Misclassification of exposure and surrogate endpoints of disease can obscure causal relations. Using data from the Atypical Squamous Cells of Undetermined Significance/Low-Grade Squamous Intraepithelial Lesion Triage Study (ALTS, 1997–2001), the authors explored the impact of exposure (human papillomavirus (HPV) detection) and endpoint (histologic cervical precancer) classification on their mutual association. Women referred into this study with an atypical squamous cells of undetermined significance Papanicolaou test with satisfactory results for all 4 HPV tests were included in this analysis (n = 3,215; 92.2%). HPV testing results were related to different definitions of cervical precancer, based on paired, worst 2-year histologic diagnoses, by calculating clinical sensitivity, specificity, and odds ratios. The authors found that HPV test sensitivity increased and specificity decreased with increasing certainty of cervical precancer, with HPV testing having the highest sensitivity (92%–98%) and lowest specificity (46%–54%) for consensus cervical intraepithelial neoplasia grade 3 (CIN 3). The overall accuracy of each HPV test, as measured by odds ratios, was greatest for consensus CIN-3 diagnoses, from 2- to 4-fold greater than for a less stringent precancer definition of any diagnosis of CIN 2 or more severe. In summary, there was convergence of greater certainty of carcinogenic HPV with greater certainty of a precancerous diagnosis, such that all 4 HPV tests almost always tested positive in women most likely to have cervical precancer. Finding increasingly strong associations when both test and diagnostic misclassification are reduced is a useful sign of “true association” in molecular epidemiology.

Editor’s note: An invited commentary on this article appears on page 164.
Cervical intraepithelial neoplasia grade 3 (CIN 3) and carcinoma in situ, based on the aforementioned study (5, 6), are inarguably precancerous diagnoses. Nonetheless, CIN 3 is an imperfect diagnosis of precancer and an intermediate surrogate for cancer because not all CIN 3 invades (5, 6), such lesions are occasionally caused by noncancerous HPV genotypes that are unlikely to invade (7), CIN 3 can be a false positive diagnosis (7), and the classification is not perfectly reproducible (8). CIN 2 is included in the definition of precancer for safety and is typically treated in the United States (9), yet CIN 2 is often caused by noncancerous HPV genotypes (10), it is regressive, especially when it is caused by HPV genotypes other than HPV-16 (11, 12), and the diagnostic agreement among pathologists for CIN 2 is poor (8, 10, 13).

Likewise, detection of HPV viral DNA is not error free. No test is perfectly reproducible, and no 2 tests agree completely on the presence of HPV DNA. Random misclassification is known to reduce the magnitude of true associations. Real-life examples of how associations strengthen as misclassification is reduced are uncommon; the gradual recognition in epidemiologic studies of HPV as the central cause of cervical cancer and precancer has provided some of the best examples (14–17). The early articles focused mainly on the impact of improvement in HPV testing on the strength of associations. The impact of misclassification on both exposure and disease assessment, as well as how reduced misclassification can improve our ability to observe true causal associations, has not been illustrated as thoroughly with real data. To expand the literature on this important point, we analyzed the relation of carcinogenic HPV detection with histologically confirmed cervical precancer in the context of multiple measures of each.

In the Atypical Squamous Cells of Undetermined Significance/Low-Grade Squamous Intraepithelial Lesion Triage Study (ALTS), we have 4 measures of carcinogenic HPV using validated assays and 2 evaluations of histopathology among women referred into ALTS with atypical squamous cells of undetermined significance (ASC-US) Papanicolaou (Pap) test result. This provided an excellent opportunity to explore how the classification of both the exposure (HPV) and the intermediate endpoint (histologically confirmed cervical precancer) influences the relation between exposure and disease.

MATERIALS AND METHODS

Study design and population

ALTS (1997–2001) was a multisite, randomized trial comparing 3 management strategies for women referred for ASC-US ($n = 3,488$) or low-grade squamous intraepithelial lesion ($n = 1,572$) conventional cytology (20–24). (Under the 1991 Bethesda System for Reporting Cervical Cytology (18), ALTS was slightly more inclusive, particularly of probable reactive changes and ASC-H (atypical squamous cells, cannot rule out high-grade intraepithelial lesion), than the ASC-US category of the 2001 Bethesda system (19).) Women were randomized to 1 of 3 study arms at enrollment: 1) immediate colposcopy arm (referral to colposcopy regardless of enrollment test results); 2) HPV triage (HPV arm) (referral to colposcopy if the enrollment HPV result was positive by Hybrid Capture 2 (hc2; Qiagen Corporation, Gaithersburg, Maryland) or missing, or if the enrollment cytology was high-grade squamous intraepithelial lesion (HSIL)); or 3) conservative management arm (referral to colposcopy only if the enrollment cytology was HSIL). The National Cancer Institute and local institutional review boards approved the study, and all participants provided written, informed consent.

