) 

We can then write equation (S1.1) more explicitly using the notation of the text.  

The expected total number of infections that have occurred in the presence of both 

quarantine and isolation up until generation n is  

 T n  
1  (1  q )R I  n  1

1  (1  q )R I
I0,       (S1.3) 
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where we have just substituted  qR QI (1 q)R I  into equation (S1.1) and simplified. 

With this notation, we can write the expression of the variance in  more explicitly by 

first noting that v  is calculated as follows: 

T

2

n

v 2  qE RQI
2   (1  q)E RI

2  qR QI  (1  q)R I
2
.     (S1.4) 

Thus, we have 

 var Tn   vR

1  (1  q )R I 2n 1
 q R I 2n  1  (1  q )R I

n

1  (1  q )R I
3 I0 ,  (S1.5) 

where 

vR  q QI
2  (1  q) I

2  q(1  q) R I  R QI

2
     (S1.6) 

is the variance in the number of infections generated by a single infected individual in the 

presence of both quarantine and isolation. 

It is also worth noting that the above results are quite general in so far as they are 

not based on very many restrictive assumptions. We have allowed the possibility of 

transmission at all stages of the disease, including from quarantined and isolated 

individuals. We have also allowed the probability distribution of number of infections 

generated by a single infected individual to have any form, and the results require only 

that we know the mean and variance of this distribution. Finally, we note that identical 

results for the expected number of infections averted can be obtained through the use of 

other modeling frameworks (e.g., with a deterministic SEIQJR model; T. Day et al, 

unpubl. Results). 

The flexibility in the form of the distribution also means that the results are valid 

for extreme events such as the super-spreading that occurred in the transmission of SARS 

(24, 25). For example, super-spreading might be represented as the mixture of two 
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Poisson distributions, one for super-spreading events and one for “normal” transmission 

events. In this case, if p is the probability of a super-spreading event occurring, and if R I ,1  

and R I ,2  are the means of the distributions of infections occurring during a super-

spreading event and during a normal transmission event respectively, then 

R I  pR I ,1  (1  p)R I ,2 . Moreover, we also have  I
2  R I  p(1  p) R I ,1  R I ,2 2

. 
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APPENDIX 2 – Technical Results: 

With the expressions from Appendix 1, the expected number of infections averted by 

quarantine by generation n is D n T n q  0
T n , which can be written in terms of the model 

parameters as 

D n  F(q,  ,n,R I )
I0 1  R I

n  1 
1  R I

,      (S2.1a) 

where 

 F(q,  ,n,R I )  
R I 1  R I

n    R I
n  1   (R I )n (1  R I ) 

(1  R I
n  1)(1  R I )

   (S2.1b) 

and .   1 q 

Equation (S2.1a) is written as the product of the total expected number of 

infections occurring in the absence of quarantine by generation n (i.e., 

I0(1  R I
n  1) /(1  R I ) ) and the percentage of these that are averted through the use of 

quarantine, F(q,  ,n,R I ) . We are primarily interested in the total number of infections 

that can be averted in the long term (i.e., as time, n, gets large). In this case, provided that 

there is either some asymptomatic transmission or that quarantine can increase the 

effectiveness of isolation (so that ), the percentage of infections that are averted by 

quarantine is 

0

 lim
n  

F  
1

R I  (1  q )R I  1  (1  q )R I  
  
  
  

if R I  1

if R I  1
.   (S2.2) 

On the other hand, if  then quarantine will never have any effect. Equation (S2.2) 

reveals that we must consider two cases separately: (i) isolation alone cannot stop the 

  0
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spread of the disease (i.e., R I  1), and (ii) isolation alone can stop the spread of disease 

(i.e., R I  1). 

