Predictors of early relapse in postmenopausal women with hormone receptor-positive breast cancer in the BIG 1-98 trial

On the behalf of BIG 1-98 Collaborative Group and International Breast Cancer Study Group, Berne, Switzerland

1French Breast Cancer Group, Institut Bergonie, Bordeaux, France; 2International Breast Cancer Study Group Statistical Center, Dana-Farber Cancer Institute, Boston, MA, USA; 3Institut Bergonie, Bordeaux, France; 4Danish Breast Cancer Cooperative Group, Rigshospitalet, Copenhagen, Denmark; 5Australian New Zealand Breast Cancer Trials Group, University of Newcastle, Newcastle Mater Hospital, Newcastle, New South Wales, Australia; 6Senology Center of Eastern Switzerland, Switzerland, Swiss Group for Clinical Cancer Research, Kantonsspital, St Gallen; 7University Hospital Gasthuisberg, Catholic University of Leuven, Belgium; 8Centre Hospitalier Belfort, Montbeliard, France; 9National Institute of Oncology, Budapest, Hungary; 10Christie Hospital NHS Trust, South Manchester University Hospital Trust, Manchester, UK; 11Jules Bordet Institute, Brussels, Belgium; 12International Breast Cancer Study Group Statistical Center, Dana-Farber Cancer Institute, Harvard School of Public Health and Frontier Science and Technology Research Foundation, Boston, MA, USA; 13International Breast Cancer Study Group Coordinating Center and Inselspital, Berne, Switzerland; 14International Breast Cancer Study Group Statistical Center and Frontier Science and Technology Research Foundation, Boston, MA, USA; 15International Breast Cancer Study Group, Berne, Switzerland and University of Sydney, Australia; 16The Royal Marsden Hospital, London, UK; 17European Institute of Oncology, Milan, Italy; 18Moscow Municipal Oncology Hospital #62, Stepanovskoe, Krasnogorski Province, Moscow Region, Russia; 19European Institute of Oncology, Milan, Italy and Oncology Institute of Southern Switzerland, Bellinzona, Switzerland

Received 31 October 2006; revised 2 January 2007; accepted 3 January 2007

Background: Aromatase inhibitors are considered standard adjuvant endocrine treatment of postmenopausal women with hormone receptor-positive breast cancer, but it remains uncertain whether aromatase inhibitors should be given upfront or sequentially with tamoxifen. Awaiting results from ongoing randomized trials, we examined prognostic factors of an early relapse among patients in the BIG 1-98 trial to aid in treatment choices.

Patients and methods: Analyses included all 7707 eligible patients treated on BIG 1-98. The median follow-up was 2 years, and the primary end point was breast cancer relapse. Cox proportional hazards regression was used to identify prognostic factors.

Results: Two hundred and eighty-five patients (3.7%) had an early relapse (3.1% on letrozole, 4.4% on tamoxifen). Predictive factors for early relapse were node positivity (P < 0.001), absence of both receptors being positive (P < 0.001), high tumor grade (P < 0.001), HER-2 overexpression/amplification (P < 0.001), large tumor size (P = 0.001), treatment with tamoxifen (P = 0.002), and vascular invasion (P = 0.02). There were no significant interactions between treatment and the covariates, though letrozole appeared to provide a greater than average reduction in the risk of early relapse in patients with many involved lymph nodes, large tumors, and vascular invasion present.

Conclusion: Upfront letrozole resulted in significantly fewer early relapses than tamoxifen, even after adjusting for significant prognostic factors.

Key words: adjuvant endocrine therapy, aromatase inhibitor, breast cancer, early relapse, letrozole, prognostic factors

Introduction

The primary core analysis of the BIG 1-98 trial, coordinated by the International Breast Cancer Study Group, compared letrozole to tamoxifen given for 5 years alone or in sequence, in postmenopausal women with estrogen and/or progesterone receptor (ER/PgR)-positive breast cancer. Patients were randomized from 1998 to 2003 to tamoxifen for 5 years, letrozole for 5 years, tamoxifen for 2 years followed by letrozole for 3 years or letrozole for 2 years followed by tamoxifen for 3 years. A significant benefit of letrozole (19% risk reduction) on disease-free survival was seen, particularly for distant metastasis, at a median follow-up of 25.8 months [1].
A total of five trials have shown that aromatase inhibitors improve disease-free survival compared with tamoxifen alone. ATAC (anastrozole) [2] and BIG 1-98 (letrozole) [1] compared upfront aromatase inhibitor for 5 years to tamoxifen for 5 years. The other three trials, IES (exemestane) [3], ITA (anastrozole) [4], and ABCSG 8-ARNO 95 (anastrozole) [5], compared tamoxifen alone for 5 years to sequential treatment with tamoxifen for 2–3 years and aromatase inhibitor for 2–3 years. While waiting for the definitive results of BIG 1-98 comparing upfront letrozole to sequential treatment, we conducted an exploratory analysis to determine which patients could benefit most from the best treatment to prevent early relapse.

