Practice of Epidemiology

Multistate Analysis of Interval-Censored Longitudinal Data: Application to a Cohort Study on Performance Status Among Patients Diagnosed With Cancer

Rinku Sutradhar*, Lisa Barbera, Hsien Seow, Doris Howell, Amna Husain, and Deborah Dudgeon

* Correspondence to Dr. Rinku Sutradhar, Institute for Clinical Evaluative Sciences, Dalla Lana School of Public Health, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada M5S 1A1 (e-mail: rinku.sutradhar@ices.on.ca).

Initially submitted March 25, 2010; accepted for publication October 18, 2010.

In observational studies on cancer patients, progression of performance status over time can be described by using a multistate model in which state-to-state transitions represent changes in a patient’s health condition. Although a patient experiences transitions in continuous time, assessments on the patient are often made at irregularly spaced time points. In this paper, the authors formulate a Markov 4-state model for examining longitudinal data on performance status collected under intermittent observation. The cohort consisted of 11,342 patients diagnosed with cancer in Ontario, Canada, from 2007 to 2009. The authors extend the model to estimate the predicted probability of reaching the absorbing state, death, over various time intervals. The authors also illustrate what happens to the estimated transition intensities if the true observational scheme is overlooked. Methods for multistate analysis should be used by epidemiologists, since they prove particularly useful for examining the complexities of disease processes.

Intensity function; interval censoring; longitudinal studies; Markov chains; Markov process; transition function; transition matrix

Abbreviations: CI, confidence interval; PPS, Palliative Performance Scale.

Multistate models can be used to describe changes in a patient’s health condition over time (1). In the study of chronic illness, these models classify a patient into one of a finite number of distinct states at any given point during his or her follow-up (2, 3). The states represent various health conditions, transitions between states correspond to changes in a patient’s health condition, and the transition times correspond to the times at which these changes occur.

In addition to multistate models, several alternate approaches are available for examining longitudinal data on health states of a patient. Deciding which method to use often depends on the questions that need to be answered. A correlated ordinal model may suffice if one is interested in estimating the relation between the probability of being in a particular health state and the time since diagnosis. If the objective is to predict time-to-event probabilities, a survival model can be implemented in which a time-dependent covariate may be used to express events that may affect a person’s health condition. Multistate models are particularly useful for describing the complexities of a disease process (4–6). They are more applicable when interest lies in estimating the instantaneous rate of transition between various states, estimating the probability of transition from one state to another within a specific time period, or estimating the average period of a single stay in a state (mean sojourn time). Although methods for multistate analysis have been well studied, epidemiologists and clinicians have not taken advantage of these developments.

When patients are followed continuously and transition times are subject only to right-censoring, a wide range of multistate modeling and estimation strategies are available (7). In reality, however, it is often not possible to observe patients continuously throughout the course of disease, especially when patients are assessed by a physician only at periodic clinic or home visits. In these cases, the exact times of state-to-state transitions other than death are interval-censored. The transition is only known to have occurred within a bounded time interval, usually between
assessments. Under intermittent observation, the data available for an individual consist of the assessment times and the states that are occupied at each of these times. Data emerging from this observation scheme pose a variety of estimation challenges because of the incomplete information on transition times and the fact that the number and timing of assessments may vary dramatically across patients. Thus, standard multistate methods can no longer be applied. See Commenges (8), Cook et al. (9), and Sutradhar and Cook (10) for a review of some recently developed applied methods under incomplete observation.

The purpose of this paper is 3-fold. First, we provide the fundamental concepts for constructing a multistate model. Approaches for estimating the transition intensities are discussed under both continuous time and intermittent observation schemes. Second, we illustrate the use of the multistate method for analyzing longitudinal data on performance status for patients diagnosed with cancer. We estimate the risks of improvement and deterioration over the course of treatment and the amount of detail on the progression of performance status—enough information to reasonably assume that the current state of the patient is the driving factor in determining future performance status. The Markov assumption is adopted throughout this paper.