If isolation alone cannot stop the spread of disease (i.e., R I 1) then the total 

number of infections occurring in the absence of quarantine will, with nonzero 

probability, grow indefinitely until the pool of susceptible hosts is depleted. At the same 

time, however, the percentage of these that quarantine can be expected to avert 

approaches 100 percent (equation S2.2). As a result, quarantine is likely to be very 

beneficial in this case. It is only when there is very little asymptomatic transmission, and 

when quarantine has very little effect on the efficiency of isolation procedures, that it will 

have a marginal effect. In this case,  will be close to zero, and although the percentage 

of infections averted by quarantine still approaches 100 percent as time passes, it will do 

so much more slowly. In particular, if 

q

R I  is large, then the percentage of infections 

averted by quarantine up to the nth generation is approximately 1 . This 

illustrates that the number of infections averted by quarantine will be small, only when  

is very close to zero. 

(1 q )n

If isolation alone can stop the spread (i.e., R I 1) then I0(1 R I
n  1) /(1  R I )  

approaches I0 /(1  R I ) as time passes. Combining this with results (S2.2) we obtain the 

expected number of infections that are averted: 

lim
n   

D n  R I  (1  q )R I
1  (1  q )R I

I0

1  R I
,      (S2.3) 

which is equation (1) of the text. If q  is close to 1, then (S2.3) simplifies to 

 lim
n   

D n  R I
I0

1  R I
,        (S2.4) 
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which reveals that the percentage of infections averted by quarantine is given by F R I . 

This is equation (2) of the text. 

The variance in the number of infections averted (when R I 1) is given by the 

variance of the difference D  T q  0
T . Deriving an expression for this variance is 

non-trivial because the random variables, T q  0
 and T , are not independent. A general 

formula can be obtained but it is quite complex and uninformative (unpubl. results). 

Therefore we focus on the simplifying case where the number of primary infections that 

were generated by a given quarantined individual is independent of the number of 

primary infections from this individual that were avoided because of the use of 

quarantine. Mathematically, this implies that we can express the random variable, RI , in 

the form RI  RQI  W  where W is a nonnegative integer-valued random variable that is 

independent of RQI . Recall that RQI  (respectively, RI ) represents the number of primary 

infections generated by one individual that is (respectively, is not) placed into quarantine. 

Thus the random variable, W, represents the number of infections from one infected 

individual that are averted by putting that individual into quarantine (we note that this 

independence assumption will not hold in the mixture model of super spreaders that we 

describe at the end of Appendix 1; for such a model, a more general formula is needed – 

Madras et al. in prep.). Under this independence assumption, the variance of the total 

number of infections averted by quarantine (under the best-case scenario in which the 

probability of quarantine, q, is equal to one, and the initial number of infected individuals 

also equals one) is given by (Madras et al., in prep.) 

var D     I
2

(1  R I )3  
 QI

2

(1  (1   )R I )3

1  (1   )R I
1  R I

,    (S2.5) 
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where  I
2 and  are the variances of distributions,  QI

2 pI ( )  and  respectively. pQI ( )

From a one-tailed version of Chebeshev’s inequality we then know that there is at 

least an 80 percent chance that the actual outcome will lie below the mean, D  , plus two 

standard deviations. If we start the epidemic with a single infected individual and have 

perfect quarantine (q=1) this gives the upper bound as 

R I  (1   )R I
1  (1   )R I

1
1  R I

 2
 I

2

(1  R I )3  
 QI

2

(1  (1   )R I )3

1  (1   )R I
1  R I

.  (S2.6) 

The upper bound (S2.6) is very conservative, however, it is valid regardless of the 

probability distributions for RQI  and RI . This upper bound is plotted in Figure 3 of the 

text. 
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APPENDIX 3 – Stochastic Simulation Results: 

As a check on the robustness of the analytical results presented above, we 

conducted simulations of an individual-based stochastic SEIQJR model (see details 

below). Parameters needed to be chosen explicitly for these simulations, and therefore we 

have based our choices on available epidemiological data for SARS. We stress, however, 

that these simulations are meant for illustrative purposes only, and that the primary 

objective is to show that the analytical results derived from a branching process agree 

with a full stochastic simulation of the original model. We also used the simulations to 

examine how quarantine affects the duration of the epidemic. 