At enrollment and follow-up visits over the 2-year duration, all women underwent a pelvic examination with collection of 2 cervical specimens: the first specimen in PreservCyt (Ciya Corporation, Marlborough, Massachusetts; now Qiagen) and the second in specimen transport medium (STM; Digene Corporation, Gaithersburg, Maryland; now Qiagen). Women in all 3 arms of the study were reevaluated by cytology every 6 months during the 2 years and sent to colposcopy if cytology was high-grade squamous intraepithelial lesion. An exit examination with colposcopy was scheduled for all women. We refer readers to other references for details on randomization, examination procedures, patient management, and laboratory and pathology methods (20). This analysis was restricted to women referred into ALTS for an ASC-US Pap smear.

HPV testing

Residual PreservCyt specimens, after being used for liquid-based cytology, were tested by hc2 (24), a pooled-probe, signal-amplification DNA test that targets a group of 13 carcinogenic HPV genotypes (HPV-16, -18, -31, -33, -35, -39, -45, -51, -52, -56, -58, -59, and -68).

HPV genotyping by line blot assay (Roche Molecular Systems, Inc., Pleasanton, California) was performed on the specimen transport medium specimen as previously described (25). Amplicons were subjected to reverse-line blot hybridization for detection of 27 individual HPV genotypes (HPV-6, -11, -16, -18, -26, -31, -33, -35, -39, -40, -42, -45, -51 to -59, -66, -68, -73, -82 to -84) (26, 27). We also tested for an additional 11 noncancerous HPV genotypes (HPV-61, -62, -64, -67, -69 to -72, -81, -82 variant (82v or IS39), and -89 (CP6108)) in 76% of the enrollment specimens from women referred into the study because of an ASC-US Pap test.

Aliquots of the archived, enrollment STM specimens were retested by using linear array, a next generation version of line blot assay that tests for 37 of 38 HPV genotypes detected by line blot assay (excluding HPV-57) as previously described (28), and AMPLICOR (Roche Molecular Systems, Inc.), a pooled test for the same 13 carcinogenic HPV genotypes targeted by hc2 (29). We used a positive cutpoint of 1.5 for AMPLICOR as we previously found that this cutoff was the most accurate for detection of precancerous lesions (29).

For this analysis, women were considered positive for carcinogenic HPV if they tested positive by hc2 or AMPLICOR or positive for HPV-16, -18, -31, -33, -35, -39, -45, -51, -52, -56, -58, -59, and -68 by line blot assay or linear array (30, 31). We excluded HPV-66 from our definition of
carnigenic HPV because AMPLICOR does not target it and because HPV-66 is not considered carcinogenic in the latest IARC Monograph, Volume 100b, regarding carcinogenicity of HPV types (32). However, we acknowledge that hc2 is well known to cross-react with untargeted HPV-66 and other HPV types that very rarely might be carcinogenic (33).

Pathology and treatment

Clinical management was based primarily on the clinical center pathologists’ cytologic interpretations and histologic diagnoses as previously described (20–24).

Statistical analyses

Among women referred for an ASC-US Pap test, 3,326 (95.4%) had hc2 results, 3,436 (98.5%) had AMPLICOR results, 3,445 (98.8%) had linear array results, and 3,363 (96.4%) had line blot assay results. This analysis was restricted to the 3,215 women (92.2%) who had results for all 4 HPV tests. We calculated the pairwise percent of agreement and kappa values among the 4 HPV tests.

