SUBCUTANEOUS FATNESS AND MORTALITY

By

GEORGE W. COMSTOCK, MILDRED A. KENDRICK, and VERNA T. LIVESAY

(Received for publication September 20, 1965)

Obesity is so commonly associated with excess mortality in the minds of most physicians that it hardly seems surprising to find in a recent Index Medicus that the topic "obesity" is immediately followed by "obituaries". This association, which is not as solidly established as its general acceptance might indicate, stems largely from a long and impressive series of studies by life insurance companies (1, 2, 3). Throughout this vast experience, the attribute of overweight was found to be strongly associated with excess mortality. But obesity is not the only cause of increased weight relative to height or body frame, and the correlation between obesity and excess weight is far from perfect, the correlation coefficient being of the order of 0.7 (4, 5). Thus it is clearly possible that fatness may or may not be the component of overweight responsible for its association with excess mortality.

The evidence incriminating obesity is largely indirect, and to a considerable extent is based on observations involving change in weight. In the life insurance studies, it was found that overweight persons who achieved a normal weight did not experience excess mortality. And a study of U.S. Army officers indicated that there was an increased risk of disability and death, mainly from cardiovascular-renal diseases of a degenerative type, associated with weight gain during adult life (6). In both situations, it seems likely that change in weight was caused by changes in body fat. Although a more recent study failed to confirm the pattern of excess deaths among overweight persons (7), this observation does not absolve fatness, for the population under study consisted of California longshoremen, whose work may well be suffici-
ently strenuous that their excess weight does not result from obesity.

Direct evidence on the relationship of obesity to mortality would obviously be highly desirable. Unfortunately, the measurement of total body fat is a difficult procedure and not yet adapted for studies of large populations. Most investigators have had to base their estimates of obesity on subcutaneous fat, measured either by skinfold calipers or from roentgenograms (8). The latter method was employed in the present study to classify a general population of more than 24,000 persons by degree of subcutaneous fatness, and to relate this characteristic to mortality during a subsequent period of nearly 15 years.

Materials and methods

In May and June, 1946, a community-wide survey was conducted in Muscogee County, Georgia for the purpose of detecting cases of syphilis and tuberculosis. Following this, on September 1, 1946, a census of the county was conducted (9). Matching the records from the survey and census showed that about half of the census population 15 years of age or older had received 70 millimeter chest photofluorograms during the survey.

In 1961, these photofluorograms were used for measurements of the combined skin and subcutaneous fat layers over the chest wall (10). The image of the film, enlarged to full size, was projected on a white cardboard screen in a darkened room. It was identified only by number. Four sites were selected for measurement—two "flank sites" at the level of the costo-phrenic angles, and two "trapezius sites" at the midpoints of the trapezius ridges. All measurements, except for a few hundred by one of the authors (GWC), were made by clerks after a short training period. A series of 100 consecutive photofluorograms was used for determinations of the degree of precision attained by the readers. Comparisons of results obtained by different readers initially and during the period of measuring photofluorograms showed a high degree of agreement, both with their own readings and those of others. For example, the readings of a clerk who made about half of the measurements for this study were compared at the end of initial training and after several weeks of experience. The average deviation between the two sets of readings of the 100 consecutive films was 0.1 millimeter with a standard error of 1.2 millimeters. Comparisons of the 100 films by this clerk with those of the clerk who made the next largest number of readings, both after several weeks of experience, showed an average deviation of 0.2 millimeter with a standard error of 0.7 millimeter. In both instances, there was only a slight tendency for the deviations to increase as the thickness of the fat layer increased.

Because subcutaneous fat shadows were more often measurable at the trapezius site than at the flank site, and because measurements at the two sites were highly correlated, estimates of subcutaneous fat for this study were restricted to the trapezius site (10). In almost all instances, the fat layer measurement used in this study is the average of the right and left sites: when only one site could be measured, that measurement alone was used.

Not all of the original survey photofluorograms could be measured. Several rolls had deteriorated with age to the extent that they were unreadable. Improper exposure or positioning of the subjects was also an important source
of loss, as was the inability to read the identification number on the film. Fortunately, these losses appeared to affect the surveyed population haphazardly. Of greater concern were the persons whose subcutaneous fat layers could not be measured because the external borders of the chest wall fell outside the limits of the fluorescent screen. Persons with very large bony chests are not represented in this study, nor are those with bony chests of average size but with extremely thick soft tissue. Some persons were also excluded for reasons not directly associated with this phase of the study, namely because measurements of the heart or bony thorax could not be made.

