
 

APPENDIX B 

In hierarchical Bayesian modeling, the parameters at the highest level of the model (β and 

ζ. in equation 8) are known as hyper-parameters and their prior distribution (π) is known as a 

hyper-prior. A common two step modeling strategy is to first fit a model with a non-informative 

hyper-prior, and second replace the non-informative hyper-prior with an informative hyper-prior. 

When fitting a hierarchical Poisson regression model, the first step can be carried out in R using 

code written by Christiansen and Morris (PRIMM - (1)). Here we show how to carry out the 

second step in WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs). 

In WinBUGS, Bayesian models are fit using Markov chain Monte Carlo methods with 

Gibbs sampling the default method (2). With a hierarchical model, Gibbs sampling alternates 

between sampling first from the conditional posterior distribution of the first level parameters 

given the data and the hyper-parameters, and then from the conditional posterior distribution of 

the hyper-parameters given the data and sampled values of the first level parameters (3). After 

repeating this cycle many times, the sampling process converges to the joint posterior 

distribution for both first level and hyper- parameters and subsequent cycles produce a Monte 

Carlo sample from this distribution. Posterior summaries such as the posterior mean and credible 

interval can be approximated by the corresponding quantities of this Monte Carlo sample. 

 

WINBUGS WITH A NON-INFORMATIVE PRIOR 

 

We first re-fit Christiansen and Morris’ hierarchical Poisson regression model with our 

prior covariate structure to the data in Appendix A using WinBUGS (Figure B1). Our prior 

structure implies a log-linear model for the expected mortality rate with an intercept (β1) and 
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terms for age (β2), sex (β3), Maori ethnicity (β4), Pacific Island ethnicity (β5), educational score 

(β6) and interactions terms for age and ethnicity (β7 and β8), education and ethnicity (β9 and β10), 

and age and education (β11). The data are coded as in Appendix A, except that both age and 

educational score are centered at values of 50. Centering covariates re-defines the baseline 

subgroup and a sensible choice of baseline subgroup makes it easier to elicit prior distributions 

for covariate parameters. Centering covariates can also reduce correlation between covariate 

parameters so that the Gibbs sampling process converges to the joint posterior distribution in 

fewer cycles. 

The non-informative prior in Christiansen and Morris’ model consists of a flat uniform 

distribution for each β parameter and a ‘uniform shrinkage prior’ for ζ and these distributions are 

assumed independent. In WinBUGS, each flat uniform prior is represented by a normal 

distribution with zero mean and infinite variance. As before, we set d0, the median of our prior 

distribution for ζ, at 10 as a measure of confidence in our prior structure. 

Fitting the model also requires initial values with which to start the Gibbs sampling 

process. We use an R add-on package, R2WinBUGS 

(http://www.stat.columbia.edu/~gelman/bugsR) (4), to pass initial values and data to WinBUGS 

and then to process the resulting Monte Carlo sample. We run 7 parallel Markov chains in 

WinBUGS, each of length 11,000 cycles. We discard the first 1000 cycles of each chain, to allow 

the sampling process to converge to the joint posterior distribution. Gelman-Rubin convergence 

statistics close to one for each parameter indicate that the chains probably converge to the 

posterior during the first 1000 cycles (3). To reduce autocorrelation in the posterior sample we 

then thin the chains, retaining only every 7th value. This gives a posterior sample of 10,000.  
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WINBUGS WITH AN INFORMATIVE PRIOR 

 

An informative hyper-prior could reflect background knowledge about covariates such as 

that women have a lower rate of mortality than men, and that the rate of mortality increase with 

age and with lower socio-economic status (5). In addition, research in New Zealand has 

consistently found a higher rate of mortality in both Maori and Pacific Island minorities than in 

the nMnPI majority (6). 

Prior information typically comes from studies where rate ratios are reported.  So it is 

convenient to give prior information in terms of percentiles for a distribution of rate ratios and 

then transform this information to an appropriate distribution for β. For convenience we 

transform percentile information to independent normal distributions for each of the β 

parameters, except we transform to a log normal distribution for β2 so that the parameter for age 

is always positive. 

