In their letter, Weiss and Costa (1) rightfully decry the pauce of statistical power arising from low mortality rates in the Jokela et al. (2) data sets. I agree that the null overall results Jokela et al. report for 4 of the Big 5 personality traits are inconclusive for this reason. Instead, the heterogeneity in risk estimates for other dimensions of personality hints at either imprecision arising from low mortality rates, unknown effect modifiers in different samples, or some of both. Perhaps the best interpretation, with which I suspect Jokela et al. would agree, is that conscientiousness has a larger/more consistent association with mortality than do the other Big 5. The remaining 4 axes of personality variation are not irrelevant to survival but are probably important in their own ways among particular persons within particular environments at particular times of life.

Weiss and Costa’s argument about measurement is a rather more complex issue, to which I am sympathetic (3). The emergence of integrative data analysis in psychology has focused on the psychometric harmonization of measurement instruments across samples (4). This issue also arises in genetic epidemiology when the same phenotype is measured differently across disparate studies, which then must be pooled to achieve adequate power. However, the harmonization of psychometric measures across samples, usually done with item response theory, requires a model based on individual-participant data. In their letter, Weiss and Costa (1) rightfully decry the paucity of statistical power arising from low mortality rates in the Jokela et al. (2) data sets. I agree that the null overall results Jokela et al. report for 4 of the Big 5 personality traits are inconclusive for this reason. Instead, the heterogeneity in risk estimates for other dimensions of personality hints at either imprecision arising from low mortality rates, unknown effect modifiers in different samples, or some of both. Perhaps the best interpretation, with which I suspect Jokela et al. would agree, is that conscientiousness has a larger/more consistent association with mortality than do the other Big 5. The remaining 4 axes of personality variation are not irrelevant to survival but are probably important in their own ways among particular persons within particular environments at particular times of life.

Weiss and Costa’s argument about measurement is a rather more complex issue, to which I am sympathetic (3). The emergence of integrative data analysis in psychology has focused on the psychometric harmonization of measurement instruments across samples (4). This issue also arises in genetic epidemiology when the same phenotype is measured differently across disparate studies, which then must be pooled to achieve adequate power. However, the harmonization of psychometric measures across samples, usually done with item response theory, requires a model based on individual-participant data. In their letter, Weiss and Costa (1) rightfully decry the paucity of statistical power arising from low mortality rates in the Jokela et al. (2) data sets. I agree that the null overall results Jokela et al. report for 4 of the Big 5 personality traits are inconclusive for this reason. Instead, the heterogeneity in risk estimates for other dimensions of personality hints at either imprecision arising from low mortality rates, unknown effect modifiers in different samples, or some of both. Perhaps the best interpretation, with which I suspect Jokela et al. would agree, is that conscientiousness has a larger/more consistent association with mortality than do the other Big 5. The remaining 4 axes of personality variation are not irrelevant to survival but are probably important in their own ways among particular persons within particular environments at particular times of life.

Weiss and Costa’s argument about measurement is a rather more complex issue, to which I am sympathetic (3). The emergence of integrative data analysis in psychology has focused on the psychometric harmonization of measurement instruments across samples (4). This issue also arises in genetic epidemiology when the same phenotype is measured differently across disparate studies, which then must be pooled to achieve adequate power. However, the harmonization of psychometric measures across samples, usually done with item response theory, requires a model based on individual-participant data. In their letter, Weiss and Costa (1) rightfully decry the paucity of statistical power arising from low mortality rates in the Jokela et al. (2) data sets. I agree that the null overall results Jokela et al. report for 4 of the Big 5 personality traits are inconclusive for this reason. Instead, the heterogeneity in risk estimates for other dimensions of personality hints at either imprecision arising from low mortality rates, unknown effect modifiers in different samples, or some of both. Perhaps the best interpretation, with which I suspect Jokela et al. would agree, is that conscientiousness has a larger/more consistent association with mortality than do the other Big 5. The remaining 4 axes of personality variation are not irrelevant to survival but are probably important in their own ways among particular persons within particular environments at particular times of life.

