1	Supplementary Material
2	
3	Title: Tadalafil improves L-NG-nitroarginine methyl ester-induced preeclampsia
4	with fetal growth restriction-like symptoms in pregnant mice.
5	
6	Running head: Tadalafil improves preeclampsia in pregnant mice.
7	
8	Kento Yoshikawa, ¹ Takashi Umekawa, ¹ Shintaro Maki, ¹ Michiko Kubo, ¹ Masafumi Nii,
9	¹ Kayo Tanaka, ¹ Hiroaki Tanaka, ¹ Kazuhiro Osato, ¹ Yuki Kamimoto, ¹ Eiji Kondo, ¹
10	Kenji Ikemura, ² Masahiro Okuda, ² Kan Katayama, ³ Takekazu Miyoshi, ⁶ Hiroshi
11	Hosoda, ⁷ Ning Ma, ⁴ Toshimichi Yoshida, ⁵ and Tomoaki Ikeda. ¹ .
12	
13	Department of Obstetrics and Gynecology, ¹ Cardiology and Nephrology, ³ and
14	Pathology and Matrix Biology, ⁵ Mie University Graduate School of Medicine, Tsu,
15	Japan
16	Department of Pharmacy, ² Mie University Hospital, Tsu, Japan

1	⁴ Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
2	⁶ Department of Perinatology and Gynecology, ⁷ Department of Regenerative Medicine
3	and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan
4	Corresponding author: Takashi Umekawa, M.D., PhD
5	Address. 2-174 Edobashi, Tsu city, Mie, Japan
6	Zip code. 514-8507
7	E-mail. umekawa.t@gmail.com
8	Phone. +81-59-232-1111
9	Fax. +81-59-231-5202
10	Disclosure
11	The authors declared no conflict of interest.
12	Keywords: tadalafil; preeclampsia; fetal growth restriction; placental growth factor;
13	oxidative stress; mouse.
14	

1 SUPPLEMENTARY INFORMATION

2	Supplementary Methods.
3	Measurement of systolic blood pressure (SBP).
4	SBP was measured at least three times for conscious mice using an indirect
5	tail-cuff method (MK-2000; Muromachi Kikai Co., Tokyo, Japan) ¹ . An average of three
6	recordings were calculated for each measurement.
7	
8	Evaluation of proteinuria.
9	Urine was obtained by gentle abdominal pressure 16 d.p.c. Proteinuria was
10	semi-quantitatively assessed by assigning a score ranging from 0 to 3 based on results
11	of a dipstick test (My Uri-Ace T [®] . Terumo, Tokyo, Japan) ² .
12	
13	Placental growth factor (PlGF) and soluble fms-like tyrosine kinase-1 (sFlt-1) ELISA in
14	the serum and the placenta.
15	Maternal serum samples from the dams 17 d.p.c. were collected and stored at
16	-80°C before assays were conducted. One randomly chosen placenta was collected

1	from each dam. These placentas were homogenized by sonication in the presence of 50
2	mM Tris-HCl (pH 7.3), 100 mM NaCl, 5 mM EDTA, 1 mM EGTA (all from
3	Sigma-Aldrich, St Louis, MO, US), and a protease inhibitor cocktail (Nacalai tesque,
4	Kyoto, Japan). Homogenates were centrifuged at 10,000 \times g and 4°C for 10 min, and
5	the supernatants were collected. Protein content was measured using the Qubit protein
6	assay kit and Qubit 3.0 (Invitrogen, Carlsbad, CA, US), and samples were aliquoted and
7	stored at -80°C.
8	PIGF and sFlt-1 concentrations in the maternal serum and the placenta were
9	determined using the Quantikine Elisa kit (R&D systems, Minneapolis, MN, US).
10	Samples were assayed in duplicate.
11	
12	Histopathological and immunohistochemical analysis of the placenta.
13	Placental tissue sections (3-µm thick) were stained using hematoxylin and eosin
14	(HE), and the area of three placental layers (decidua, junctional zone, labyrinth zone)
15	was measured using an image analyzer (DP 70 and DP controller; Olympus, Tokyo,
16	Japan) ¹ . Two or three placentas from each dam were randomly selected for histological

1 assessment.

2	Sections were incubated overnight at room temperature with rabbit polyclonal
3	anti- α SMA antibody (1:200, Abcam, Cambridge, MA, US) to stain the endothelial cells
4	of fetal capillaries in the labyrinth zone ³ . The sections were incubated with goat
5	anti-rabbit IgG for 3 h before being incubated with peroxidase antiperoxidase complex
6	for 2 h. Sections were incubated with 3,3'-diaminobenzidine (DAB) (DAB substrate kit;
7	Vector Laboratories, Burlingame, CA, US). The centerlines of each of the maternal
8	blood sinuses (α SMA-negative) and fetal capillaries (α SMA-positive) in the placental
9	labyrinth zone were manually selected, and their widths were measured ⁴ . We analyzed
10	50 fetal capillaries and sinuses for 3–4 placentas per group.
11	
12	Histopathological and immunohistochemical analysis of the kidney.
13	Kidney specimens were fixed in 4% paraformaldehyde (Nacalai tesque) in 0.01
14	M sodium phosphate buffer (PBS) (pH 7.4) and subsequently embedded in paraffin
15	(Merck Ltd., Darmstadt, Germany) using standard procedures. Paraffin blocks were cut
16	into 3-µm sections for periodic acid Schiff (PAS) staining to analyze sclerotic changes.