Parameter estimation under complete and intermittent observation

The typical aim in a multistate model is to estimate the state-to-state transition intensities. The available data and the corresponding observation schemes drive the construction of the likelihood function. Maximization of this function provides estimates of the transition intensity parameters. Consider a multistate process for which we are able to record the exact times at which transitions occur, as well as the corresponding states occupied. To establish notation for such data, suppose the ith individual makes transitions at times $t_{i1} < t_{i2} < \ldots < t_{im_i}$ into states $s_{i1}, s_{i2}, \ldots, s_{im_i}$, respectively, according to a Markov process. Conditional on the state occupied at time $t = 0$ being s_{i0}, the likelihood based on complete observation can be written in terms of the transition intensity functions (1, 7) as

$$
\prod_{i=1}^{n} \prod_{r=1}^{m_i} \left[\lambda_{s_{i,r-1},s_{i,r}}(t_{ir}) \exp \left(-\int_{t_{ir}}^{t_{i(r+1)-1}} \lambda_{s_{i,r},s_{i,r+1}}(u)du \right) \right] \exp \left(-\int_{t_{im_i}}^{\tau_i} \sum_{l \neq s_{im_i}} \lambda_{s_{im_i},l}(u)du \right),
$$

where $(0, \tau_i)$ is the follow-up period for the ith patient and
$t_{i0} = 0$. The first term in the likelihood (within the square brackets) is the probability of being in state s_i at time $t_{i,r-1}$ and then transitioning to state s_r at time t_r (with no intermediate transitions); the second term is the probability of not transitioning out of state s_{im} between time t_{im} and t_r. Several methods, including parametric and nonparametric approaches, may be used to maximize the likelihood in order to obtain estimates of the transition intensity parameters (7).

As we noted above, it is rare to witness the exact times at which transitions occur during the follow-up period. Although transitions are experienced in continuous time, it is often the case that observations are made at irregularly spaced time points, which may differ substantially across patients. As a result, the exact transition times are interval-censored. To develop notation under this incomplete observation scheme, suppose the ith individual is examined intermittently at times $b_{i1} < b_{i2} < \ldots < b_{im}$, and the states occupied at these times are $s_{i1}, s_{i2}, \ldots s_{im}$, respectively; the actual transitions are still assumed to occur according to a Markov process. Conditional on the state occupied at time $t = 0$ being s_{i0}, the likelihood based on intermittent observation can be written in terms of the transition probability functions (8, 9) as

$$\prod_{r=1}^{m} \prod_{i=1}^{n} P(s_{i, r-1}, s_r) \left(b_{ir-1}, b_{ir} \right),$$

where $b_{i0} = 0$. A quasi-Newton algorithm can be used to maximize this likelihood to obtain estimates of the transition intensity parameters. This method requires only the computation of first-order derivatives; the second-order derivatives are replaced by estimates of their expectations using a scoring procedure (8–10). Recently, there has been progress in the development of software for implementing these methods for multistate models. The msm package in R allows a general multistate model to be fitted to longitudinal data (12, 13).

Study population

Under the initiative known as the Ontario Cancer Symptom Management Collaborative, since January 1, 2007, cancer centers across the province of Ontario, Canada, have been implementing the systematic collection of symptom screening data using the Edmonton Symptom Assessment System and performance status assessment data obtained using the Palliative Performance Scale (PPS) in cancer outpatients (14–16). Patients eligible for assessment include those living in all regions of the province, with any cancer diagnosis, of any age, from ambulatory and/or home settings, and with any treatment intent. Assessments happen on an opportunistic basis depending on how each cancer center or home-care program implements the Ontario Cancer Symptom Management Collaborative initiative.

The longitudinal outcome of interest in this study was the PPS. The PPS is a validated tool for assessing both the performance status of a patient (16) and prognosis in a palliative population, and it is known to be predictive of survival (17, 18). It is an ordinal 10-point scale with scores ranging to 100 (the higher the score, the better the performance status) that describes a patient’s level of ambulation, activity level, evidence of disease, ability to carry out self-care, intake (alertness), and level of consciousness. The PPS is administered by a physician or nurse at the time of a visit to a cancer center or at the time of a visit from a home-care nurse.