In addition to the certainty of the HPV test, we were interested in the other dimension of the standard 2 × 2 table, namely, how the definition and certainty of precancerous disease influenced the association with carcinogenic HPV. We used paired histopathologic diagnoses from clinical center and ALTS quality control pathology in our definition of endpoints to reflect the certainty of a precancerous diagnosis. Both reviews were used because neither pathology review is without misclassification (8, 10). Diagnoses from each pathology review were categorized as <CIN 2, CIN 2, or CIN 3. Thus, there were 9 combinations of histopathologic diagnoses from the 2 pathology reviews; the crude tabulation of the 4 test results and paired diagnoses are shown in Web Table 1 posted on the Journal’s website (http://aje.oxfordjournals.org). We defined different endpoints of precancer, from less certain to more certain, as follows (Web Table 1): any CIN-2 diagnosis or more severe (CIN 2+) by either clinical center or ALTS quality control pathology review (endpoint 1); a CIN 2+ on both pathology reviews (consensus CIN 2+) (endpoint 2); any diagnosis of CIN 3 by either clinical center or ALTS quality control pathology review (endpoint 3); a diagnosis of CIN 3 on one pathology review and CIN 2 or more severe on the other pathology review (endpoint 4) (excluding from endpoint 3 any cases of CIN 3 by one pathology group and <CIN 2 by the other pathology group); and CIN 3 diagnosed on both pathology reviews (consensus CIN 3) (endpoint 5).

We used the 2-year worst diagnoses for all participating women as our endpoints to account for the inaccuracies of a single colposcopic evaluation (34–36). Among women referred for an ASC-US Pap test, the 2-year endpoints (described above) included 2 cancers diagnosed during follow-up (37). We note that, because the conservative management arm sent only women with enrollment HSIL cytology to colposcopy, some CIN 2 probably regressed (11). We observed the same patterns and relations when the analysis was limited to the enrollment diagnoses for the women in the immediate colposcopy arm, all of whom underwent colposcopy (data not shown).

RESULTS

Table 1 shows the agreement among the 4 HPV tests. The best agreement was between AMPLICOR and linear array, with a percent overall agreement of 89% and kappa of 0.77. The worst agreement was between hc2 and AMPLICOR, 2 commercial tests that purport to detect the same pool of carcinogenic HPV types, with a percent overall agreement of 81% and kappa of 0.60.
One-thousand twenty-four women (31.9%) were HPV negative by all 4 tests, 447 (13.9%) were positive by 1 HPV test, 149 (4.6%) were positive by 2 HPV tests, and 251 (7.8%) were positive by 3 HPV tests, and 1,304 (40.6%) were positive by all 4 tests. The number of tests positive for HPV was strongly associated with lifetime number of sexual partners ($P < 0.001$) (data not shown).

Comparing the HPV testing results with the different definitions of precancer, we found that the percentage in which all 4 HPV tests were positive increased significantly with increasing certainty of cervical precancer. For 2-year worst diagnoses (Table 2), the percentage in which all 4 tests were positive for carcinogenic HPV increased from 32.7% among women with a diagnosis of $<$CIN 2 by both pathology groups to 91.6% among women with consensus CIN 3. Further, the percent total agreement for HPV testing increased from 70.1% among women with a diagnosis of $<$CIN 2 by both pathology groups to 93.3% among women with consensus CIN 3.

There was a general trend of increasing strength of association from 1 positive HPV test to 4 positive HPV tests for any endpoint definition; for example, the odds ratios for 1, 2, 3, and 4 positive HPV tests with endpoint 5 (consensus CIN 3) using the 2-year worst histologic diagnoses were 2.3, 0.0, 13, and 49, respectively. The association of 4 positive HPV tests results (vs. no positive tests) strengthened with increasing certainty of precancer, with an odds ratio of 17 for endpoint 1 (any CIN 2) and an odds ratio of 49 for endpoint 5 (consensus CIN 3) using the 2-year worst histologic diagnosis.

Women with a 2-year worst histologic diagnosis of consensus CIN 3 were the most likely at enrollment to be...
HPV-16 positive (64.8%), to have cytology results interpreted as HSIL by clinical center pathology (90.5%) and by ALTS quality control pathology (86.5%), and to have their cervigram called high grade or more severe (14.9%) than women without consensus CIN 3 (Table 3). In ancillary analyses, the increasing certainty of disease diagnosis led to increasing strength of association with tests other than grouped HPV detection. Among women diagnosed with CIN 3 by ALTS quality control pathology, there was an increasing proportion of women with enrollment HPV-16 ($P_{\text{trend}} = 0.001$), HSIL cytology by clinical center pathology ($P_{\text{trend}} < 0.001$) and by ALTS quality control pathology ($P_{\text{trend}} < 0.001$), and cervigrams called high grade ($P_{\text{trend}} = 0.004$) with increasing severity of clinical center pathology diagnosis (data not shown). Among women diagnosed with CIN 3 by clinical center pathology, there was an increasing proportion of women with enrollment HPV-16 ($P_{\text{trend}} = 0.001$) with increasing severity of ALTS quality control pathology diagnosis (data not shown). Taken together, consensus CIN 3 had the strongest association with biomarkers related to cervical cancer risk.