1	The sclerotic index was examined in 50 glomeruli randomly selected from each dam in
2	a blinded manner. The sclerotic index was divided into five categories: 0 (no apparent
3	damaged area), +1 (1-25% damaged area), +2 (26-50% damaged area), +3 (51-75%
4	damaged area), and + 4 $(76-100\% \text{ damaged area})^5$.
5	To evaluate oxidative stress in the kidney, after deparaffinization and rehydration,
6	antigen was retrieved in 5% urea buffer by microwave heating for 5 min before being
7	incubated in 1% H_2O_2 for 30 min to block endogenous peroxidase activity. Sections
8	were incubated overnight at room temperature with mouse monoclonal
9	anti-8-hydroxy-2'-deoxyguanosine (8-OHdG) antibody (1:200; Japan Institute for the
10	Control of Aging, Shizuoka, Japan). The sections were incubated in biotinylated
11	anti-mouse IgG for 3 h before incubation with avidin-biotin complex (Vectastain ABC
12	kit, Vector Laboratories) for 2 h. The sections were subsequently incubated with DAB
13	(DAB substrate kit, Vector Laboratories). Glomerular 8-OHdG immunostaining was

14 evaluated using a semiquantitative scoring system as described earlier⁶.

Measurement of urinary cGMP and creatinine levels.

- The cGMP concentrations were measured with a cyclic GMP radio immunoassay
 kit (Yamasa, Tokyo, Japan) according to the manufacturer's instructions. Concentration
- 3 of urinary creatinine was determined by the Creatinine-Wako test (Wako).

4

Supplementary Results

	C dam (n=6)	L dam (n=7)	TL dam (n=6)
Body weight at 11d.p.c. (g)	25.7 ± 1.0	26.3 ± 1.4	25.8 ± 1.0
Body weight at 13d.p.c. (g)	28.1 ± 1.5	26.3 ± 1.5	26.7 ± 1.0
Body weight at 17d.p.c. (g)	34.8 ± 1.6	$31.6 \pm 2.3*$	32.3 ± 1.3
Maternal weight gain from 13 to 17 d.p.c. (g)	6.7 ± 0.8	$5.3 \pm 0.9^{*}$	5.6 ± 0.7
Food intake (g/day)	4.7 ± 0.6	4.0 ± 0.6	4.5 ± 0.6

Table S1. Maternal body weight and food intake during pregnancy.

* indicates p<0.05 compared to the control group by one-way ANOVA followed by Bonferroni's post-hoc test.

Figure S1 Yoshikawa K et al.

1 Supplementary Figure Legends.

3 Figure S1. Maternal and fetal outcomes in normal pregnancy with tadalafil

4 treatment.

- 5 The maternal body weight 17 d.p.c., (A), the maternal weight gain from 13 to 17 d.p.c.
- 6 (B), the maternal daily food intake (C), the mean SBP 16 d.p.c (D), and PIGF and sFlt-1
- 7 concentrations of the placenta (G and H) of the dams in the no-treatment group (n=6)
- 8 and the tadalafil-treated group (n=3). Fetal weight (E) and placental weight (F) of the
- 9 no-treatment group (n=49) and the tadalafil-treated group (n=21). An unpaired
- 10 Student's *t* test was used when comparing between the no-treatment group and the
- 11 tadalafil-treated group.

12

1 Supplementary References

2	1.	Umekawa T, Sugiyama T, Du Q, Murabayashi N, Zhang L, Kamimoto Y, Yoshida
3		T, Sagawa N, Ikeda T. A maternal mouse diet with moderately high-fat levels does
4		not lead to maternal obesity but causes mesenteric adipose tissue dysfunction in
5		male offspring. J Nutr Biochem. 2015;26(3):259-266.
6	2.	Herraiz S, Pellicer B, Serra V, Cauli O, Cortijo J, Felipo V, Pellicer A. Sildenafil
7		citrate improves perinatal outcome in fetuses from pre-eclamptic rats. BJOG Int J
8		Obstet Gynaecol. 2012;119(11):1394-1402.
9	3.	Walter I, Schönkypl S. Extracellular matrix components and matrix degrading
10		enzymes in the feline placenta during gestation. <i>Placenta</i> . 2006;27(2-3):291-306.
11	4.	Muto M, Fujihara Y, Tobita T, Kiyozumi D, Ikawa M. Lentiviral Vector-Mediated
12		Complementation Restored Fetal Viability but Not Placental Hyperplasia in
13		Plac1-Deficient Mice. <i>Biol Reprod</i> . 2016;94(1):6.
14	5.	Katayama K, Kawano M, Naito I, Ishikawa H, Sado Y, Asakawa N, Murata T,
15		Oosugi K, Kiyohara M, Ishikawa E, Ito M, Nomura S. Irradiation prolongs survival

1 01 Alport lince. <i>J Am Soc Nephrol JASN</i> . 2008,19(9).1092-1700.

2	6.	Kobayashi S, Satoh M, Namikoshi T, Haruna Y, Fujimoto S, Arakawa S, Komai N,
3		Tomita N, Sasaki T, Kashihara N. Blockade of serotonin 2A receptor improves
4		glomerular endothelial function in rats with streptozotocin-induced diabetic
5		nephropathy. Clin Exp Nephrol. 2008;12(2):119-125.