 Our baseline subgroup, to which all other subgroups are compared, is the 50 year old 

male from the nMnPI majority with a median level of educational achievement. This baseline 

group is determined by the way data are coded in Appendix A and by centering both age and 

educational score at 50. Mortality rates are available from previous censuses subdivided by 

ethnicity, age and sex but not further subdivided by educational achievement. We consider that 

the mortality rate in our baseline group will be between 400 and 700 deaths per annum per 

100,000 with 80% confidence, and that rates outside this interval are just as likely to be high as 

low. By reversing the usual steps for interval estimation, this interval [Lk,Uk] transforms to a 

normal distribution for βk with mean µk and standard deviation τk (7): 
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 ( )( )21.ln kkk UL=µ , (B1) 

 ( ) zLU kkk 2ln=τ , (B2) 

where z is the standard normal deviate for a two sided confidence interval (ie 1.28, 1.64 or 1.96 

for 80%, 90% or 95% confidence respectively). In the same way, we specify rate ratio intervals 

for female, Maori and Pacific Island subgroups and per 10 unit increase in the educational score 

and transform these intervals to appropriate normal priors (Table B1). 

For age, we consider a negative effect or no effect as biologically implausible. We 

therefore represent our prior expectation with a log normal distribution. We set our prior median 

rate ratio at a 7% increase. An increase of 10% or more per year of age implies a doubling or 

more of the mortality rate with every 10 years of age and we consider this unlikely with a 

probability of only 0.10. These considerations lead to a normal prior for log β2 with mean 

 and standard deviation (( 07.1lnln2 =µ )) ( )( )[ ] z22 1.1lnln µτ −= where z = 1.28. These prior 

considerations could be improved by carefully studying life tables. 

Parameters associated with covariate interactions have a more complex interpretation. 

These β parameters represent the extent to which a rate ratio for one variable is modified by a 

second variable, when all other variables are set to zero. Our prior expectation was that these 

interactions would not be large but otherwise we were quite uncertain about the magnitude or 

direction of these effects. Consequently we specify standard normal priors for all interaction 

hyper-parameters. This implies a prior probability of 0.025 for an interaction rate ratio either 

above 7.1 or below 0.14. Interaction effects of this magnitude would be surprising. 

We fit a model with an informative prior by replacing the last section of code in Figure 

B1 (the k loop) with the code in Figure B2. We then repeat the Gibbs sampling process described 

in the previous section. 
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RESULTS 

 

With a non-informative prior, contour plots of the posterior mortality rate appear 

identical whether the model is fit in PRIMM (Figure 5 in the main text) or in WinBUGS (Figure 

B3). Even the informative prior leads to apparently identical plots (Figure B4). The informative 

prior has little influence on estimates of the effect of education on mortality (Table B2). This 

suggests that the data are still far more informative than this prior. Certainly the informative prior 

does not weaken our view that the protective effect of education differs between ethnic groups. 
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TABLE B1. Prior assumptions and implied prior distributions for covariate hyper-parameters. 

Hyper-parameter Prior Assumption* Implied prior* 

Intercept p(4.E-3 < exp(β1) < 7.E-3) = 0.80 β1 ~ normal [-5.24, 0.222] 

Age (per year) median exp(exp(β2)) = 1.07 and 

p(exp(exp(β2)) > 1.10) = 0.10 

log β2 ~ normal [-2.69, 0.272] 

Female p(0.50 < exp(β3) < 0.75) = 0.80 β3 ~ normal [-0.49, 0.162] 

Maori p(2 < exp(β4) < 3) = 0.80 β4 ~ normal [0.90, 0.162] 

Pacific Island p(1.5 < exp(β5) < 2) = 0.80 β5 ~ normal [0.55, 0.112] 

Educational score p(0.80 < exp(10.β6) < 0.95) = 0.60 β6 ~ normal [-0.014, 0.0102] 

Interactions Uncertain but unlikely to be large β7, β8, β9, β10, and β11 ~ normal [0, 1] 

* p( ), probability; x ~ D[a,b], x distributed D with mean a and variance b. 
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TABLE B2. Mortality rate for male and female 50 year olds with an educational score of zero as 

a multiple of their mortality rate with a score of 100, New Zealand, 1996-1999: comparison of 

results for models fit in PRIMM and in WinBUGS. 