The focus of the present analysis was to retrospectively identify patients who might most benefit from the initial selection of letrozole versus tamoxifen, on the basis of clinical and pathological prognostic factors of early relapse.

patients and methods

The analysis population was comprised of eligible patients randomized to BIG 1-98 and excluded patients who withdrew consent to participate in the trial before initiating treatment. Patients were included according to the treatment to which they were randomized.

The primary end point was breast cancer relapse, defined as the first proven invasive local, contralateral breast, regional, or distant recurrence in any site. Secondly, nonbreast malignancies were ignored and deaths without proven recurrence were censored. Analyses were based on treatment with tamoxifen or letrozole alone; follow-up and events were censored if they occurred beyond 2 years after randomization for patients in the two monotherapy arms, and beyond the date of treatment switch or 2 years after randomization (whichever was earlier) for patients in the sequential treatment arms. The analysis thus focused exclusively on early relapse.

Prognostic factors tested included age at randomization (<55, 55–64, 65+ years), pathological tumor size (<2, ≥2 cm), tumor grade (1, 2, 3, missing), mitotic grade (1, 2, 3, missing), locally assessed ER/PgR status (ER+, PgR+, ER+/PgR–, ER+/PgR unknown, ER–/PgR+), centrally assessed HER-2 status (overexpressed/amplified, normal, missing), axillary node positivity (zero, one to three, four or more positive nodes), and vascular invasion (yes, no, not assessable). All covariates were modeled categorically using indicator variables. Significance for HER-2 status was on the basis of the pairwise comparison of overexpressed versus normal, and significance for vascular invasion was on the basis of the pairwise comparison of yes versus no. Covariates with >5% of values missing were modeled with an indicator for missing values; covariates with ≤5% values were not modeled with an indicator, and patients with missing values for these covariates were excluded from the models.

Cox proportional hazards regression analyses were used to identify significant prognostic factors, and all models included randomized treatment assignment (letrozole, tamoxifen). Only covariates that were significant ‘univariable’ (in a model that also included treatment) were considered in multivariate models. A full multivariate model was then fitted, and a manual backwards selection was conducted. To ensure noncollinearity in multivariate analyses, Spearman rank correlations were examined and Akaike’s Information Criterion (AIC) was used to select between covariates with a correlation >0.50. After the significant main effects were identified, interactions between the main effects and treatment were tested to determine whether the effect of the covariate on the risk of relapse differed according to the treatment the patient initially received; interactions were tested individually to conserve power.

A total of 7707 of the 8028 patients were included (18 patients withdrew consent to participate before initiating treatment, 133 patients were ineligible, and another 170 had missing covariate values). At a median follow-up of 2 years (range 0.01–2 years), 285 patients (3.7%) had a relapse. Early relapse rates are 3.0% for the letrozole group and 4.4% for the tamoxifen group. The dominant sites of relapse are presented in Table 1 by treatment.

Table 2 gives the breakdown of the covariates by relapse status and also includes information on treatments received (radiotherapy, surgery, and chemotherapy). In ‘univariable’ models (including treatment), age was the only nonsignificant covariate (P = 0.67). Tumor grade and mitotic grade had a correlation of 0.60 and virtually identical AIC values; since tumor grade is a more commonly reported characteristic, it was kept in the full multivariate mode and mitotic grade was dropped. Node positivity and tumor size had a moderate correlation of 0.26; all other correlations were <16% in magnitude.

The significant prognostic factors in a multivariate analysis were node positivity (P < 0.001), lack of both receptors being positive (P < 0.001), tumor grade (P < 0.001), HER-2 expression/amplification (P < 0.001), tumor size (P = 0.001), endocrine treatment (P = 0.002), and vascular invasion (P = 0.02). The results from the final multivariate Cox regression model are presented in Table 3. Increasing tumor grade resulted in an increased risk of relapse. Risk of relapse by combined receptor status ranked as follows: ER+/PgR+ > ER+/PgR– > ER−/PgR– > ER−/PgR unknown > ER−/PgR+. Patients with vascular invasion had a greater risk of relapse than those without; tumor with no assessable vascular invasion had an intermediate risk. Risk of relapse was greatest for patients with a high number of involved nodes, those with larger tumors, and those with HER-2 overexpressed/amplified tumors. There were no major violations of the proportional hazards assumption.

Letrozole resulted in a significant reduction in early relapse, even after adjusting for significant prognostic factors. Figure 1 shows average semianual hazards of early relapse by treatment.