The cohort included patients who were diagnosed with cancer after January 1, 2007, and had at least 1 PPS assessment after diagnosis. Information on diagnosis date and type of cancer diagnosis was retrieved from the Ontario Cancer Registry, a comprehensive population-based cancer registry created to capture all incident cases of cancer in the province (19, 20). Patients were followed until their date of death (which was retrieved from administrative databases) or March 31, 2009, at which time they were considered censored.

Multistate analysis

When a patient has been diagnosed with cancer in Ontario, his or her performance status at each clinic visit or home-care assessment is characterized on the basis of the PPS score. The origin of the time scale is the date of diagnosis, where time is measured in months. To formulate a multistate model, we identify well-defined states which represent the performance status of a patient over time. In particular, a patient is classified as being in one of the following 4 states: state 1 (the stable state) if the PPS score is 70–100; state 2 (the transitional state) if the PPS score is 40–60; state 3 (the end-of-life state) if the PPS score is 10–30; and state 4 if deceased. The PPS cutoffs of 70 and 40, as well as the descriptions of each state, are selected on the basis of clinical reasoning (21, 22).

In our data, although a patient can be in state 3 at an assessment and then in state 1 at the next assessment, this does not imply that an instantaneous transition from state 3 to state 1 is clinically possible. The form of the multistate model should describe the underlying progression of PPS scores, rather than the observed progression of PPS scores. Figure 1 illustrates the underlying 4-state model; the arrows indicate the directions in which instantaneous transitions are permitted. Based on clinical expertise on the progression of performance status, transitions between states 1 and 2 and between states 2 and 3 are considered to be bidirectional. A patient may instantaneously experience a transition into state 3 from state 1; however, he or she may not reach state 1 from state 3 without experiencing state 2. Once state 4 has been reached, no further transitions can be made, since death is an absorbing state.

It is important to consider the reasons why the assessments were made at the given times. Assessments can be fixed in advance, random and independent of the patient’s current state, based on a physician’s recommendation, or based on patient self-selection. If based on a physician’s recommendation, only information about the patient’s status at the current visit determines the time of the next visit, whereas under patient self-selection, a patient can decide to see the doctor immediately based on how he or she is
feeling at that moment. Grüber et al. (23) have shown that when assessments are based on a physician’s recommendation, the joint likelihood of the assessment times and the transition times is proportional to the likelihood obtained if the assessment times were fixed in advance. This implies that assessment times arising from a physician’s recommendation are noninformative.

Grüber et al. (23) have shown that only assessment schemes based on patient self-selection are informative. In our data, times for assessing performance status were scheduled depending on how each cancer center or home-care program was implemented within the patient’s region. As far as it is known, assessment times were either fixed, random, or based on a physician’s recommendation—that is, noninformative.

Because the PPS is administered at arbitrary clinic or home visits, it is extremely unlikely that the assessment times are the actual times at which the instantaneous transitions occur. It is important to account for the fact that the exact transition times are not known; rather, they are interval-censored. Figure 2 demonstrates how a patient’s underlying PPS progression is viewed under intermittent observation. The dotted vertical lines represent the assessment times (in months from cancer diagnosis), and the solid horizontal arrows represent the true lengths of stay in each state. For example, at 5 months from diagnosis, this hypothetical patient was observed to be in state 2; the patient then died 11 months from diagnosis. In reality, however, between 5 and 11 months from diagnosis, this patient made a transition from state 2 to state 1 and then from state 1 to state 3 before finally reaching state 4.

In addition to accommodating interval-censoring, our approach accounts for other limitations in observation. The time of death is available. However, under intermittent observation, the state occupied at the instant prior to death is not known. Moreover, if a patient is alive at the end of follow-up and does not have an assessment on this date, then the state occupied at this time is also not known; we can only infer that the patient is in state 1, 2, or 3 at this time. As was shown above, all limitations in the available data must be reflected in the construction of the likelihood.