Finally, the study population was restricted to persons over 15 years of age in 1946. Of the 69,651 persons over this age and enumerated in the census, 24,390 or 35 per cent had satisfactory measurements of both the subcutaneous fat layer at the trapezius site and the bony thorax. The proportion of the total population included in the study varied with race, sex and age (10). Negroes were better represented than whites, and females better than males. Adolescents and persons of middle age were more likely to have been examined than young adults or the elderly.

Death certificates for all persons dying in Muscogee County from 1946 through 1960 and for Muscogee County residents dying elsewhere in Georgia have been matched against the combined census-survey records, thus identifying residents with measured photofluorograms who died within the state. Causes of deaths occurring from 1946 through 1949 had been coded by one of the authors (MAK) in 1949 according to the 5th Revision of the International Lists of Diseases and Causes of Death. Later deaths were coded by the Georgia Department of Public Health according to the 6th and 7th Revisions. For deaths of Muscogee County residents occurring outside the state, a punched card was returned to the county in lieu of the death certificate. Although the identification data on the card was less extensive than that on the certificate, most out-of-state deaths of Muscogee County residents occurred in Russell County, Alabama, where the Health Department files contained the missing information. Certificates were not obtained for the remaining deaths but the matching failures resulting from this omission have been too few to be important.

The examined resident population decreased during the study period not only because of deaths but also because of removals from the county. To estimate losses from emigration, the residence status of a 2 per cent sample of the population was investigated in 1954 (11) and again in 1961. Because of the small numbers of older people in the original sample, the 1961 sample was expanded by adding 236 persons who were more than 55 years of age in 1946. They were selected systematically to provide approximately 60 persons of each race and sex, divided equally between the 3 categories of subcutaneous fatness.

RESULTS

During the observation period of 14½ years, it is estimated that almost a third of the study population moved away. The pattern of emigration is summarized in table 1. For each race, approximately the same proportion of males and females left the county. Losses were greater for whites than for Negroes, and considerably greater for young adults than for older persons. The excess emi-
SUBCUTANEOUS FATNESS AND MORTALITY

The estimated mid-point population is shown in table 2, adjusted for known deaths and estimated losses from emigration. In spite of the fact that the initial population comprised more than 24,000 persons, numbers in some of the individual cells are small. To some extent, these small numbers are offset by a relatively long period of observation. For example, although there were only 27 Negro males in the oldest and fattest group at the mid-point date, these men represented an experience of nearly 400 person-years.

The overall relationship of subsequent mortality to fatness over the trapezius ridge in 1946 is shown in table 3 and figure 1. The mortality ratios have not only been adjusted for population losses, but also for differences in race, sex and age composition of the three fatness groups. As indicated in table 3, the mortality experience of each group regardless of fatness is accepted as the standard rate. This is applied to the estimated mid-point population for each fatness category to give expected numbers of death if fatness were not associated with mortality. The ratio of observed-to-expected deaths for each fatness group, expressed as a percentage, is the mortality ratio used throughout this paper. Percentages above 100 thus signify an excess of observed over expected deaths. Mortality from all causes was lowest in the group with a trapezius fat layer of 5-to-9 millimeters, slightly

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Number in sample</th>
<th>Per cent moved out of county*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>700</td>
<td>30</td>
</tr>
<tr>
<td>Race-Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White males</td>
<td>155</td>
<td>32</td>
</tr>
<tr>
<td>White females</td>
<td>241</td>
<td>35</td>
</tr>
<tr>
<td>Negro males</td>
<td>127</td>
<td>23</td>
</tr>
<tr>
<td>Negro females</td>
<td>177</td>
<td>26</td>
</tr>
<tr>
<td>Age in 1946</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-34</td>
<td>262</td>
<td>38</td>
</tr>
<tr>
<td>35-54</td>
<td>168</td>
<td>22</td>
</tr>
<tr>
<td>55+</td>
<td>270</td>
<td>12</td>
</tr>
<tr>
<td>Trapezius fat thick.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-4 mm.</td>
<td>235</td>
<td>35</td>
</tr>
<tr>
<td>5-9 mm.</td>
<td>296</td>
<td>30</td>
</tr>
<tr>
<td>10+ mm.</td>
<td>169</td>
<td>20</td>
</tr>
</tbody>
</table>

* Percentages adjusted to race-sex-age composition of examined population.