Table 1. Sites of early relapse by treatment

<table>
<thead>
<tr>
<th>Site of early relapse</th>
<th>Treatment</th>
<th>Letrozole (N = 3863)</th>
<th>Tamoxifen (N = 3844)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Local</td>
<td>12</td>
<td>0.3</td>
<td>23</td>
</tr>
<tr>
<td>Contralateral breast</td>
<td>14</td>
<td>0.3</td>
<td>15</td>
</tr>
<tr>
<td>Regional</td>
<td>7</td>
<td>0.2</td>
<td>5</td>
</tr>
<tr>
<td>Distant</td>
<td>87</td>
<td>2.3</td>
<td>125</td>
</tr>
<tr>
<td>Soft tissue</td>
<td>5</td>
<td><0.1</td>
<td>7</td>
</tr>
<tr>
<td>Bone</td>
<td>39</td>
<td>1.0</td>
<td>57</td>
</tr>
<tr>
<td>Viscera</td>
<td>45</td>
<td>1.2</td>
<td>61</td>
</tr>
</tbody>
</table>
The difference in hazards appears to emerge around 1 year following randomization.

Figure 2 shows Cox model hazard ratios and confidence intervals (CIs) within subgroups of the significant prognostic factors. For all of the subgroups examined, with the exception of the grade 3 cohort, fewer early relapses were observed for the letrozole group compared with the tamoxifen group. The 95% CI for the hazard ratio of risk of early relapse for letrozole compared with tamoxifen did not cross the solid vertical line at 1.0 for patients with tumors that were bigger than 2 cm, grade 1 or 2, ER+ and PgR+/unknown, with four or more positive nodes, and with vascular invasion.

Within each subgroup in Figure 2, boxes located to the left of the dashed vertical line indicate that the observed effect of letrozole in that subgroup was greater than the effect of letrozole in the overall population. Though the observed effect of letrozole was greatest in patients with tumors that were grade 1, ER+/PgR unknown, or HER-2 over-expressing/amplified, these results were on the basis of little data (small boxes for hazard ratios and wide CIs). The data indicating a larger benefit from letrozole were statistically more robust for patients with four or more positive nodes, those with tumors >2 cm in diameter, or those with vascular invasion.

A comparison of the hazard ratios across the subgroup levels of each covariate (e.g. between tumors ≤2 cm and >2 cm) in Figure 2 shows that none of the prognostic factors is significantly predictive for the specific efficacy of letrozole. None of the interaction terms was statistically significant, as seen by the fact that, for each covariate, the CIs across levels of that covariate overlap. For example, the benefit of letrozole in patients with four or more positive nodes did not significantly differ from the benefit seen in patients with one to three or zero positive nodes.

Thus, the results of this multivariate analysis show that (i) letrozole significantly reduced the risk of early relapse compared with tamoxifen overall; (ii) within many but not all subgroups letrozole was significantly better than tamoxifen in preventing early relapse; and (iii) statistically there was no difference in the effect of letrozole across subgroup levels of any of the covariates examined, but letrozole was qualitatively more effective than tamoxifen within some subgroups (patients with four or more positive nodes, tumors >2 cm in diameter, or with vascular invasion).

The difference in hazards appears to emerge around 1 year following randomization.

Figure 2 shows Cox model hazard ratios and confidence intervals (CIs) within subgroups of the significant prognostic factors. For all of the subgroups examined, with the exception of the grade 3 cohort, fewer early relapses were observed for the letrozole group compared with the tamoxifen group. The 95% CI for the hazard ratio of risk of early relapse for letrozole compared with tamoxifen did not cross the solid vertical line at 1.0 for patients with tumors that were bigger than 2 cm, grade 1 or 2, ER+ and PgR+/unknown, with four or more positive nodes, and with vascular invasion.

Within each subgroup in Figure 2, boxes located to the left of the dashed vertical line indicate that the observed effect of letrozole in that subgroup was greater than the effect of letrozole in the overall population. Though the observed effect of letrozole was greatest in patients with tumors that were grade 1, ER+/PgR unknown, or HER-2 over-expressing/amplified, these results were on the basis of little data (small boxes for hazard ratios and wide CIs). The data indicating a larger benefit from letrozole were statistically more robust for patients with four or more positive nodes, those with tumors >2 cm in diameter, or those with vascular invasion.

A comparison of the hazard ratios across the subgroup levels of each covariate (e.g. between tumors ≤2 cm and >2 cm) in Figure 2 shows that none of the prognostic factors is significantly predictive for the specific efficacy of letrozole. None of the interaction terms was statistically significant, as seen by the fact that, for each covariate, the CIs across levels of that covariate overlap. For example, the benefit of letrozole in patients with four or more positive nodes did not significantly differ from the benefit seen in patients with one to three or zero positive nodes.

Thus, the results of this multivariate analysis show that (i) letrozole significantly reduced the risk of early relapse compared with tamoxifen overall; (ii) within many but not all subgroups letrozole was significantly better than tamoxifen in preventing early relapse; and (iii) statistically there was no difference in the effect of letrozole across subgroup levels of any of the covariates examined, but letrozole was qualitatively more effective than tamoxifen within some subgroups (patients with four or more positive nodes, tumors >2 cm, or with vascular invasion).

