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1 Details for β-substitution

The details for the following derivation of βGM were provided by Gary Ganser. The derivation 

for βAM proceeds in a similar fashion.

1.1 Distributional properties

We let xi be a lognormally distributed random variable with LOD L for i = 1, . . . , n, where

n denotes the sample size. This implies that yi = log xi is Normally distributed with mean

µ and variance σ2. Assume k of our observations are below the limit of detection such that

we only observe yi for i = 1, . . . , (n−k). That is, yi ∈ (logL,∞) follows a truncated Normal

distribution with pdf

f(yi |µ, σ2) =
exp

[
− (yi − µ)2 /2σ2

]∫∞
logL

exp
[
− (u− µ)2 /2σ2

]
du
, (1)

which has E[yi |µ, σ2] = µ + f(z)σ, where z = (logL− µ) /σ; for the sake of notation, we

shall suppress the conditioning on µ and σ2 from our remaining equations. This implies that

if we let ȳ =
∑n−k

i yi/(n − k), then E [ȳ] = µ + f(z)σ, as well. Another property of the

truncated Normal distribution is that the moment generating function is

E [ery] = exp

[
rµ+

σ2r2

2

]
×

[∫∞
logL−(rµ+σ2r2)

σ

exp [−v2/2] dv∫∞
logL−µ

σ
exp [−v2/2] dv

]
= exp

[
rµ+

σ2r2

2

]
X(r). (2)



1.2 Derivation for βGM

Given these properties, we will derive an estimate for βGM . First note that

exp [µ̂(βGM)] = (x1x2 · · ·xn−k)1/n (βGML)k/n = exp

[
n−k∑
i=1

yi/(n− k)

]
(βGML)k/n . (3)

Using (2), we find

E (exp [µ̂(βGM)]) = E

(
exp

[
n−k∑
i=1

yi/(n− k)

]
(βGML)k/n

)
=

n−k∏
i=1

E
[
e(1/n)yi

]
(βGML)k/n

=
(
E
[
e(1/n)y1

])n−k
(βGML)k/n

=
(
exp

[
(1/n)µ+ σ2(1/n)2/2

]
X(1/n)

)n−k
(βGML)k/n

= exp

[
n− k
n

µ+
n− k
2n2

σ2 + (n− k) logX

(
1

n

)
+
k

n
log βGM +

k

n
logL

]
= eµ exp

[
−k
n
µ+

n− k
2n2

σ2 + (n− k) logX

(
1

n

)
+
k

n
log βGM +

k

n
logL

]
= eµ exp [g (βGM)] . (4)

If we can solve g (βGM) = 0 for βGM in (4, then E (exp [µ̂(βGM)]) = eµ as we desire. That

is, we need

log βGM = −n
k

(
−k
n
µ+

n− k
2n2

σ2 + (n− k) logX(1/n) + (k/n) logL

)
= µ− logL− n− k

2kn
σ2 − n(n− k)

k
logX(1/n)

= −zσ − n− k
2kn

σ2 − n(n− k)

k
logX(1/n). (5)
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To do this, we first note that, for large n,

k/n ≈ P (X < L) = P

(
logX − µ

σ
<

logL− µ
σ

= z

)
=

1√
2π

∫ z

∞
ev

2/2dv

=⇒ z ≈ ẑ = Φ−1(k/n), (6)

where Φ(·) denotes the cdf of a Normal distribution and Φ−1(·) denotes the inverse cdf.

Then, using the expression for E [ȳ] and the definition of z, we find

σ =
logL− µ

z
=

logL− [E(ȳ)− σf(z)]

z
=

logL− E(ȳ)

z
+ σf(z)/z

=⇒ σ =
logL− E(ȳ)

z

z

z − f(z)
=

logL− E(ȳ)

z − f(z)

≈ ŝy =
logL− ȳ
ẑ − f(ẑ)

. (7)

Lastly, we can approximate

X(1/n) =

[∫∞
(logL−( 1

n
µ+σ2 1

n2
))/σ exp [−v2/2] dv∫∞

(logL−µ)σ exp [−v2/2] dv

]

≈f(ŝy, ẑ) =
1− Φ(ẑ − ŝy/n)

1− Φ(ẑ)
(8)

Finally, plugging the expressions from (6), (7), and 8 into (5), we obtain

βGM = exp

[
−zσ − n− k

2kn
σ2 − n(n− k)

k
logX(1/n)

]
≈ exp

[
−ẑŝy −

n− k
2kn

ŝ2y −
n(n− k)

k
log f(ŝy, ẑ)

]
.
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2 Details for Kaplan-Meier Method

The equations for the K-M method can be found in the EPA ProUCL Technical Guide (EPA,

2007). Beal (2009) also described the method and provided SAS macro for it.

Suppose out of a sample of n exposure concentrations, k have values below their respective

limits of detection. We can define indicator variables, d1, . . . , dn, such that di = 1 if the ith

observation is above its limit of detection and di = 0 if the ith observation is censored. We

then let x1, . . . , xn be a vector of concentrations such that xi equals the ith concentration

when di = 1 and equals LODi when di = 0. Without loss of generality, we assume the xi

are sorted in ascending order such that x1 ≤ x2 ≤ . . . ≤ xn.

To compute the K-M estimate of the arithmetic mean, AM , we let x∗1, . . . , x
∗
p denote

p distinct values (sorted in ascending order) at which concentrations above the limit of

detection are observed such that p ≤ (n− k). For j = 1, . . . , p, let

mj =
∑
i

di × I(xi = x∗j)

nj =
∑
i

I(xi ≤ x∗j),

where I(·) is a 0/1 indicator function; i.e., mj is the number of detected concentrations equal

to x∗j and nj counts the number of concentrations (both detected and nondetected) less than

or equal to x∗j . We then define an empirical cdf, F (·) as

F (x) =



1 x ≥ x∗p∏p
j:x∗j>x

nj−mj
nj

x∗1 ≤ x ≤ x∗p−1∏p
j=1

nj−mj
nj

x1 ≤ x ≤ x∗1

0 0 ≤ x ≤ x1

.
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From this, we can estimate AM as

ÂM =

p∑
j=1

x∗j
[
F (x∗j)− F (x∗j−1)

]
, (9)

where F (x∗0) = 0.
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