Table 2

<table>
<thead>
<tr>
<th>Age in 1946</th>
<th>Trapezius fat thickness in mm.</th>
<th>White females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>0-4</td>
</tr>
<tr>
<td>Total</td>
<td>4756</td>
<td>1981</td>
</tr>
<tr>
<td>15-34</td>
<td>2330</td>
<td>1221</td>
</tr>
<tr>
<td>35-54</td>
<td>1944</td>
<td>673</td>
</tr>
<tr>
<td>55+</td>
<td>482</td>
<td>157</td>
</tr>
<tr>
<td>Total</td>
<td>3060</td>
<td>1648</td>
</tr>
<tr>
<td>15-34</td>
<td>1583</td>
<td>973</td>
</tr>
<tr>
<td>35-54</td>
<td>1229</td>
<td>561</td>
</tr>
<tr>
<td>55+</td>
<td>248</td>
<td>114</td>
</tr>
</tbody>
</table>

Emigration between September 1, 1946 and July 1, 1961 in a sample of the study population by race, sex, age and subcutaneous fatness in 1946.

Table 1

Am J Epidemiol 2008;168:778–793
Table 3

Standardized mortality ratios for selected causes of death, by thickness of subcutaneous fat in 1946*

<table>
<thead>
<tr>
<th>Cause of death</th>
<th>International classification code numbers†</th>
<th>Total</th>
<th>0-4</th>
<th>5-9</th>
<th>10+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
<td>98</td>
<td>96</td>
<td>112</td>
</tr>
<tr>
<td>Cardiovascular-renal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>420</td>
<td>100</td>
<td>91</td>
<td>97</td>
<td>118</td>
</tr>
<tr>
<td>Strokes</td>
<td>330–334</td>
<td>100</td>
<td>91</td>
<td>89</td>
<td>137</td>
</tr>
<tr>
<td>Hypertension</td>
<td>440–447</td>
<td>100</td>
<td>94</td>
<td>97</td>
<td>114</td>
</tr>
<tr>
<td>Other</td>
<td>400–416, 421–434, 450–468, 592–594</td>
<td>100</td>
<td>98</td>
<td>95</td>
<td>113</td>
</tr>
<tr>
<td>Diabetes</td>
<td>260</td>
<td>100</td>
<td>83</td>
<td>113</td>
<td>98</td>
</tr>
<tr>
<td>Accidents</td>
<td>800–962</td>
<td>100</td>
<td>55</td>
<td>92</td>
<td>162</td>
</tr>
<tr>
<td>Cancer</td>
<td>140–203</td>
<td>100</td>
<td>82</td>
<td>106</td>
<td>126</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>001–019</td>
<td>100</td>
<td>106</td>
<td>93</td>
<td>108</td>
</tr>
<tr>
<td>Other respiratory diseases</td>
<td>241, 480–493, 502, 525–527</td>
<td>100</td>
<td>174</td>
<td>70</td>
<td>28</td>
</tr>
</tbody>
</table>

* Standardized for race, sex and age in 1946.
† International Lists of Diseases and Causes of Death, Sixth Revision.

Figure 1. Standardized mortality ratios and numbers of deaths for selected causes of death, by thickness of subcutaneous fat in 1946.
higher in persons with a fat layer less than 5 millimeters thick, and about 12 per cent higher in persons with 10 or more millimeters of subcutaneous fat.

The association of mortality with fatness was somewhat more marked for deaths ascribed to the group of cardiovascular-renal diseases. An even more marked correlation was found for coronary heart disease, the mortality ratio for the fattest group being about 40 per cent higher than for the other two groups combined. Excess mortality from strokes and hypertension among fat persons was similar and less marked than for coronary heart disease. For all of these major cardiovascular causes—coronary heart disease, strokes, and hypertension—there was little difference in the mortality ratios for persons with 5-to-9 millimeters of subcutaneous fat and those with less than 5 millimeters. Only the fattest groups showed a significant increase in mortality. The residual cardiovascular-renal causes of death did not show the same relationship with fatness: for this group, the highest mortality ratio was noted among persons with intermediate fatness. The importance of this observation is obscured by the mixture of diagnoses lumped together in this category.