Discussion

Though a number of trials have shown superiority of aromatase inhibitors compared with standard tamoxifen therapy or placebo, it remains unclear whether an aromatase inhibitor should be given in sequence with tamoxifen or in place of it. Use of mathematical models with data from the aforementioned aromatase inhibitor trials led Cuzick et al. [6] to assert that early treatment with an aromatase inhibitor is superior to sequencing after 2 years of tamoxifen. Punglia et al. [7] reached the opposite conclusion when applying simulations on the basis of data from the aforementioned trials, namely that sequential therapy is preferable to an aromatase inhibitor alone.

Treatment choices on the basis of prognostic factors of relapse, without focusing on early relapses, have been previously studied. Among patients with small tumors without axillary
nodal involvement, and who did not receive adjuvant systemic therapy, high grade and lymphovascular invasion are commonly considered prognostic factors for recurrence at 10 years of follow-up [8]. Data are somewhat conflicting regarding the prognostic value of steroid hormone receptor status. According to a retrospective study by Bardou et al. [9] in the absence of adjuvant tamoxifen, PgR negativity is not a poor prognostic factor. In patients treated with tamoxifen, ER+/PgR− tumors displayed more aggressive features compared with ER+/PgR+ tumors [9, 10]. However, in a retrospective study from two randomized trials of adjuvant tamoxifen versus no other treatment, Dowsett et al. [11] found that antiestrogen improves relapse-free survival in case of ER+ tumors, regardless of PgR status. Nevertheless, these results would be better analyzed taking into account expression level of PgR [12].

In patients treated with anastrozole in the ATAC trial, Dowsett et al. [13] found that those with ER+/PgR− tumors had the same prognosis as those with ER+/PgR+ tumors, and that anastrozole was more effective than tamoxifen in both groups. Analyses of early relapses are infrequently carried out, but can be used to inform treatment choices, particularly for high-risk patients. Our analysis showed that highest risk for early relapse is linked to tumor burden (tumor size, nodal involvement) and tumor aggressiveness (high grade, partial endocrine insensitivity, HER-2neu overexpression, vascular invasion). These findings are supported by three recent retrospective analyses carried out on patients treated with tamoxifen [14–16] or toremifene [16]. These studies identified grade 3 [14, 15],

<table>
<thead>
<tr>
<th>Variable</th>
<th>Comparison</th>
<th>Hazard ratio</th>
<th>95% CI lower limit</th>
<th>95% CI upper limit</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>Letrozole versus tamoxifen</td>
<td>0.69</td>
<td>0.5</td>
<td>0.9</td>
<td>0.002</td>
</tr>
<tr>
<td>Tumor size</td>
<td>>2 versus ≤2 cm</td>
<td>1.54</td>
<td>1.2</td>
<td>2.0</td>
<td>0.001</td>
</tr>
<tr>
<td>Tumor grade</td>
<td>Grade 3 versus 1</td>
<td>2.43</td>
<td>1.6</td>
<td>3.6</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Grade 2 versus 1</td>
<td>1.55</td>
<td>1.1</td>
<td>2.3</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Grade 3 versus 2</td>
<td>1.57</td>
<td>1.2</td>
<td>2.1</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>Grade missing versus 1</td>
<td>1.96</td>
<td>1.2</td>
<td>3.1</td>
<td>0.005</td>
</tr>
<tr>
<td>ER/PgR status</td>
<td>ER+/PgR− versus ER+/PgR+</td>
<td>2.04</td>
<td>1.5</td>
<td>2.7</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>ER+/PgR unknown versus ER+/PgR+</td>
<td>1.59</td>
<td>1.1</td>
<td>2.2</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>ER+/PgR− versus ER+/PgR unknown</td>
<td>1.28</td>
<td>0.9</td>
<td>1.8</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>ER−/PgR+ versus ER+/PgR+</td>
<td>3.10</td>
<td>1.7</td>
<td>5.6</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>ER−/PgR+ versus ER+/PgR−</td>
<td>1.52</td>
<td>0.8</td>
<td>2.8</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>ER−/PgR+ versus ER+/PgR unknown</td>
<td>1.95</td>
<td>1.0</td>
<td>3.7</td>
<td>0.04</td>
</tr>
<tr>
<td>HER-2</td>
<td>Overexpressed versus normal</td>
<td>2.48</td>
<td>1.6</td>
<td>3.8</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Missing versus normal</td>
<td>0.79</td>
<td>0.5</td>
<td>1.2</td>
<td>0.29</td>
</tr>
<tr>
<td>Node positivity</td>
<td>≥4 versus 0 positive</td>
<td>4.81</td>
<td>3.5</td>
<td>6.6</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>1–3 versus 0 positive</td>
<td>1.73</td>
<td>1.3</td>
<td>2.4</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>≥4 versus 1–3 positive</td>
<td>2.79</td>
<td>2.1</td>
<td>3.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Vascular invasion</td>
<td>Yes versus no</td>
<td>1.39</td>
<td>1.1</td>
<td>1.8</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Not assessable versus no</td>
<td>1.26</td>
<td>0.8</td>
<td>1.9</td>
<td>0.29</td>
</tr>
</tbody>
</table>

