gynaecological cancers

904P SIMILARITIES SUGGEST A SHARED EMBRYOLOGIC ORIGIN FOR PANCREATIC AND OVARIAN MUCINOUS TUMORS

1Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
2Obstetrics and Gynecology, Brigham and Women Hospital, Boston, MA, USA
3Pathology, Brigham’s and Women Hospital, Boston, MA, USA
4Obstetrics and Gynecology, Brigham’s and Women Hospital, Boston, MA, USA
5Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA

Aim: Mucinous ovarian tumors (MOT) are among the rarest epithelial ovarian tumors. Their cell of origin is still unknown. Recently, whole-exome sequencing studies highlighted molecular similarities between MOT and mucinous cystic neoplasms (MCN) of the pancreas. We questioned commonalities between these seemingly disparate tumors and its significance.

Methods: Clinical characteristics of a series of 287 MOT and 23 MCN were compared. Immunohistochemical (IHC) expression of 7 proteins (CK7, CK20, MUC2, CDX2, PAX8, β-catenin and SMAD4) was analyzed in 21 MOT and 16 MCN. Microarray datasets (Affymetrix HU133) of 6 MCN, 8 MOT, 70 epithelial (non mucinous) ovarian tumors and 6 primordial germ cells (PGC) were obtained from previously published studies.

Results: In our series, MCN occurred only in women, mainly young (<54 years), with similar characteristics to MOT patients (p = 0.12). Both MCN (37%) and MOT (57%) patients tended to be or have been smokers (p = 0.1). MOT and MCN tumors showed similar IHC profile and were more likely to be CK7+ CK20-MUC2-CDX2-. Unsupervised clustering of the different datasets is ongoing and will be presented at the ESMO annual meeting.

Conclusions: Clinical, morphological and molecular similarities between MOT and MCN suggest a common pathogenesis, potentially a shared precursor such as embryologic rests of PGCs that transiently stop in the pancreatic buds during early development in the human embryo.

Disclosure: All authors have declared no conflicts of interest.