REFERENCES

SUPERVALUATIONISM AND THE LAW OF EXCLUDED MIDDLE

By Michael Tye

According to supervaluationists, a vague sentence is true if it is true under all eligible ways of making it completely precise, false if it is false under all eligible ways of making it completely precise, and indefinite or neither true nor false otherwise. On this approach, simple sentences about borderline cases are indefinite in truth-value. However, complex sentences whose component sentences are indefinite may be either true or false. Consider, for example, the sentence

(1) Either Herbert is bald or not bald,

and suppose that Herbert is a borderline bald man. Since any acceptable precisification of 'bald' will guarantee that one of the two disjuncts is true while the other is false, (1) is a logical truth, the component sentences of which are indefinite. So, (1) retains its classical status within the supervaluationist framework.

One obvious objection to supervaluationism is that the Law of Excluded Middle (LEM) should fail for some vague sentences. For if (1) is true then either Herbert is bald or he is not bald. If this is the case then the question, 'Well, which one is it then?', must surely have an answer. So, if (1) is true then one of the disjuncts in (1) must surely be true. But if the second disjunct is true the first must be false. So, 'Herbert is bald' must be either true or false. This runs contrary to the assumption that Herbert is a borderline bald man. So (1) is not true.
It seems to me that the above objection has considerable force. In this note, I want to examine one interesting response that the supervaluationist can make. What I shall argue that this response, due to Kit Fine,\(^1\) is unsuccessful.

Consider the ambiguous sentence

\[(2) \text{John went to the bank or he didn't.}\]

Suppose that 'John went to the money bank' (\(J_1\)) and 'John went to the river bank' (\(J_2\)) are the disambiguations of 'John went to the bank'. Suppose also that John is in pursuit of fish and not money. Then (2) is true. For an ambiguous sentence is true if each of its disambiguations is true, and both \(J_1 \lor J_1\) and \(J_2 \lor J_2\) are true. However, neither disjunct in (2) is true, since each disjunct has a false disambiguation. Fine concludes (p. 285): 'Mere ambiguity does not impugn LEM. So why should vagueness?'

The analogy Fine draws between vagueness and ambiguity is, I think, significant. But his approach to ambiguity will not bear the weight he wishes to place on it. Let me explain.

The crucial assertion in Fine's response is the assertion that an ambiguous sentence is true if each of its disambiguations is true. Is this assertion (hereafter A) itself true? Consider the following case: Suppose that the money bank is located on the river bank and that John went for both money and fish. On Fine's view, the sentence 'John went to the bank' (\(J\)) is true. At first glance, this certainly seems reasonable enough. For 'bank' means either money bank or river bank. If it means money bank then \(J\) is true and if it means river bank, \(J\) is true. So, of course, \(J\) is true.

Matters are not so simple, however. To begin with, John went to two distinct banks. This alone should lead us to question whether it really is true that John went to the bank. Secondly, the claim that 'bank' has as its sole disambiguations 'money bank' and 'river bank' does not entail that 'bank' means either money bank or river bank. If 'bank' has not been disambiguated then it is not true that it means money bank and it is also not true that it means river bank.\(^2\) In these circumstances, the claim that 'bank' means either money bank or river bank is surely not true. After all, this claim is not ambiguous and neither of its disjuncts is true. Given that 'bank' has as its sole disambiguations 'money bank' and 'river bank' what follows, then, is not that 'bank' means either money bank or river bank but rather that if 'bank' were disambiguated it would mean one of the two. In the case at hand, then, what, I think, we should say is this: although \(J\) is true whether 'bank' means money bank or river bank — either way \(J\) is true — this does not mean that \(J\) is true.

\(^1\) Kit Fine, 'Vagueness, Truth, and Logic', Synthese 30 (1975), 284-5.

\(^2\) In my view, this is not because it is false that 'bank' means money bank and false that it means river bank. Rather it is indefinite or neither true nor false: there is no determinate, objective fact of the matter as to whether 'bank' means money bank or whether it means river bank if it has not been disambiguated.

simpliciter. As far as J's truth is concerned, which disambiguation is chosen does not matter. Still if J is to be true one of the two disambiguations must be chosen over the other. More generally, it seems to me that the fact that an ambiguous sentence would be true were it to come out true under all of its permissible disambiguations is not good reason to hold that the sentence is, in fact, true prior to disambiguation.

It might be argued that there is another quite different way of defending Fine's assertion A: where a sentence is ambiguous, simply take the sentence to express a disjunctive proposition, each disjunct of which constitutes an unambiguous meaning of the sentence. In the case of J, then, take J to express the proposition that either John went to the riverbank or he went to the money-bank. I reject this approach since it runs counter to the view that J is not unconditionally true in the case I described above. But putting this to one side, the immediate problem with the proposal is that it destroys the analogy which Fine alleges to obtain between ambiguity and vagueness. For now J is true notwithstanding the fact that it has a false disambiguation. So, Fine cannot claim that (2), like (1), is a true statement, the disjuncts of which are not true.

I see no other ways of supporting A. It seems to me, then, that ambiguity does not provide the supervaluationist with clear, uncontentious examples of statements of the form, \(pv \sim p \), that are true even though neither disjunct is true. I conclude that Fine's defence of supervaluationism against what is, prima facie, a compelling objection fails.

Temple University, Philadelphia, PA 19122, U.S.A.

ON SITUATIONS AND THE WORLD: A PROBLEM FOR BARWISE AND ETCHEMENDY

By Patrick Grim and Gary Mar

NOTIONS of 'situations' and 'the world' figure prominently in Jon Barwise and John Etchemendy's The Liar: An Essay on Truth and Circularity. For these notions they give the following account:

We will model the world as a collection of facts, where we model facts with tuples \((R, a_1, \ldots, a_n, i)\) consisting of any \(n\)-ary relation (for some \(n\)), an \(n\)-tuple of objects, and a polarity \(i \in \{1, 0\}\), representing the having \((i = 1)\) or not having \((i = 0)\) of the relation. Since situations are portions of the world, we will model them with subsets of the collection of all facts. ([4], p. 30)