CI, confidence interval; ER, estrogen receptor; PgR, progesterone receptor.
lymph node involvement [14, 15], and low-positive ER status [14] as independent significant predictors of early relapse. Lymphovascular invasion, which was recognized as a poor prognostic factor in the St Gallen consensus conference [17], is an independent predictor of metastasis, particularly for patients with no nodal involvement [18, 19].

Even after controlling for predictors of high risk, we found that letrozole significantly reduced the risk of early relapse compared with tamoxifen. Despite the lack of significant interaction between endocrine treatment and the prognostic factors of early relapse, multivariate analyses indicated that the beneficial effect of letrozole versus tamoxifen may be qualitatively greater for patients with poor prognosis (four or more positive nodes, tumors >2 cm, or with vascular invasion) than for patients without poor prognosis (i.e. those with intermediate risk). For patients with intermediate risk of early relapse (less than four positive nodes, tumors ≤2 cm, and without vascular invasion), tamoxifen may be as effective as letrozole, and therefore sequential therapy may represent a good option, with toxicity profiles playing a greater role in therapy choice. Definitive evidence to support or refute this conjecture must await the results of ongoing randomized trials.

Curiously, letrozole appeared to be more effective than tamoxifen in patients with grade 1 tumors, though the number of recurrences in both treatment groups was low and almost 10% of patients did not have tumor grade available for analysis. Similarly, although HER-2 status was significant in the model, almost half of the patients did not have HER-2 measured and thus results and conclusions may change if all patients were assessed. Analysis of HER-2 as a predictive factor is important, considering that PgR expression and the HER-2 signaling pathway are linked [20, 21], and that among patients treated with adjuvant tamoxifen, ER+/PgR- tumors more frequently express HER-1 and HER-2, which are associated with poorer prognosis [10]. A similar analysis of early relapse would be useful once data from the BIG 1-98 second primary analysis on the role of switching becomes available.

In conclusion, letrozole resulted in a significant reduction in early relapse in BIG 1-98, even after adjusting for significant prognostic factors, which included node positivity, absence of both receptors being positive, high grade, HER-2 overexpression/amplification, large tumor size, and vascular invasion. Subgroup analyses of this large controlled randomized trial indicate that patients with high risk for early relapse may benefit most from upfront letrozole, while sequential therapy might be reserved for patients with intermediate risk, in whom tamoxifen did not differ significantly from letrozole. The second primary analysis of BIG 1-98, scheduled for 2008, will shed more light on this key question and will also address which sequence of tamoxifen and letrozole is best.

appendix

BIG 1-98 Collaborative Group Participants

Statistical Center (Dana-Farber Cancer Institute, Boston, MA, USA): R. D. Gelber (Group Statistician), K. N. Price (Director of Scientific Administration), A. Keshaviah (Trial Statistician), H. Litman, H. Huang, L. J. Somos, B. Timmers, L. Nickerson.

Central Pathology Review Office (University of Glasgow, Glasgow, UK): B. A. Gusterson, E. Mallon; (European Institute of Oncology, Division of Pathology, Milano, Italy): G. Viale, P. Dell’Orto, M. Mastropasqua, B. Del Curto.

Breast International Group

Chile: Chilean Cooperative Group for Oncologic Research, GOCCHI: J. Gutierrez (Chairman), R. Arriagada (Scientific Adviser), L. Bronfman (Principal Investigator), M. Zhuigia (Data Manager); Clinica Las Condes, Santiago: J. Gutierrez, J. C. Acevedo, S. Torres, A. León, E. Salazar; Hospital DIPRECA, Las Condes, Santiago: L. Soto Díaz, R. Duval, N. Oddeshede, M. C. Venti; Hospital San Juan de Dios, Santiago: K. Peña, L. Puente, V. Maidana; IRAM/Instituto de Radiomedicina, Vitacura, Santiago: R. Baiza, R. Arriagada, P. Ollos, J. Solé, E. Vinéés, C. Mariani.