We also examined the impact of cervical precancer definition on clinical sensitivity and specificity of HPV detection, including cytology. For the 2-year worst diagnosis (Figure 1), clinical sensitivity increased and clinical specificity decreased with increasing certainty of precancer. However, as shown in Table 4, the overall accuracy of a test, as measured by odds ratios, increased with increasing certainty of precancer. The strength of association increased from 2- to 4-fold from endpoint 1 (any CIN 2+) to endpoint 5 (consensus CIN 3) for all tests. Of note, repeat cervical cytology findings at any threshold of positivity (we show ASC-US) were less accurate than HPV tests in the context of finding CIN 3 among women referred for a previous ASC-US cytology evaluation.

Finally, we compared the few cases of consensus 2-year worst diagnosis of CIN 3 in which not all HPV tests tested positive ($n = 15$) versus those in which all 4 tests tested positive ($n = 164$). Although the statistical power to detect true differences was limited, those few cases with at least 1 negative test were more likely than those cases in which all 4 tests were positive to have 1) the enrollment cervigram interpreted as negative (36% vs. 21%; $P = 0.4$), 2) a negative colposcopic impression at enrollment (18% vs. 5%; $P = 0.2$), 3) the enrollment cytology interpreted as negative by the ALTS quality control pathology group (40% vs. 11%; $P = 0.007$), and cervigrams called high grade ($P_{\text{trend}} < 0.001$) by either clinical center or ALTS quality control pathology review; endpoint 4, a diagnosis of CIN 3 on one pathology review and CIN 2 or more severe on the other pathology review; and endpoint 5, CIN 3 diagnosed on both pathology reviews (consensus CIN 3).

DISCUSSION

We used the data collected in ALTS, including dual pathology readings and 4 HPV tests, to examine the impact of the accuracy of exposure and outcome classification on the relation of cervical precancer definition with detection of carcinogenic HPV. There was convergence of greater certainty of carcinogenic HPV with greater certainty of a precancerous diagnosis, such that all 4 tests, including the less sensitive predecessor to linear array, line blot assay (28), almost always tested positive on enrollment specimens from women with consensus CIN 3 diagnosed during the 2 years of ALTS. The few cases of consensus CIN 3 in which at least one baseline HPV test was negative characteristically had fewer indications of abnormality, suggesting that these cases were the most likely to be incident or very small CIN 3 at enrollment with a low viral burden and/or poorly sampled. Among the hc2-positive consensus CIN 3, the hc2 signal strength, a semiquantitative measure of viral load (39), for those in...
which all 3 other tests were positive (n = 164) was nonsignificantly higher than in those in which at least one of the other tests was negative (201 vs. 64 relative light units/positive control, respectively; P = 0.16). Similarly, the sensitivity of enrollment cytology findings also improved as the diagnosis of precancer became more certain.

Misclassification of both the exposure (40) and the endpoint (41) can obscure even strong, causal associations. With regard to HPV research, early associations between HPV DNA positivity and cervical cancer in case-control studies (42) were 2 orders of magnitude lower than current estimates that rely on state-of-the-art testing. The earliest studies failed to demonstrate the strong relation between sexual behavior and HPV infection, which is sexually transmitted. Franco (14, 15) and Franco et al. (16) reported a series of important analyses showing how misclassification weakened the association of HPV with sexual behavior and with cervical cancer and precancer. A similar point was made by Schiffman et al. (17), who clarified that accurate classification of a strong risk factor is important when assessing its role as a confounder or intermediate endpoint of other exposure-disease associations; for example, the association between sexual behavior and cervical precancer is explainable by HPV positivity if testing measures infection history accurately.

Here, we show that the opposite is also true: Improved classification of both the exposure (HPV) and the endpoint (cervical precancer) leads to stronger epidemiologic evidence of causal associations (43). The detection of HPV by multiple assays was more strongly associated with endpoints 4 and 5 than HPV detected by only 1 or 2 HPV tests. Detection of HPV by any single assay was more strongly associated with consensus CIN 3 than with less severe paired diagnoses still considered “precancerous.” Previous studies that explored the impact of misclassification on the association of HPV and cervical cancer used HPV assays that were less accurate. By comparison, we used validated HPV assays, some of which are used or are being considered for use in cervical cancer screening. In general, the increase in sensitivity offset the decrease in specificity such that the overall accuracy, as measured by odds ratios, improved for all tests with an increasingly more rigorous definition of the precancer endpoint.