The most marked positive correlation with fatness was noted for diabetes deaths, the mortality ratio for the fattest group being almost three times that for the leanest. Accidental deaths were also associated with degree of fatness. The association was not as marked as for diabetes or coronary heart disease, but more marked than for any other major cause.

A negative association with subcutaneous fatness was found for only two categories—tuberculosis, and a group of other respiratory diseases which included asthma, chronic bronchitis, emphysema, influenza and pneumonia. For tuberculosis, the trend of the mortality ratios was striking, being nearly seven times higher in the thinnest group than in the fattest. The group of other respiratory diseases showed a definite negative association but not nearly so marked as that for tuberculosis.

No trend was noted for cancer deaths nor for the residual category of all other diseases. In both, the mortality ratios were slightly lower for persons of intermediate fatness and almost the same for the thinnest and fattest groups.

Among the various race-sex-age groups, there was considerable variation in the relationship of fatness to mortality. The ratios for all causes of death are shown in Table 4 and Figure 2. The most marked association of fatness with excess mortality occurred among young adult white males. The correlation was much less marked for those of middle age, while for white males over the age of 55 years, the thinnest persons had a slightly (but not significantly) worse prognosis than the others. The situation for white females was different. For the youngest group, persons of intermediate fatness experience the lowest mortality. For white females past the age of 35, mortality was greatest among women with the most subcutaneous fat. Among Negroes, the association of fatness with mortality was irregular among the various sub-groups. For young females and older males, mortality was somewhat excessive among fatter persons. For middle-aged Negroes of both sexes, total mortality was lowest in the group of intermediate fatness.

Mortality ratios for all cardiovascular-renal causes, shown in Table 4 and Figure 3, exhibited a somewhat similar pattern to that observed for all causes.
Table 4
Mortality ratios for selected causes of death by race, sex, age and thickness of subcutaneous fat in 1948

<table>
<thead>
<tr>
<th>Age in 1946</th>
<th>White males</th>
<th>White females</th>
<th>Negro males</th>
<th>Negro females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-4</td>
<td>5-9</td>
<td>10+</td>
<td>0-4</td>
</tr>
<tr>
<td>Total*</td>
<td>95</td>
<td>99</td>
<td>113</td>
<td>104</td>
</tr>
<tr>
<td>15-34</td>
<td>61</td>
<td>132</td>
<td>188</td>
<td>135</td>
</tr>
<tr>
<td>35-54</td>
<td>98</td>
<td>97</td>
<td>121</td>
<td>89</td>
</tr>
<tr>
<td>55+</td>
<td>108</td>
<td>95</td>
<td>96</td>
<td>94</td>
</tr>
<tr>
<td>All Causes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total*</td>
<td>92</td>
<td>102</td>
<td>111</td>
<td>102</td>
</tr>
<tr>
<td>15-34</td>
<td>48</td>
<td>129</td>
<td>286</td>
<td>143</td>
</tr>
<tr>
<td>35-54</td>
<td>90</td>
<td>99</td>
<td>120</td>
<td>69</td>
</tr>
<tr>
<td>55+</td>
<td>99</td>
<td>103</td>
<td>93</td>
<td>116</td>
</tr>
<tr>
<td>All Cardiovascular-Renal Causes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total*</td>
<td>95</td>
<td>93</td>
<td>131</td>
<td>71</td>
</tr>
<tr>
<td>15-34</td>
<td>38</td>
<td>128</td>
<td>349</td>
<td>—†</td>
</tr>
<tr>
<td>35-54</td>
<td>99</td>
<td>87</td>
<td>141</td>
<td>47</td>
</tr>
<tr>
<td>55+</td>
<td>102</td>
<td>99</td>
<td>99</td>
<td>98</td>
</tr>
<tr>
<td>Coronary Heart Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total*</td>
<td>89</td>
<td>117</td>
<td>67</td>
<td>130</td>
</tr>
<tr>
<td>15-34</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>35-54</td>
<td>71</td>
<td>123</td>
<td>75</td>
<td>65</td>
</tr>
<tr>
<td>55+</td>
<td>104</td>
<td>110</td>
<td>61</td>
<td>163</td>
</tr>
<tr>
<td>Strokes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total*</td>
<td>100</td>
<td>93</td>
<td>123</td>
<td>109</td>
</tr>
<tr>
<td>15-34</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>35-54</td>
<td>118</td>
<td>85</td>
<td>112</td>
<td>114</td>
</tr>
<tr>
<td>55+</td>
<td>105</td>
<td>92</td>
<td>115</td>
<td>79</td>
</tr>
</tbody>
</table>

* Adjusted for age.
† — Signifies less than 10 deaths for age-group.
of death, but in almost all race-sex-age groups the association with fatness was more marked. The only exceptions to the general pattern of greatest mortality among fattest persons occurring among old white males, and middle-aged Negroes of both sexes.