Based on the underlying 4-state model (Figure 1) and assuming a time-homogeneous Markov process (9, 10), we express the corresponding transition intensity matrix as

\[
A = \begin{bmatrix}
-\left(\lambda_{12} + \lambda_{13} + \lambda_{14}\right) & \lambda_{12} & \lambda_{13} & \lambda_{14} \\
\lambda_{21} & 0 & 0 & 0 \\
0 & \lambda_{23} & 0 & 0 \\
0 & 0 & 0 & \lambda_{34}
\end{bmatrix}.
\]

Our primary aim is to estimate the transition intensity parameters, meaning the elements of matrix \(A\). This will be done by maximizing the likelihood function, which will be constructed on the basis of our specific intermittent observation scheme. In addition, we will estimate the mean sojourn time in each nonabsorbing state. We will also estimate the elements of the transition probability matrix over a specific period of time \(P(t)\); this provides the estimated probability of eventually going from one state to another over time \(t\). Finally, we will demonstrate what happens to the estimates of

Figure 1. Underlying 4-state model for examining disease progression among cancer patients using the Palliative Performance Scale (PPS), PPS Cohort Study, Ontario, Canada, 2007–2009. (1—stable state; 2—transitional state; 3—end-of-life state; 4—deceased).

Figure 2. Observed progression versus underlying progression of performance status for a hypothetical cancer patient, PPS Cohort Study, Ontario, Canada, 2007–2009. (PPS, Palliative Performance Scale).
Table 1. Distribution of Pairs of Consecutive Observed States Among Cancer Patients in the PPS Cohort Study, Ontario, Canada, 2007–2009

<table>
<thead>
<tr>
<th>State* at Current Assessment</th>
<th>State at Next Assessment</th>
<th>State at Next Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>State 1</td>
<td>State 2</td>
</tr>
<tr>
<td>State 1</td>
<td>35,436</td>
<td>4,360</td>
</tr>
<tr>
<td>State 2</td>
<td>1,489</td>
<td>11,932</td>
</tr>
<tr>
<td>State 3</td>
<td>20</td>
<td>57</td>
</tr>
<tr>
<td>State 4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Abbreviation: PPS, Palliative Performance Scale.
*A patient was classified as being in state 1 (the stable state) if the PPS score was 70–100; state 2 (the transitional state) if the PPS score was 40–60; state 3 (the end-of-life state) if the PPS score was 10–30; and state 4 if deceased.

RESULTS

Of all patients diagnosed with cancer in Ontario during the study period, 9% had at least 1 PPS assessment after diagnosis. The cohort in our multistate analyses thus consisted of 11,342 cancer patients. The median time between assessments was 0.7 months.

Table 1 provides the frequencies of pairs of consecutive observed states. For each state j and k, we counted the number of times there was an assessment of state j followed by an assessment of state k (over all patients). There were 2,192 deaths recorded from the stable state; only on 20 occasions was there an assessment of end-of-life performance status followed by an assessment of stable performance status.

The results from Table 1 should be interpreted with caution. They are simply observed frequencies and do not reflect the underlying progression of performance status. As an example, if an additional assessment could have been made just prior to death for those patients observed to die from the stable state, it may have shown that the patient was actually in the transitional or end-of-life state before dying.

The primary results from our multistate analyses are presented in Table 2. The table shows the maximum likelihood estimate and corresponding 95% confidence interval for each possible instantaneous transition. For patients in the transitional state (state 2), the rates of transition to the stable state (state 1) and the end-of-life state (state 3) are equal; this is interpreted from comparing the estimates 0.144 and 0.145 in the second row. However, the rate of transition from the transitional state to death (state 4) is 1.6 times higher (0.239/0.144) than these estimates, implying that the more likely transition from state 2 is to death. Once a patient is in the end-of-life state, the rate of progression to death is 10 times higher (1.446/0.142) than the rate of recovery to the transitional state. Moreover, the rate of transition to death is 6 times higher (1.446/0.239) from the end-of-life state than from the transitional state. Note that we reran the likelihood maximization routine several times, using different sets of initial values and different optimization algorithms. All reruns provided very similar results (within 1 decimal place) for the transition intensity parameter estimates, ensuring that we had reached convergence to the global maximum (13).