Table 4. Association of Carcinogenic Human Papillomavirus Test Detection by hc2, AMPLICOR, Linear Array, and Line Blot Assay, as Measured by Odds Ratios and 95% Confidence Intervals, With Different Disease Endpoints, ALTS, 1997–2001

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>hc2</th>
<th>AMP</th>
<th>LA</th>
<th>LBA</th>
<th>Cytology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odds Ratio</td>
<td>95% Confidence Interval</td>
<td>Odds Ratio</td>
<td>95% Confidence Interval</td>
<td>Odds Ratio</td>
<td>95% Confidence Interval</td>
</tr>
<tr>
<td>Endpoint 1<sup>a</sup></td>
<td>12</td>
<td>8.6, 15</td>
<td>7.3</td>
<td>5.6, 9.6</td>
<td>8.1</td>
</tr>
<tr>
<td>Endpoint 2<sup>a</sup></td>
<td>13</td>
<td>8.9, 18</td>
<td>8.4</td>
<td>6.1, 12</td>
<td>9.4</td>
</tr>
<tr>
<td>Endpoint 3<sup>a</sup></td>
<td>13</td>
<td>8.7, 21</td>
<td>10</td>
<td>6.8, 15</td>
<td>12</td>
</tr>
<tr>
<td>Endpoint 4<sup>a</sup></td>
<td>18</td>
<td>11, 30</td>
<td>12</td>
<td>7.5, 19</td>
<td>15</td>
</tr>
<tr>
<td>Endpoint 5<sup>a</sup></td>
<td>34</td>
<td>14, 83</td>
<td>18</td>
<td>9.0, 37</td>
<td>33</td>
</tr>
</tbody>
</table>

Abbreviations: ALTS, Atypical Squamous Cells of Undetermined Significance/Low-Grade Squamous Intraepithelial Lesions Triage Study; AMP, AMPLICOR (Roche Molecular Systems, Inc., Pleasanton, California); CIN 2 and CIN 3, cervical intraepithelial neoplasia grades 2 and 3, respectively; hc2, Hybrid Capture 2 (Qiagen Corporation, Gaithersburg, Maryland); LA, linear array; LBA, line blot assay.

^a Endpoint 1, any CIN-2 diagnosis or more severe (CIN 2+) by either clinical center or ALTS quality control pathology review; endpoint 2, a diagnosis of CIN 2 or more severe on both pathology reviews (consensus CIN 2+); endpoint 3, any diagnosis of CIN 3 by either clinical center or ALTS quality control pathology review; endpoint 4, a diagnosis of CIN 3 on one pathology review and CIN 2 or more severe on the other pathology review; and endpoint 5, CIN 3 diagnosed on both pathology reviews (consensus CIN 3). (Women with <.CIN 2 on both pathology reviews are the reference group.)

Am J Epidemiol 2010;171:155–163
One consideration in interpreting this analysis was that this study population was referred into ALTS because of an ASC-US Pap test and was mostly HPV positive (2,191 of 3,215 (68.2%) women tested positive for carcinogenic HPV by at least 1 test at baseline). There are 2 implications. First, there was evidence of some cytologic abnormalities in this population, which generally correlates with higher HPV viral loads. Therefore, the agreement between HPV tests might have been better than what might be expected if the evaluation were to be done in a general screening population, especially among women without precancerous lesions. Second, the control population, women with <CIN 2, was still highly exposed to carcinogenic HPV (62.7% were positive by at least 1 test, and 32.7% were positive by all 4 tests for carcinogenic HPV). As a consequence, the degree to which HPV detection was associated with consensus CIN 3 was most likely muted in this population compared with what might have been observed in a general screening population.

There are several implications of this analysis. The first and most obvious is that the choice of endpoints influences estimates of test performance. Diagnoses of CIN 2 and CIN 3 are the surrogate endpoints for cervical cancer used in clinical trials evaluating new screening tests. However, there is an increasing recognition that CIN 2 is an equivocal diagnosis of precancer, an admixture of HPV infections by both carcinogenic and noncarcinogenic HPV and misclassified CIN 3 (10). Approximately 25%–50% of CIN 2 will regress within a year or 2 years (11, 12). Although CIN 3 is a better surrogate for invasive potential, it is increasingly clear that it too is heterogeneous (44). Only a third of CIN 3/carcinoma in situ diagnosed in women with a median age in the late 30s invaded over 30 years (5). In this study, CIN 3 was diagnosed in much younger women (median and mean enrollment ages of 23.0 and 25.5 years) and was very small (45), presumably less mature, and therefore of less invasive potential than those cases of CIN 3/carcinoma in situ that unfortunately were observed without treatment in New Zealand (5).