For coronary heart disease, the association of fatness with mortality was even more marked than for all cardiovascular-renal causes combined. However, as can be seen in table 4 and figure 4, the numbers of deaths were small in all subdivisions except for white males over the age of 35. Perhaps the most striking finding was the continued absence of an association of mortality with fatness among the oldest white males.

Mortality ratios for strokes are shown in table 4 and figure 5. Although there was a somewhat increased risk for the fattest people when all race-sex-age groups were combined, the pattern for individual subgroups showed no consistency.

Cancer mortality ratios are given in table 4 also, and illustrated in figure 6. In only one of the race-sex-age groups was mortality greatest among persons with intermediate fatness, but no other consistent pattern could be noted.

Deaths from other individual causes were too few to warrant examination by race, sex and age. For tuberculosis and diabetes, the patterns revealed by the experience of the total study group were found with considerable consistency in the subdivisions in spite of the small numbers. For other respiratory diseases and accidents, the mortality ratios by race, sex and age showed generally the same pattern as observed for the total group, but less consistently than for
Figure 3. Mortality ratios and numbers of deaths for all cardiovascular-renal causes of death, by race, sex, age and thickness of subcutaneous fat in 1946.

Figure 4. Mortality ratios and numbers of deaths for coronary heart disease, by race, sex, age and thickness of subcutaneous fat in 1946.
Figure 5. Mortality ratios and numbers of deaths for strokes, by race, sex, age and thickness of subcutaneous fat in 1946.

Figure 6. Mortality ratios and numbers of deaths for cancer, by race, sex, age and thickness of subcutaneous fat in 1946.
tuberculosis and diabetes. Although there were only 18 deaths ascribed to hypertension in the youngest age group, these were heavily concentrated among the fattest persons. At other ages, fatness and hypertensive deaths did not appear to be associated.

Discussion

In assessing the significance of these results, a fundamental consideration is the extent to which subcutaneous fat over the trapezius ridge is a meaningful parameter of obesity. Information on this point is still incomplete. Garn made fat measurements at 12 different subcutaneous sites on 100 young adult white males (12). Of the various sites, those over the pelvis were the best predictors of subcutaneous fatness in general and also of body weight, but the lower lateral thoracic site was almost as satisfactory. In the present study, a high correlation was noted between subcutaneous fat over the lower lateral thorax and over the trapezius ridge. Therefore, the latter may also be at least a fair index of subcutaneous fatness in general.

Although the proportion of subcutaneous to visceral fat is not necessarily constant between individuals nor at different ages, it has been reported that increased fatness with age is reflected in thicker skinfolds (13). And change in weight among adult males, while not correlated with skin-fold thickness over the forearm, was positively associated with subcutaneous fatness at three other sites—over the triceps muscle and at two thoracic areas (14). In addition, change in weight among a small group of females has been shown to be reflected in the thickness of subcutaneous fat in many areas of the body, including the trapezius ridge (15). On the basis of these limited observations, and on general grounds as well, it seems reasonable to accept subcutaneous fat over the trapezius ridge as an indicator of general obesity. Furthermore, and not unimportantly, it is a readily available index which can be obtained in a reproducible and unbiased manner (8, 10).

An unequivocal, though somewhat insensitive, index of the effect of fatness on health was afforded by total mortality. Although further analysis of specific causes of death is subject to many problems of diagnosis and nosology, these problems are probably less serious in Muscogee County than in many areas of the country. Columbus, the principal city of Muscogee County, has become a regional medical center of some importance in recent years. An indirect but perceptive clue to the high caliber of the community's medical resources is the fact that its major hospital has had a full complement of interns and residents during the last 10 years of the study period.