Figure S1a reveals that the results of the analytical calculations agree very well 

with these simulation results. The 80th-percentile upper bound obtained analytically 

(dashed curve) is extremely conservative as the value of R I  increases. This is revealed by 

the 95th-percentiles of averted cases from the simulations lying well below this 80th-

percentile upper bound. The duration of the epidemic as a function of R I  also follows a 

similar qualitative pattern as that of the number of infections averted (Figure S1b). Thus, 

the use of quarantine in addition to isolation does not appear to produce that much of an 

advantage in terms of shortening the epidemic duration unless the reproduction number in 

the presence of isolation, R I , is close to one (Figure S1b). When R I  is close to one, 

quarantine appears to dramatically reduce the probability of having very long epidemics. 

To obtain these results, we used a standard stochastic SIR-type model (26, 27), 

but with six classes; susceptible individuals (S), exposed (i.e., infected but asymptomatic; 

E), infected and symptomatic (I), quarantined (Q), isolated (J), and recovered and 

immune (R). The resulting SEIQJR model was then simulated with the rate of movement 
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of each individual in the population among these classes being characterized as a 

probability of movement per unit time. The transitions and their probabilities of 

occurrence are summarized in the following table. 

 TABLE S1: Summary of transitions in stochastic SEIQJR model 

Transition Description Rate

S→S-1 

E→E+1 

Infection transmitted βI 

E→E-1 

I→I+1 

Exposed individual becomes 

infectious 

κE 

I→I-1 

R→R+1 

Infectious individual recovers cI 

E→E-1 

Q→Q+1 

Exposed individual is quarantined γ1E 

I→I-1 

J→J+1 

Infectious individual is isolated γ2I 

Q→Q-1 

J→J+1 

Quarantined individual becomes 

infectious 

σQ 

J→J-1 

R→R+1 

Isolated individual recovers cJ 

 

Parameters used in the figures are based on SARS epidemiological data for illustrative 

purposes. The data are summarized in the following table: 
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TABLE S2: Parameters used in the stochastic simulations 

Parameter Symbol Value Comments

Population size S+E+I+Q+J+R 4 million Estimate of Greater Toronto Area 

(an example city). 

Latent period 1/κ 6.4 days* Donnelly et al. (28); Chan-Yeung & 

Xu (3). 

Infectious period 1/c 8 days Estimate (many sources assume no 

more than 10 days). 

Time to 

quarantine 

1/γ1 5 days** Estimate (but assumed longer than 

1/γ2). 

Time to isolation 1/γ2 various The time to isolation is varied to 

explore a range of R I  from 0.01 to 

0.99. 

Transmission 

rate 

β 0.375 

days-1

This corresponds to a value of R  in 

the absence of all control measures 

of 3.0 (see refs. (13, 14, 29-32)).  

*   κ set to zero when modelling “perfect quarantine”. 

** γ1 set to zero when modelling “no quarantine”, and set to κ when modelling “50% chance of escaping 

quarantine” so that an individual spends an average of 6.4 days in the E class and exits with equal 

probability to either the I class or the Q class. 

 

For initial conditions containing at least one in the E or I class, the time to the next event 

for a single individual is computed as tnext   ln U0
1  , where U  is a uniform random 0

1
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variate in the interval (0,1) and Σ is the sum of the rates in Table S1. Then, to determine 

which event has occurred another U  is computed. By simple scaling, the rate (ρ0
1

i) 

corresponding to the ith process in Table S1 occupies a unique segment of length ρi/Σ on 

the real line in the interval (0,1). Therefore, by computing anotherU  and calculating 

which process segment it corresponds to, we ensure that the transitions in Table S1 occur 

with the correct probability. The population classes (S,E,I,Q,J & R) are updated, as is 

time, and the process is repeated until there is no more infection or potential infection in 

the population. The number of infections that occurred and the duration of the outbreak 

are recorded.  