Although there is no way to predict the invasive potential of the different categorizations of cervical lesions in this study, it is reasonable to assume that there is a spectrum of invasive potential with consensus CIN 3 perhaps having the greatest risk. To that point, consensus CIN-3 lesions were the most likely to be HPV-16 positive (the most carcinogenic of all HPV genotypes (46)) and the most likely to be accompanied by visual and microscopic evidence of precancer. Inclusion of CIN 2 (the recommended clinical threshold for treatment in the United States) in the definition of an endpoint in clinical trials likely results in a high proportion of diagnoses with little or no invasive potential. Yet, there was evidence of heterogeneity even among the consensus CIN-3 diagnoses, with some consensus CIN 3 not testing carcinogenic HPV positive by all tests, which correspondingly were associated with negative cytology and colposcopy results.

Thus, we must consider misclassification in trials and guidelines (47, 48). Current screening and vaccine trials are underpowered because of misclassification to an extent that is rarely appreciated, if the goal is to assess the clinical performance for detection of cervical precancerous lesions as proxy for invasive cervical cancer. Ironically, as biomarkers become more specific for cervical carcinogenesis, assays for their detection will appear to underperform compared with carcinogenic HPV DNA detection because there will be an increasing number of seemingly (“false”) negative results associated with CIN 2 and perhaps even with CIN 3, since not all CIN 3 is truly precancerous (i.e., having the potential to invade). We need such specific biomarkers to screen HPV–16/18 vaccinated populations, because the predictive value of positive cytology or HPV test results is expected to be diminished with the elimination of the most carcinogenic HPV genotypes (49, 50). The challenge for validating the next generation of biomarkers will be distinguishing between false and true negative test results in women with diagnoses of cervical precancerous lesions.

It will be especially important to avoid nonrandom misclassification. Such correlated errors (biases) can be severe and have been observed to affect clinical performance estimates of visual inspection after acetic acid when disease is assessed by colposcopy (51), both of which rely on the same measurement (visualization of the cervix).

A biorepository or “biobank” of Pap specimens, if properly constructed with the correct buffer and storage of specimens and thorough disease ascertainment, might be a better choice by which to assess the clinical performance for prevention of cervical cancer because more cases of rigorously defined precancerous lesions identified over time can be accrued. Such an approach, if validated and also accepted by regulatory entities, might achieve 2 admirable goals: more rigorous evaluations against the most important preinvasive disease and reducing the costs of validation, which will encourage promising screening tests to be developed and validated.

The importance of the example of HPV and cervical cancer extends to molecular epidemiology in general. Remembering how weak the initial association between HPV and cervical precancer seemed, we can wonder what other strong and important epidemiologic relations we might be missing because of type I errors resulting from misclassification of our tests and surrogate endpoints of disease (40, 41).

ACKNOWLEDGMENTS

Author affiliations: Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (Philip E. Castle, Mark Schiffman, Nicolas Wentzensen); Departments of Molecular Genetics and Microbiology and of Obstetrics and Gynecology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico (Cosette M. Wheeler); and Departments of Epidemiology and of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland (Patti E. Gravitt).

ALTS was supported by contracts CN-55153, CN-55154, CN-55155, CN-55156, CN-55157, CN-55158, CN-55159, and CN-55105 from the National Cancer Institute, National Institutes of Health, Department of Health and Human
Services. This research was also supported (in part) by the Intramural Research Program of the National Cancer Institute, National Institutes of Health. Some of the equipment and supplies used in these studies were donated or provided at reduced cost by Digene Corporation, Gaithersburg, Maryland; Cytoc Corporation, Marlborough, Massachusetts; National Testing Laboratories, Fenton, Missouri; DenVu, Tucson, Arizona; TriPath Imaging, Inc., Burlington, North Carolina; and Roche Molecular Systems, Inc., Alameda, California.

The authors thank the ALTS Group Investigators for their help in planning and conducting the trial.

Conflict of interest: none declared.

REFERENCES

Certainty of HPV and Cervical Precancer