Even with satisfactory indices of attribute and effect, it is still necessary to be assured that ascertainment of the effect is not biased. In studies by the life insurance companies of the relationship of weight to mortality, reporting of deaths was almost certainly complete, and hence unbiased. For the present study population, complete reporting of mortality could safely be assumed only for those who remained in the county, making it necessary to obtain some measure of emigration and its relationship to fatness. Fortunately, one of the many studies conducted in this population had already ascertained the residence status of a two per cent sample (16). Contrary to initial expectations it was found that there was differential emigration and that fat persons were
more likely to remain in the county than lean persons. An indication that this finding is not unique is found in a recent case-control study of coronary heart disease in North Dakota (17). Among the controls who were 30 per cent or more overweight, 63 per cent were "stable" geographically and occupationally; only 44 per cent of lighter persons were so classified.

Consideration should also be given to survey participants who were excluded from this study. Persons whose films or identification numbers were not readable cause little concern. Their exclusion appears to have been haphazard and almost always unrelated to any parameter of body build. But in addition to a readable film and identification number, each member of this study population had to have measurements of the following: subcutaneous fat over at least one trapezius ridge, transverse diameters of the chest and heart, and the distance between the posterior portions of the first and tenth ribs. Very few persons were excluded because the last two measurements were lacking. Some were excluded because of severe spinal deformity, or technical failures, such as poor positioning. Many of the exclusions, however, appeared to be the result of bony thoraces so large or soft-tissue layers so thick that the outer margins of the chest extended past the limits of the fluorescent screen and hence were not visible on the film.

The exclusions should thus be weighted with unusually fat persons, and it would be anticipated that their experience might most closely resemble that of the fattest group among the measured population. This expectation was borne out. The emigration rate for persons excluded because of incomplete measurements was almost identical with that for the fattest group, and their total mortality was somewhat higher.

Some of the relationships of fatness to mortality might have resulted from the effect of disease upon fatness. The study population was not examined thoroughly to be certain that no manifest disease was present when the photofluorograms were taken. It is thus possible that the disease from which the person ultimately died might have influenced the degree of fatness directly, or indirectly through dietary or other therapeutic measures. Three factors tend to minimize these influences. The survey photofluorograms were made in May and early June of 1946, and the follow-up study of mortality did not start until the census date of September 1, 1946. To participate in the survey required that the person be ambulatory, thereby excluding most persons with serious illnesses at that time. Finally, the length of the follow-up period—more than 14 years—makes the effect of disease on fatness less important than it would be for a short-term observation period. Nevertheless, the association of tuberculosis with fatness was probably influenced to some extent by the presence of disease at the survey examination. In addition to its chronicity and its tendency to cause weight loss, most tuberculosis deaths, because of effective chemotherapy after 1949, occurred early in the follow-up period. The relationship of other causes of death to fatness was, in our opinion, little affected by disease conditions existing at the time of the survey examination.

Studies which may most reasonably be compared with the present one are those conducted among life insurance policy holders and among California longshoremen (1, 2, 3, 7). A major difference has been that these previous
studies have related mortality to over-

weight, and not to subcutaneous fatness.

Generally speaking, the life insurance

studies found a pattern of mortality

and relative weight very similar to that

found for fatness both for all causes and

for the major individual causes of death.

With the passage of time, the excessive

mortality among underweight persons

noted in the early studies has disap-

peared, apparently almost entirely the

result of the declining importance of tu-

berculosis as a cause of death. And

where the early study (1) showed

greater excess mortality among older

overweights, a recent life insurance

study (3) showed greater excess mor-

tality among younger overweight per-

sons.

For both of the preceding studies, age

groups were quite broad. An interme-

diate report (2) used finer age group-

ings, and showed that overweight white

males aged 50-to-64 years on entry had

a mortality experience which, while still

excessive compared with light persons,

was much less marked than that for

younger persons who were equally over-

weight. Furthermore, for this older

group, there was no increase in excess

mortality with increasing degree of

overweight. The absence of a gradient of

mortality with increasing overweight

for old white men is the only confirm-

ation among the life insurance studies

for the observation that there was no

excess mortality associated with fatness

among white males over the age of 55

years in Muscogee County. This finding

raises questions about the relationship

of obesity to mortality, and the possible

mechanisms that might be involved.

Among the California longshoremen

aged 45 years and over, there was also

no indication that mortality was re-

lated to overweight (7). Their occupa-

tion suggests regular strenuous physical

exertion, and it is possible that over-

weight in this group is not caused by

obesity. Another explanation might be

that physical exercise protects in some

way against the adverse effects ordinar-

ily associated with overweight. In the

present population, the proportion of

white males who were examined at their

place of employment increased with

age (9). But although it is possible

that physical exercise associated with

industrial employment may have had a

beneficial effect, it does not seem likely

to have been a major factor in the lack

of excess mortality among fat old white

men in Muscogee County.