Italy: Centro di Riferimento Oncologico, Aviano: A. Veronesi, D. Crivellari, M. D. Magri, A. Buonadonna, F. Coran, R. Gannaway, M. Jameson, I. Kennedy, J. Long, G. Robinson; Royal Adelaide Hospital, Adelaide, SA: P. G. Gill, M. Bochner, J. Coventry, J. Kollias, P. Malycha, I. Olver; Royal Brisbane and Women’s Hospital, Brisbane, QLD: M. Colosimo, R. Cheuk, L. Kenny, N. McCarthy, D. Wyld; Royal Hobart Hospital, Hobart, Tasmania: R. Young, R. Harrup, R. Kimber, R. Lowenthal; Royal Perth Hospital, Perth, WA: J. Trotter, E. Bayliss, A. Chan, D. Ransom; Sir Charles Gairdner Hospital, Perth, WA: M. Byrne, M. Buck, J. Dower, A. Nowak, A. Powell, G. Van Hazel; Toowoomba Hospital, Toowoomba, QLD: E. A. Abdi, R. Brodribb, Z. Volobueva; Westmead Hospital, Sydney, NSW: P. Hannett, V. Ahern, H. Gurney, N. Wilcken.

Chile: Chilean Cooperative Group for Oncologic Research, GOCCHI: J. Gutierrez (Chairman), R. Arriagada (Scientific Adviser), L. Bronfman (Principal Investigator), M. Zhuigia (Data Manager); Clinica Las Condes, Santiago: J. Gutierrez, J. C. Acevedo, S. Torres, A. León, E. Salazar; Hospital DIPRECA, Las Condes, Santiago: L. Soto Díaz, R. Duval, N. Oddeshede, M. C. Venti; Hospital San Juan de Dios, Santiago: K. Peña, L. Puente, V. Maidana; IRAM/Instituto de Radiomedicina, Vitacura, Santiago: R. Baiza, R. Arriagada, P. Ollos, J. Solé, E. Vinéés, C. Mariani.

Italy: Centro di Riferimento Oncologico, Aviano: A. Veronesi, D. Crivellari, M. D. Magri, A. Buonadonna, F. Coran, R. Gannaway, M. Jameson, I. Kennedy, J. Long, G. Robinson; Royal Adelaide Hospital, Adelaide, SA: P. G. Gill, M. Bochner, J. Coventry, J. Kollias, P. Malycha, I. Olver; Royal Brisbane and Women’s Hospital, Brisbane, QLD: M. Colosimo, R. Cheuk, L. Kenny, N. McCarthy, D. Wyld; Royal Hobart Hospital, Hobart, Tasmania: R. Young, R. Harrup, R. Kimber, R. Lowenthal; Royal Perth Hospital, Perth, WA: J. Trotter, E. Bayliss, A. Chan, D. Ransom; Sir Charles Gairdner Hospital, Perth, WA: M. Byrne, M. Buck, J. Dower, A. Nowak, A. Powell, G. Van Hazel; Toowoomba Hospital, Toowoomba, QLD: E. A. Abdi, R. Brodribb, Z. Volobueva; Westmead Hospital, Sydney, NSW: P. Hannett, V. Ahern, H. Gurney, N. Wilcken.

Chile: Chilean Cooperative Group for Oncologic Research, GOCCHI: J. Gutierrez (Chairman), R. Arriagada (Scientific Adviser), L. Bronfman (Principal Investigator), M. Zhuigia (Data Manager); Clinica Las Condes, Santiago: J. Gutierrez, J. C. Acevedo, S. Torres, A. León, E. Salazar; Hospital DIPRECA, Las Condes, Santiago: L. Soto Díaz, R. Duval, N. Oddeshede, M. C. Venti; Hospital San Juan de Dios, Santiago: K. Peña, L. Puente, V. Maidana; IRAM/Instituto de Radiomedicina, Vitacura, Santiago: R. Baiza, R. Arriagada, P. Ollos, J. Solé, E. Vinéés, C. Mariani.

Italy: Centro di Riferimento Oncologico, Aviano: A. Veronesi, D. Crivellari, M. D. Magri, A. Buonadonna, F. Coran, R. Gannaway, M. Jameson, I. Kennedy, J. Long, G. Robinson; Royal Adelaide Hospital, Adelaide, SA: P. G. Gill, M. Bochner, J. Coventry, J. Kollias, P. Malycha, I. Olver; Royal Brisbane and Women’s Hospital, Brisbane, QLD: M. Colosimo, R. Cheuk, L. Kenny, N. McCarthy, D. Wyld; Royal Hobart Hospital, Hobart, Tasmania: R. Young, R. Harrup, R. Kimber, R. Lowenthal; Royal Perth Hospital, Perth, WA: J. Trotter, E. Bayliss, A. Chan, D. Ransom; Sir Charles Gairdner Hospital, Perth, WA: M. Byrne, M. Buck, J. Dower, A. Nowak, A. Powell, G. Van Hazel; Toowoomba Hospital, Toowoomba, QLD: E. A. Abdi, R. Brodribb, Z. Volobueva; Westmead Hospital, Sydney, NSW: P. Hannett, V. Ahern, H. Gurney, N. Wilcken.
Danish Group Danish Breast Cancer Cooperative Group (DBCG). H. T. Mouridsen; Rigshospitalet, Copenhagen: H. T. Mouridsen; Veje Hospital, Veje: E. Jakobsen; Odense University Hospital, Odense: S. Cold; KAS Herlev/Herlev University Hospital, Herlev: C. Kamby; Aalborg Sygehus Syd, Aalborg: M. Ewertz; Hilleroed Hospital, Hilleroed: P.M. Vestlev; Aarhus County University Hospital, Aarhus: J. Andersen; Roskilde County University Hospital, Roskilde: P. Grundtvig; Esbjerg Central Hospital, Esbjerg: E. Sandberg; Naestved Central Hospital, Naestved: P. Philip; Soenderborg Sygehus, Soenderborg: E. L. Madsen; Herning Central Hospital, Herning: K. A. Moeller; Viborg Sygehus, Viborg: V. Haahr; Landskabspital Unity Hospital, Reykjavik, Iceland: J. Johansson.