The multistate analyses also provided the estimated mean sojourn time in each nonabsorbing state, along with the corresponding 95% confidence interval. The average amount of time a patient spent in state 1 before transitioning into another state was 16.74 months (95% confidence interval (CI): 16.35, 17.14). More drastically, the average amount of time spent in state 2 before making a transition was 1.88 months (95% CI: 1.83, 1.94), and the average amount of time spent in state 3 before making a transition (into either a healthier state or death) was 0.63 months (95% CI: 0.56, 0.69).

Table 2. Estimated Transition Intensity Matrix of the Multistate Model Among Cancer Patients in the PPS Cohort Study, Ontario, Canada, 2007–2009

<table>
<thead>
<tr>
<th>State*</th>
<th>MLE</th>
<th>95% CI</th>
<th>MLE</th>
<th>95% CI</th>
<th>MLE</th>
<th>95% CI</th>
<th>MLE</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1</td>
<td>0.059</td>
<td>[0.056, 0.061]</td>
<td>0.058</td>
<td>[0.056, 0.059]</td>
<td>1.2e-03</td>
<td>[8.2e-04, 1.7e-03]</td>
<td>4.4e-04</td>
<td>[2.0e-04, 9.9e-04]</td>
</tr>
<tr>
<td>State 2</td>
<td>0.144</td>
<td>[0.137, 0.151]</td>
<td>0.529</td>
<td>[0.545, 0.514]</td>
<td>0.145</td>
<td>[0.126, 0.166]</td>
<td>0.239</td>
<td>[0.221, 0.259]</td>
</tr>
<tr>
<td>State 3</td>
<td>0.00</td>
<td>[0.00, 0.00]</td>
<td>0.142</td>
<td>[0.113, 0.178]</td>
<td>-1.588</td>
<td>[-1.757, -1.436]</td>
<td>1.446</td>
<td>[1.298, 1.611]</td>
</tr>
<tr>
<td>State 4</td>
<td>0.00</td>
<td>[0.00, 0.00]</td>
<td>0.00</td>
<td>[0.00, 0.00]</td>
<td>0.00</td>
<td>[0.00, 0.00]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; MLE, maximum likelihood estimate; PPS, Palliative Performance Scale.
*A patient was classified as being in state 1 (the stable state) if the PPS score was 70–100; state 2 (the transitional state) if the PPS score was 40–60; state 3 (the end-of-life state) if the PPS score was 10–30; and state 4 if deceased.
state at the end of 6 months and a 0.83% chance of being in the end-of-life state at the end of 6 months; the latter probability was low because most patients in the transitional state are already deceased at the 6-month mark (probability = 71%). Patients in the end-of-life state had only a 2.7% chance of experiencing an improvement in performance status (i.e., of being in state 1 or state 2) at the end of 6 months.

The estimates of the transition probability matrices can be used to plot the estimated survival probability against time (in months from cancer diagnosis) from each of the nonabsorbing states, as illustrated in Figure 3. The survival probability for patients in the end-of-life state diminished very rapidly within the first few months after diagnosis. The 12-month survival probability for a patient with end-of-life performance status was approximately 0.02, as opposed to 0.20 and 0.66 for patients with transitional and stable performance status, respectively.

Thus far, all results from our multistate analyses have been based on the true intermittent observation scheme with interval-censoring. Unfortunately, in many studies, interval-censoring is often ignored and unaccounted for in the analyses, primarily because likelihood construction and parameter estimation become increasingly complicated. Mistakenly assuming that the assessment times are the exact times of transition can provide misleading results. Table 4 shows estimates of the 6-month transition probabilities for reaching death from the stable, transitional, and end-of-life states under both intermittent and complete observation schemes. If we assume that the change in a patient’s performance status occurs at the time of assessment, then the probability of transitioning from the stable state to death within 6 months is slightly overestimated. On the other hand, the probabilities of transitioning from the transitional state to death and from the end-of-life state to death within 6 months are underestimated. In fact, by assuming complete observation, a patient in the end-of-life state would believe that he or she has an 85% chance of dying within the next 6 months, whereas in reality, by correctly assuming intermittent observation, this patient has a 97% chance of dying within the next 6 months.