0
1

 

Legend for Figure S1. Results from the stochastic simulations. (a) Number of infections 

averted by perfect quarantine (i.e.,  and q = 1). Solid and dashed lines are the 

expected number averted and the 80

1

th-percentile upper bound from analytical 

calculations. Calculation assumes that  and that the distribution of infections 

produced by a single individual in the absence of quarantine, 

QI
2

I
2

pI ( ) , is Poisson (and hence 

 I
2  R I ). Dots are simulation results for the average number of infections averted (from 

10,000 replicate runs of the simulation). Black bars indicate the 95th-percentile of the 

number of infections averted in the simulations for the three values R I  0.2, R I  0.5 

and R I  0.8. (b) Average length of epidemic (in days) from stochastic simulations for 

different degrees of quarantine effectiveness (as measured by the product, q ).  
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APPENDIX 4 – Data analysis for : 

The data used in Table 1 were based on the estimates from Table 3.1 of Anderson and 

May (23). We took the average value of the endpoints of the ranges given in Table 3.1 of 

Anderson and May (23) to obtain single estimates of each. We then estimated the 

proportion of infections that are generated by asymptomatic individuals for each disease 

as follows: (i) we calculated the number of days of asymptomatic infectiousness from this 

data by subtracting the latent period from the incubation period. (ii) we calculated the 

proportion of infective days that are asymptomatic by dividing the result from (i) by the 

infectiousness period. Instances where the result was negative imply that symptoms 

appear before an individual is infectious and therefore we set the result equal to zero. For 

Hepatitis B and Smallpox the result was greater than one. This occurred because the 

variability of incubation times (as indicated by the size of the range in Table 3.1 of 

Anderson and May (23)) was quite large relative to that of the infectious period. In these 

cases we set the value equal to one. These results are conditional on symptoms eventually 

developing, but there are some infections (e.g., Polio) for which a many infections never 

result in the display of symptoms. This latter effect is incorporated into the estimates by 

calculating the overall value of  as  

where  is the probability that an infection eventually results in the display 

of symptoms, and  is the estimate obtained above (which is conditional on 

symptoms eventually developing). For smallpox and hepatitis B the value of  was 

essentially one and therefore data for  for these diseases was not required. 

Data for  for the remaining diseases was obtained as follows:  

 P symptoms symp 1 P symptoms   1

P symptoms  

 

 symp

 symp

P symptoms

P symptoms 
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• Influenza  (a consistent and reliable estimate could not be 

found in the literature, but 0.5 is representative of many expert opinions);  

P symptoms  0.5

• Diphtheria - a quantitative estimate could not be found, although asymptomatic 

transmission is known to be significant. Consequently we list it as unknown but 

likely relatively high;  

• Whooping cough  (J. Infectious Disease 170:873);  P symptoms 0.25

• Scarlet fever  

(

P symptoms 0.8

http://www.merck.com/mrkshared/mmanual/section13/chapter157/157a.jsp - 

accessed on September 5, 2005);  

• Poliomyelitis P  

(

symptoms 0.05

http://www.cdc.gov/nip/publications/pink/polio.pdf - accessed on September 5, 

2005);  

• Chicken pox  (a quantitative estimate could not be found but 

expert opinion suggests that it is quite high);  

P symptoms 0.9

• Measles  (P symptoms  1 http://www.cdc.gov/nip/publications/pink/meas.pdf - 

accessed on September 5, 2005);  

• Rubella  

(

P symptoms   0.5

http://www.cdc.gov/nip/publications/pink/rubella.pdf - accessed on September 5, 

2005);  

• Mumps  

(

P symptoms   0.8

http://www.cdc.gov/nip/publications/pink/mumps.pdf - accessed on September 5, 

2005). 

 13

http://www.merck.com/mrkshared/mmanual/section13/chapter157/157a.jsp
http://www.cdc.gov/nip/publications/pink/polio.pdf
http://www.cdc.gov/nip/publications/pink/meas.pdf
http://www.cdc.gov/nip/publications/pink/rubella.pdf
http://www.cdc.gov/nip/publications/pink/mumps.pdf

	APPENDIX 1 – General Results for Branching Processes:
	Transition
	Description
	Rate
	Parameter
	Symbol
	Value
	Comments