Weiss and Costa’s argument about measurement is a rather more complex issue, to which I am sympathetic (3). The emergence of integrative data analysis in psychology has focused on the psychometric harmonization of measurement instruments across samples (4). This issue also arises in genetic epidemiology when the same phenotype is measured differently across disparate studies, which then must be pooled to achieve adequate power. However, the harmonization of psychometric measures across samples, usually done with item response theory, requires a model based on individual-participant data. In their letter, Weiss and Costa (1) rightfully decry the paucity of statistical power arising from low mortality rates in the Jokela et al. (2) data sets. I agree that the null overall results Jokela et al. report for 4 of the Big 5 personality traits are inconclusive for this reason. Instead, the heterogeneity in risk estimates for other dimensions of personality hints at either imprecision arising from low mortality rates, unknown effect modifiers in different samples, or some of both. Perhaps the best interpretation, with which I suspect Jokela et al. would agree, is that conscientiousness has a larger/more consistent association with mortality than do the other Big 5. The remaining 4 axes of personality variation are not irrelevant to survival but are probably important in their own ways among particular persons within particular environments at particular times of life.

Weiss and Costa’s argument about measurement is a rather more complex issue, to which I am sympathetic (3). The emergence of integrative data analysis in psychology has focused on the psychometric harmonization of measurement instruments across samples (4). This issue also arises in genetic epidemiology when the same phenotype is measured differently across disparate studies, which then must be pooled to achieve adequate power. However, the harmonization of psychometric measures across samples, usually done with item response theory, requires a model based on individual-participant data. In their letter, Weiss and Costa (1) rightfully decry the paucity of statistical power arising from low mortality rates in the Jokela et al. (2) data sets. I agree that the null overall results Jokela et al. report for 4 of the Big 5 personality traits are inconclusive for this reason. Instead, the heterogeneity in risk estimates for other dimensions of personality hints at either imprecision arising from low mortality rates, unknown effect modifiers in different samples, or some of both. Perhaps the best interpretation, with which I suspect Jokela et al. would agree, is that conscientiousness has a larger/more consistent association with mortality than do the other Big 5. The remaining 4 axes of personality variation are not irrelevant to survival but are probably important in their own ways among particular persons within particular environments at particular times of life.

Weiss and Costa’s argument about measurement is a rather more complex issue, to which I am sympathetic (3). The emergence of integrative data analysis in psychology has focused on the psychometric harmonization of measurement instruments across samples (4). This issue also arises in genetic epidemiology when the same phenotype is measured differently across disparate studies, which then must be pooled to achieve adequate power. However, the harmonization of psychometric measures across samples, usually done with item response theory, requires a model based on individual-participant data. In their letter, Weiss and Costa (1) rightfully decry the paucity of statistical power arising from low mortality rates in the Jokela et al. (2) data sets. I agree that the null overall results Jokela et al. report for 4 of the Big 5 personality traits are inconclusive for this reason. Instead, the heterogeneity in risk estimates for other dimensions of personality hints at either imprecision arising from low mortality rates, unknown effect modifiers in different samples, or some of both. Perhaps the best interpretation, with which I suspect Jokela et al. would agree, is that conscientiousness has a larger/more consistent association with mortality than do the other Big 5. The remaining 4 axes of personality variation are not irrelevant to survival but are probably important in their own ways among particular persons within particular environments at particular times of life.
species, each of the Big 5 involves an array of more specific personality dispositions, each with subcomponents and so forth. Brief measures, such as those included in the Jokela et al. data sets, capture only a few elements of this taxonomy. At worst, such measures are like characterizing the genus *Canis* by only a wolf and a miniature dachshund, with no representation of anything in between. On the other hand, that may be better than omitting the entire *Canis* genus from biological classification or not collecting personality data at all in an epidemiologic study. Regardless of where one falls on this issue, Jokela et al. did not design the studies and cannot be faulted for the measurement approach. By the same token, however, existing data must be interpreted in light of design limitations. But who among us has not been seized by over-exuberance in the midst of interesting data? Weiss and Costa’s petition for circumspection is thus a valuable reminder of the complexities attending the epidemiologic study of personality phenotype.

ACKNOWLEDGMENTS

Conflict of interest: none declared.

REFERENCES

Benjamin P. Chapman
(e-mail: ben_chapman@urmc.rochester.edu)

Department of Psychiatry, University of Rochester Medical Center, Rochester, NY 14624

DOI: 10.1093/aje/kwt301; Advance Access publication: February 5, 2014