A prospective study among male Civil

Service employees in California noted

similar associations of overweight with

incidence of coronary disease by age to

those noted in this study for subcutane-

ous fatness with mortality from coro-

nary heart disease (18). Below the age of

50 years, there was a marked increase

in the rate of new coronary heart dis-

ease with increasing weight; over this

age, the risk was very similar for all 3

weight groups, being slightly higher for

persons of intermediate weight. Even

when adjustments were made for dif-

ferences in blood pressure and serum

cholesterol, overweight was associated

with an increased risk of coronary dis-

ease for men under the age of 50 but not

for older men.

The fact that there are many similar-

ities in the patterns of mortality related

to subcutaneous fatness and to relative

weight does not signify that fatness is

necessarily the only component of over-

weight which bears directly or indirectly

on subsequent mortality. Overweight can

result from deviations from normal body

build other than the proportion of fat. The

relative importance of the fat and non-fat
factors contributing to overweight must be assessed from populations in which both factors can be measured. Unfortunately, because information on height and weight was not collected in this community survey, relative weights of the participants in the study are not known.

It was previously noted that the median thickness of fat showed little change after the age of 35 among men in Muscogee County whereas among females, fatness increased until the age of 50, and diminished thereafter. The patterns for whites and Negroes were similar (10). The question was raised whether differential mortality among fat and lean persons might explain this variation of subcutaneous fat with age. Among the youngest age groups, the death rates have been too low to have had much effect on survivorship even though rates among fat persons were relatively excessive. Among the oldest age groups, the death rates were clearly high enough to produce a marked effect upon the median thickness of subcutaneous fat, if there were appreciable differences in the mortality of fat and lean persons. For whites, this is a possible explanation for the pattern of fatness with age. Among old white males, fatness was not associated with excess mortality, and median fatness did not change with age. Among old white females, mortality was greater for the fattest group, and median fatness showed a marked decline with advancing age of the population. Unfortunately, the experience of the oldest Negroes does not fit this neat explanation. Males had excess mortality associated with fatness, but no decrease of fatness with age in the population, whereas females had no evidence of excess mortality associated with fatness, but did show a decrease in median fatness with advancing age very similar to that for white females. It is obvious, therefore, that excess mortality associated with fatness is not the only determinant of the prevalence of obesity in the older population.

The present study may also have an indirect bearing on the problem of smoking and health. An oft-heard reason for continuing to smoke cigarettes is the fear of gaining weight when smoking is discontinued, usually with the implication that the risk to life from obesity is equal to or greater than the risk from smoking. The available data do not bear this out. In a special report to the Surgeon General's Advisory Committee on Smoking and Health, Hammond reported mortality ratios for men over 40 years of age (19). The excess mortality associated with cigarette smoking was considerably greater than that associated with fatness in the present study for white males of similar age. The combined findings suggest that it is probably safer to reach for a sweet instead of a cigarette.

SUMMARY

Subcutaneous fat over the trapezius ridge was measured from the chest photofluorograms of 24,390 residents of Muscogee County, Georgia who had participated in a community survey for tuberculosis in 1946. The proportion of these persons remaining in the county was estimated by determining the residence status of a sample of the population. Mortality from 1946 to 1961 was ascertained by matching death certificates of Muscogee County residents with the records of persons examined in the survey.

Emigration was more marked for whites than for Negroes, similar for
males and females, and more marked for young than for old adults. Thin persons were more likely to move away than fat persons.

For all race-sex-age groups combined, mortality over a period of 14 1/2 years was about 12 per cent greater for the fattest persons. Mortality from diabetes was most strikingly associated with fatness, followed in order by coronary heart disease, accidents, strokes and hypertension. Tuberculosis and other respiratory diseases showed the opposite trend, thin persons having greater mortality than fat persons. No relationship with fatness was noted for cancer and the residual causes of death.

The association of fatness with mortality was not the same for all race-sex-age groups. Excessive mortality among fat persons was generally more marked for whites than for Negroes. A major exception was the experience of white males over the age of 55 among whom fatness was not associated with increased mortality.

REFERENCES

