RESEARCH IN CONTEXT

Origin and emergence of the sweet dessert watermelon, *Citrullus lanatus*

Harry S. Paris*

Institute of Plant Sciences, Agricultural Research Organization, Newe Ya’ar Research Center, P. O. Box 1021, Ramat Yishay 30-095, Israel
* For correspondence: E-mail hsparis@agri.gov.il

Received: 26 February 2015 Returned for revision: 24 March 2015 Accepted: 16 April 2015 Published electronically: 3 July 2015

Key words: Archaeobotany, citron watermelon, *Citrullus lanatus*, Cucurbitaceae, colocynth, crop history, dessert watermelon, egusi watermelon, evolution under domestication, fruit sweetness, talmudic cucurbits.

INTRODUCTION

Watermelons, *Citrullus* Schrad., are among the most widely grown vegetable crops in the warmer parts of the world (Maynard, 2001; Wehner et al., 2001; Wehner, 2008). Over 3400,000 hectares are planted annually, with production exceeding 102,000,000 t (http://faostat.fao.org/site/339/default.aspx). Few food items are as refreshing and appreciated on hot summer days as chilled slices of watermelon.

Citrullus (2n = 2x = 22) is a xerophytic genus native to Africa and have been cultivated since ancient times. The fruit flesh of wild watermelons is watery, but typically hard-textured, pale-coloured and bland or bitter. The familiar sweet dessert watermelons, *C. lanatus*, featuring non-bitter, tender, well-coloured flesh, have a narrow genetic base, suggesting that they originated from a series of selection events in a single ancestral population. The objective of the present investigation was to determine where dessert watermelons originated and the time frame during which sweet dessert watermelons emerged.

Conclusions

The diverse evidence, combined, indicates that northeastern Africa is the center of origin of the dessert watermelon, that watermelons were domesticated for water and food there over 4000 years ago, and that sweet dessert watermelons emerged in Mediterranean lands by approximately 2000 years ago. Next-generation ancient-DNA sequencing and state-of-the-art genomic analysis offer opportunities to rigorously assess the relationships among ancient and living wild and primitive watermelons from northeastern Africa, modern sweet dessert watermelons and other *Citrullus* taxa.

SOURCES OF EVIDENCE

Crop plant history is best assessed using a multidisciplinary approach that encompasses botany, horticulture, cookery, philology and archaeology (Harlan and de Wet, 1973; Dalby, 2003; Zohary et al., 2012). Sources of evidence concerning the history of cucurbits have taken the form of archaeological artefacts, iconography and literature (Janick et al., 2007; Paris, 2000, 2012; Paris et al., 2012a, b, c).

Archaeological artefacts

The time and area where a crop was domesticated can be signalled by archaeological finds but the degree of confidence that can be afforded to artefacts is a function of their abundance, distribution and state of preservation (Harlan and de Wet, 1973;...
Ladizinsky, 1998). Most plant remains decay quickly, within several years (Day, 2013). Soft, watery plant parts, such as foliage and fruits, are much less likely to be preserved than hard, dry parts, such as seeds. However, in dry situations, such as arid climates or caves, remains can be preserved for thousands of years. The Egyptian custom of placing everyday items in tombs has increased the chances of preserving remains of plants (Manniche, 1989). Much archaeological attention has been devoted to remains of staple food crops, but less effort has been focused on vegetables such as cucurbits (Maynard and Maynard, 2000).

Iconography

Iconography has been especially useful for understanding the evolution under domestication and diffusion of cucurbits, but the degree of confidence that can be afforded to iconography is a function of its detail and accuracy (Eisendrath, 1961; Zeven and Brandenburg, 1986; Paris, 2000; Paris et al., 2011). Stunningly detailed and realistic illustrations of a colocynthis plant are in two early medieval manuscripts on medicine descended from the same lost archetype (Hummer and Janick, 2007). Over most of the medieval period, though, images of plants are successively poor copies from long-lost archetypes dating to the Roman period and so inaccurate as to be useless for taxonomic identification (Pacht, 1950; Opsomer et al., 1984; Collins, 2000; Givens, 2006). Late in the medieval period, new, original depictions of plants were produced with sufficient detail and accuracy to allow identification of species (Paris et al., 2009, 2011). Images from late 14th-century northern Italy show both red-fleshed dessert watermelons and white-fleshed citron watermelons (Paris et al., 2013). However, based on these depictions alone, it cannot be ascertained how long prior to 1400 CE dessert and citron watermelons had been in Europe or where they originated.