DISCUSSION

The multistate analysis presented in this paper provides insight into the nature of the progression of performance status over time. A patient in the transitional state has a reasonable chance of experiencing an improvement in performance status at the end of 6 months. However, once

Table 3. Estimated 1-Month and 6-Month Transition Probabilities Among Cancer Patients in the PPS Cohort Study, Ontario, Canada, 2007–2009

<table>
<thead>
<tr>
<th>Month and State</th>
<th>Maximum Likelihood Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>State 1</td>
</tr>
<tr>
<td>1 month</td>
<td></td>
</tr>
<tr>
<td>State 1</td>
<td>0.945</td>
</tr>
<tr>
<td>State 2</td>
<td>0.109</td>
</tr>
<tr>
<td>State 3</td>
<td>0.005</td>
</tr>
<tr>
<td>State 4</td>
<td>0.0</td>
</tr>
<tr>
<td>6 months</td>
<td></td>
</tr>
<tr>
<td>State 1</td>
<td>0.750</td>
</tr>
<tr>
<td>State 2</td>
<td>0.216</td>
</tr>
<tr>
<td>State 3</td>
<td>0.019</td>
</tr>
<tr>
<td>State 4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Abbreviation: PPS, Palliative Performance Scale.

* A patient was classified as being in state 1 (the stable state) if the PPS score was 70–100; state 2 (the transitional state) if the PPS score was 40–60; state 3 (the end-of-life state) if the PPS score was 10–30; and state 4 if deceased.

![Figure 3.](image)

Figure 3. Estimated survival probability over time (months) from each nonabsorbing state to death among cancer patients in the PPS Cohort Study, Ontario, Canada, 2007–2009. (PPS, Palliative Performance Scale).

Am J Epidemiol 2011;173:468–475
a patient reaches the end-of-life state, it is very unlikely that his or her performance status will improve; for these patients, the probability of being dead at the end of 6 months is 97%. In this paper, we estimated the multistate model parameters based on the natural intermittent observation scheme. In addition, we highlighted the misleading results and dangers in interpretation that arise if the true observation scheme is ignored.

From a clinical perspective, the multistate model offers a different view and interpretation of the PPS than the existing literature (17, 21). It adds to the prognostic information provided by the instrument and contributes to a clinician’s ability to anticipate a patient’s future needs. The mean sojourn times provided by this multistate model have policy implications if, for example, home-care services are rationed by PPS score. These results show that waiting until a patient reaches the end-of-life state may be too late for discussing hospice/palliative-care options, since patients usually spend less than 1 month in this state. Instead, the transitional state may be the right time for providers to begin palliative-care discussions, since the time spent in this state is often sufficient (1.88 months). Such estimates are not available from a more traditional survival model. Unfortunately, under intermittent observation, the exact time at which a patient reaches the transitional state is unknown, making it difficult for clinicians to advise patients in a timely manner. This should motivate clinicians to decrease the gap between assessments; in this way, the window of time during which a patient enters the transitional state is narrowed down. The cohort included in this study was primarily ambulatory, making the results generalizable to an outpatient clinic setting rather than a palliative-care setting.

In this paper, we have not discussed the use of covariates to understand how risk factors may change the transition rates. The available data consisted of information on age, sex, income quintile, and cancer type for each patient. It is of future interest to examine the association of such variables with the transition intensities of our multistate model under interval-censoring. These methods are currently under investigation.

ACKNOWLEDGMENTS

Author affiliations: Institute for Clinical Evaluative Sciences, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada (Rinku Sutradhar, Lisa Barbera, Hsien Seow); Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada (Rinku Sutradhar); Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (Lisa Barbera); Department of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada (Lisa Barbera); Department of Oncology, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada (Hsien Seow); Department of Nursing Science, Faculty of Nursing, University of Toronto, Toronto, Ontario, Canada (Doris Howell); Department of Family and Community Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (Anmna Husain); and Department of Medicine and Oncology, Faculty of Health Sciences, Queen’s University, Kingston, Ontario, Canada (Deborah Dudgeon).

This work was funded by the Ontario Institute for Cancer Research. This work was also supported by the Institute for Clinical Evaluative Sciences, which is funded by an annual grant from the Ontario Ministry of Health and Long-Term Care.

Conflict of interest: none declared.

REFERENCES

Am J Epidemiol 2011;173:468–475