UK: King’s College Hospital/Breast Unit, London: P. Ellis, S. Harris, N. Akbar, H. McVicars, C. Lees, R. Raman, G. Crane.

Independent Centers/Groups

Chile: Fundacion Lopez Perez, Santiago: C. Vogel; Hospital Carlos Van Buren, Valparaíso: M. León Prieto.

Jänicke; Kliniken d. Med. Hochschule, Frauenklinik, Hannover:
H. J. Lück; Krankenanstalt Mutterhaus der Barmbäuerinnen,
Trier; W. Dornoff; Gynäkologische Abteilung des St
Josefshospital, Wiesbaden: G. Hoffmann; Gynäkologische
Abteilung d. Marienhospitals, Universität Witten-Heerdeke,
Witten: J. Hackmann, W. Bader.
Hungary: SZOTE Onkoterápiai Klinika, Szeged: Z. Kahan;
BM Központi Kórház, Budapest: G. Pajkos, K. Kristo; SOTE
Radiologische & Onkoterápiai Klinika, Budapest: M. Dank;
Uzson Kórház, Budapest: T. Nagykalnai, L. Landherr;
Álmás Balogh Pál Kórház, Ózd: E. Kner; Területi Kórház
Onkologia, Szentes: M. Kissél; Szent Borbála Kórház, Megyei
Onkológiai Gondozó, Tatabánya: A. Dani.
Italy: Policlinico S. Orsola-Malpighi, Bologna: A. Martona,
C. Zamagni, S. Giaquinta, E. Piana; Ospedale S. Croce, Fano: R.
Mattioli, L. Imperatori; Istituto Clinica Humanitas, Milan/
Rozzano: A. Santoro, C. Carnaghi, L. Rimassa; Azienda
Ospedaliera San Filippo Neri, Rome: G. Gasparini, G. Scarrett,
A. Morabito; Az. Ospedaliera Treviglio-Caravaggio, Treviglio: S.
Barni, M. Cazzaniga, M. Cabiddi; Policlinico Universitario,
Udine: F. Puglisi; Ospedale di Torrette, Ancona: R. Cellerino, S.
Antognoli, F. Freddari; Università di Cagliari, Policlinico
Universitario, Cagliari: G. Mantovani, E. Massa, G. Astara;
Ospedale Civile Feltre, Feltre: R. Segati; Istituto Nazionali
Ricerca Cancro, Genova: R. Rosso, L. Del Mastro, M. Venturini,
C. Bighin; Istituto Nazionale dei Tumori, Milano: E. Bajetta, N.
Zilembro, D. Paleari, G. Procopio; Azienda Ospedaliera di
Parma, Parma: S. Salvagni, M. A. Perrone, V. Franciosi; Azienda
Ospedaliera ‘S. Salvatore’, Pesaro: G. Catalano, S. Luzi Fedeli;
Azienda Ospedaliera ‘Ospedale di Circolo e Fondazione Macchi’
Bologna: A. Martoni, C. Bartens, R. Decio, U. Gueth; Klinik am Park,
Zurich: U. Breitenstein.
Netherlands:ziekenhuis Leyenburg, Den Haag: H. P.
Sleeboom; Catharina Ziekenhuizen, Eindhoven: H. J. T. Rutten;
St Anna Ziekenhuis, geldrop: M. Hoek; Tewesteden
Ziekenhuis, Tilburg: H. Th. J. Roerdink; Maximia Medisch
Centrum, Veldhoven: R. M. H. Boumen.
New Zealand: Dunedin Hospital, Dunedin: B. McLaren, S.
Costello, J. North, D. Perez, K., Bayston, M. Pfeiffer; Waikato
Hospital, Hamilton: I. Kennedy, I. D. Campbell, L. Gilbert, R.
Whittle, D. Woolerton.
Poland: Department of Oncology and Radiotherapy, Medical
University of Gdansk, Gdansk: J. Jassem, M. Wielnicka-
Jaskiewicz, E. Senkus-Konefla, K. Matuszewskia; Rydygier’s
Memorial Hospital, Krakow: Novo Huta: P. Koralewski, J.
Pernal; Klinika Nowotworów Piersi i, Chirurgii
Rekonstrukcyjnej-Warszawa, Warszawa: T. Pienkowski, E.
Brewczynska, B. Bauer-Kosinska, R. Sienkiewicz-Kozlowska, A.
Jagiello-Gruszfeld, K. Sudol; Centrum Onkologii w Bydgoszczy,
Oddzial Onkologii Klinicznej, Bydgoszcz: J. Tujakowski, B.
Zurawski; Collegium Medicum Jagiellonian University, Krakow:
J. Pawlega, E. Jablonska, A. Zygulskia; Oddzial Kliniczny
Onkologii, Centralnego Szpitala Klinicznego Wojskowej,
Akademii Medycznej-Warszawa, Warszawa: M. Górniakowa;
Dolnośląskie Centrum Onkologii, Wrocław: E. Filipczyk-
Cisarz, K. Pajak.
Portugal: Hospital de S. João, Porto: M. Damasceno;
Instituto Português de Oncologia de Coimbra, Coimbra: J. Q.
Albano; Hospital de Santa Maria, Lisboa: B. da Costa, L. Costa;
Instituto Português de Oncologia de Lisboa, Lisboa: A.
Henriques, H. Amaral; Hospital Geral de Santo António, Porto:
F. Marques.
Russia: Cancer Research Centre, Moscow: D. V. Komov, S. B.
Polikarpova; Moscow Municipal Hospital No. 62, Moscow: A.
N. Makhson, N. V. Zabanii; Moscow Research Institute of
Diagnostics and Surgery, Moscow: E. K. Vozny, N. Y.
Dobrovolskaya, S. Bolshakova, O. V. Yurgina; N. M. Emmanuel
Institute of Biochemical Physics, Moscow: D. B. Korman, I. A.
Maslova; N. N. Petrov Research Institute of Oncology, St
Petersburg: V. Semiglazov, V. Ivanov; Saint-Petersburg City
Oncological Dispensary, St Petersburg: G. Manikhas, G.
Dolmatov.
South Africa: Mamma Clinic, Tygerberg Hospital, Cape
Town: J. Apfelstaedt; Southern Cross Hospital, Cape Town: D.
Eedes; Pretoria Academic Hospital, Pretoria: C. Slabber;
Pretoria East Hospital, Pretoria: M. A. Coccia-Portugal; Eastern
Cape Oncology Centre, Port Elizabeth: K. Maat.
Spain: Hospital Ruber Internacional, Madrid: J. E. Alés
Martinez, P. Aramburo, R. Sánchez; Hospital Son Dureta,
Palma del Mallorca: J. Rifa, J. Martin; Centro Oncológico
Integral de Madrid, Madrid: R. Pérez-Carrión, J. L. González
Larriba, A. Cubillo; Hospital Universitario San Carlos, Madrid:
M. M. Jiménez, A. Casado; Hospital Central de Asturias,
Switzerland: Universitätsfrauenklinik, Basel: E. Wight, S.
Turkey: Ankara University İbni Sina Hospital, Ankara: F. İcli,
D. Dincol; Hacettepe University Oncology Institute, Ankara: E.
Baltali, Y. Özisik; Istanbul University Oncology Institute,
Istanbul: E. Topuz, M. Basaran, A. Aydiner; Ege University
Medical School, Izmir: E. Özdedeli; 9 Eylül University Medical
UK: The Royal Marsden Hospital, London, Royal Marsden
NHS Trust, Surrey: I. E. Smith; University of Dundee, Dundee:
A. M. Thompson; Christie Hospital NHS Trust, South
Manchester University Hospital Trust, Manchester: A. Wardley;
Royal Bournemouth Hospital, Bournemouth: T. Hickish; North
Middlesex Hospital, London: F. Neave.
Uruguay: Hospital de Clínicas Dr Manuel Quintela,
Montevideo, Uruguay: G. Sabini.

acknowledgements

We thank the patients, physicians, nurses, and data managers
who participated in this clinical trial; the Breast International
Group; the study steering committee; and the International
Breast Cancer Study Group (IBCSG) Data and Safety
Monitoring Committee. The manuscript was prepared by the
authors, who made final decisions on content, while the Steering
references

8. Hanrahan ED, Valero V, Gonzalez-Angulo AM, Hortobagyi GN. Prognosis and management of patients with node-negative invasive breast carcinoma that is 1 cm or smaller in size (stage I; T1a,bN0M0); a review of the literature. J Clin Oncol 2006; 24: 2113–2122.