Literature

Literature would appear to be the most likely source of evidence for fruit sweetness. As a rule, though, food items, including fruits and vegetables, were considered by ancient writers to be familiar to everyone and in no need of description, being discussed only concerning their supposed dietary or medicinal qualities (Dalby, 2003). Fortunately, some off-hand descriptions of the commodity can often be gleaned in the context of medicine, religion, travel and cookery (Paris et al., 2012b). Such is the case, too, regarding the watermelon. No direct description is made of its characteristically smooth, glossy, green-striped rind, or the taste, texture or colour of its flesh or seeds.

Adjectives tend to be used differently across languages, contexts, geographic areas and periods of time (Paris et al., 2012b). For example, ‘sweet’ can be synonymous with sugary or simply not bitter, not sour, not spicy or not salty. What might have been considered sweet in ancient times might not be considered sweet today, due to later development or introduction of cultivars with greater sweetness. The adjective ‘red’ has been variously used to include orange, purple and brown, and ‘yellow’ to include orange. Although red fruit flesh is non-existent in melons, Cucumis melo L., in some literature from the Renaissance to the present day, melon fruit-flesh has been described as ‘red’ or ‘pink’.

Nouns are often used inconsistently, denoting different taxa across places or times (Kroll, 2000). The word ‘melon’ in American English can refer to either or both Citrullus and Cucumis melo (Mohr, 1986; Goldman, 2002) and the medieval Latin melones was used for both (Paris et al., 2009, 2013). Also, the medieval Latin pepo referred to watermelon in southern Europe and to melon in northern Europe (Paris et al., 2012b). In Arabic, battikh usually are watermelons but can be melons or inclusive of both (Watson, 1983; Nasrallah, 2007; Amar and Lev, 2011). Generally, though, the word battikh was applied to melons by writers hailing from the far reaches of the Islamic Empire, Khorasan and Persia in the north-east and Andalusia in the west, but was applied to watermelons everywhere else (Paris et al., 2012b). The focus here will be restricted to informative literature in which taxonomic identity as Citrullus can be inferred, based on one or more of its diagnostic features.

Diagnostic features of Citrullus

The Cucurbitaceae exhibit much parallel variation among genera and species in the size, shape and coloration of the fruits (Vavilov, 1951). As a result, throughout human history, the identities of various cucurbits, cultivated and wild, have been confused.

Citrullus is readily distinguished from other cucurbit genera by the pinnatifid shape of its leaf laminae (Paris et al., 2013). The flowers are solitary, 2–3 cm in diameter, with five light yellow petals. Most of the flowers are staminate, a pistillate or hermaphrodite flower appearing at every seventh or eighth leaf axil (Rosa, 1928; Porter, 1933). Most cultivars are monoecious, but many old or indigenous cultivars are andromonoecious (Pangalo, 1930; Fursa, 1981; Mohr, 1986; Gouda, 2007). The plants usually begin to flower 40–60 d after sowing and are naturally self- and cross-pollinated by bees (Mohr, 1986; Maynard, 2001; Wehner, 2008). Ovaries and primordial fruits are lanate, becoming glabrous, smooth and glossy as they grow. Usually 25–40 d ensue from anthesis to fruit maturity, but the external indications of fruit ripening are subtle (Woodward, 1937; Thompson and Kelly, 1957). The earliest cultivars, which require 65 d from sowing to first harvest, bear small fruits (<5 kg). As much as 100 d are required to reach maturity in the very large-fruited cultivars. If stored in a cool, shady place, dessert watermelons can keep for weeks or even months without serious deterioration of their quality (Keith-Roach, 1924; Rushing, 2001).