 PRIMM WinBUGS 

   Non-informative prior Informative prior 

Ethnic group MRR* 95% CI* MRR* 95% CI* MRR* 95% CI* 

nMnPI* 2.35 1.95, 2.83 2.35 1.94, 2.81 2.38 1.97, 2.88 

Maori 1.54 1.19, 2.00 1.54 1.19, 2.02 1.56 1.20, 2.03 

Pacific Island 1.37 0.96, 1.95 1.37 0.97, 1.97 1.39 0.98, 2.00 

* nMnPI, the non-Maori non-Pacific Island majority; MRR, mortality rate ratio; CI, credible or 

confidence interval. 
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FIGURE B1. WinBUGS code for fitting Christiansen and Morris’ hierarchical Poisson 

regression model with a non-informative prior. 

FIGURE B2. WinBUGS code for our informative prior for covariate hyper-parameters. 

FIGURE B3. Posterior point estimate contours (as in Figure 5 in the main text) for the 

WinBUGS model with the non-informative prior, New Zealand, 1996-1999 (nMnPI – non-Maori 

non-Pacific Island majority). 

FIGURE B4. Posterior point estimate contours (as in Figure 5 in the main text) for the 

WinBUGS model with the informative prior, New Zealand, 1996-1999 (nMnPI – non-Maori 

non-Pacific Island majority). 

9 



 

# WinBUGS code for hierarchical Poisson regression model with non- 
# informative prior (Christiansen and Morris JASA 1997 92:618-632). 
# 
# Using the variable names and coding of the data in Appendix A: 
# I = 240 is the number of cells; Deaths = Mortality x Risk is 
# the number of deaths in a cell; Age and Educational score are both 
# centered at 50 so that AgeCen = Age + 2.5 – 50 and EdCen = Ed – 50. 
# Note WinBUGS parameterizes the gamma distribution (a,b) such that 
# the gamma mean is a/b and variance is a/b**2. 
 
model { 

for (i in 1:I){ 
Deaths[i] ~ dpois(theta[i]) 
theta[i] <- lambda[i]*Risk[i] 
lambda[i] ~ dgamma(a[i],b[i]) 
a[i] <- zeta 
b[i] <- zeta/mu[i] 
mu[i] <- exp( beta[1] + beta[2]*AgeCen[i] + beta[3]*F[i] + 

beta[4]*M[i] + beta[5]*P[i] + beta[6]*EdCen[i] + 
beta[7]*AgeCen[i]*M[i] + beta[8]*AgeCen[i]*P[i] + 
beta[9]*EdCen[i]*M[i] + beta[10]*EdCen[i]*P[i] + 
beta[11]*AgeEd[i] )  

AgeEd[i] <- AgeCen[i]*EdCen[i] 
} 

 
# Specify the uniform shrinkage prior for zeta via a uniform prior 
# for shrink0 and then use the relationship between shrink0 and zeta 
# (equation 11) to obtain zeta. Median for zeta set to 10. 
 

shrink0 ~ dunif(0, 1) 
zeta <- 10*shrink0 / (1-shrink0) 

 
# Specify uninformative priors for the beta hyper-parameters using 
# normal distributions with large variance. Note WinBUGS parameterizes 
# the normal distribution as a mean and precision where the precision 
# is the reciprocal of the variance. 
 

for ( k in 1:11) { 
beta[k] ~ dnorm(0.0, 1.0E-6) 
} 

} 
 

# 

FIGURE B1. WinBUGS code for fitting Christiansen and Morris’ hierarchical Poisson 

regression model with a non-informative prior. 
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# Informative prior given in Table B1 for the beta hyper-parameters. 
 

beta[1] ~ dnorm(-5.24,21.0)  #intercept 
beta[2] ~ dlnorm(-2.69,14.0) #age 
beta[3] ~ dnorm(-0.49,40.0)  #female 
beta[4] ~ dnorm(0.90,40.0)  #Maori 
beta[5] ~ dnorm(0.55,79.4)  #Pacific Island 
beta[6] ~ dnorm(-0.014,9590) #educational score 

 
# Use standard normal prior for all interactions.  
 

for ( k in 7:11) { 
beta[k] ~ dnorm(0.0, 1.0) 
} 

} 
 

# 

FIGURE B2. WinBUGS code for our informative prior for covariate hyper-parameters. 
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