Fruits of dessert watermelons can weigh from 1 to 100 kg or more, but most commercially available watermelons range from 3 to 13 kg (Mohr, 1986; Maynard, 2001; Wehner, 2008). Fruit shape is often spherical but can be globular, oval or oblong. The watermelon rind consists of two layers. The thin, glossy outer layer, or exocarp, is typically boldly striped or otherwise patterned in two shades of green. The green colours can range from light to dark, and the stripes are jaggedly edged and range in breadth from very narrow to very broad. The thick inner layer of the rind, or mesocarp, is wet, white and hard. Underneath the rind is the watery fruit flesh or endocarp, the...
portion of the fruit that is usually eaten. Early in development, the fruit flesh is hard, white or otherwise pale-coloured, and insipid. In citron watermelons, the fruit flesh remains hard, nearly colourless and tasteless to fruit maturity (Xu et al., 2012). In sweet dessert watermelons, the flesh of the maturing fruit becomes tender and accumulates carotenoid pigments and sucrose (Elmstrom and Davis, 1981; Brown and Summers, 1985; Soteriou et al., 2014). Colour begins to accumulate between 2 and 3 weeks after anthesis, first around the developing seeds and thereafter gradually spreading throughout the endocarp (Perkins-Weazie et al., 2012). Depending on the genotype, the flesh of ripe watermelon fruits can range in colour from red to pink, orange, yellow, a mixture of these colours, green and white (Gusmini and Wehner, 2006). The range in texture of the ripe fruit flesh has been variously described as crisp, soft or liquefied, and coarsely or finely grained. Each fruit can contain 200 or more seeds that, to the casual observer, are seemingly scattered throughout the flesh and, to the consumer, are of great annoyance. The seeds of sweet watermelons are hard, flat and oval and, depending on cultivar, generally range in length from 8 to 16 mm and can be black, brown, tan, white, yellow or red, and can be patterned with a second colour.

Sweetness of watermelon fruit flesh can be easily and objectively assessed by squeezing out drops from a cut piece on the surface of a refractometer, a device that measures soluble solids content (Tucker, 1934; Thompson and Kelly, 1957). By modern standards, a minimum of 8 % soluble solids is required in dessert watermelons, and the best cultivars can regularly achieve 11 % or more soluble solids (Mohr, 1986; Maynard, 2001; Wehner, 2008).

Watermelons are sometimes confused with melons, Cucumis melo, as both are often large and sweet. The most salient features distinguishing them are the shape of the leaf laminae, distribution of staminate and pistillate (or hermaphroditic) flowers on the plant, range of fruit shape, fruit surface features, wetness of the fruit, thickness of the fruit rind, fruit flesh colour, and shape, colour and distribution of seeds within the fruit (Paris et al., 2012b). In the field, watermelons ripen evenly over the course of the harvest season but melons ripen in two distinct waves (Rosa, 1924; McGlasson and Pratt, 1963; Pratt et al., 1977). Watermelons have no well-marked indicators of fruit ripening but melons typically become aromatic and yellow, and abscease from the plant upon ripening (Isenberg et al., 1987; Nonnecke, 1989). Watermelons have a much longer shelf-life than most melons but are subject to breakage if not handled carefully (Whitaker and Davis, 1962; Robinson and Decker-Walters, 1997). In watermelons, the seeds are distributed within the fruit flesh but in melons the fruit flesh is free of seeds.

NOMENCLATURE AND TAXONOMY OF CITRULLUS

The nomenclature and taxonomy of the genus *Citrullus* has, unfortunately, been confused from the outset. Watermelons were designated *Cucurbita citrullus* by Linné in his *Species Plantarum* of 1753, in the same genus with pumpkin, squash and bottle gourd. The word *citrullus* was the northern European medieval Latin word for watermelon. It is a misnomer, though, being the diminutive of the classical Latin *citrium*, the citron watermelon (discussed later). Originally and more appropriately, *citrullus* was the southern European medieval Latin word for a small-fruited cucurbit, the cucumber, *Cucumis sativus* L. (Italian *cetriolo*) (Paris et al., 2011). Subsequent permutations of names for the genus and for the species of watermelons were recently discussed by Renner et al. (2014) in a much-needed proposal to conserve the name *Citrullus lanatus*.

Three species of *Citrullus* – *C. ectrhrhus* Cogn., *C. rehmmii* De Winter and *C. nautdinianus* (Sond.) Hooker f. (Chomicki and Renner, 2015) – are not cultivated. A fourth, *C. colosynthis* (L.) Schrad., the colocynth, is sparingly cultivated. The widely cultivated citron, egusi and dessert watermelons have been variously treated as subspecies, botanical varieties or cultivar groups within one species, *C. lanatus* (Thunb.) Matsum. & Nakai (Table 1). The nomenclature is confusing, though, the epithet *lanatus*, as a subspecies, being applied to the citron and, as a botanical variety, being applied to the dessert watermelon. The taxonomy is questionable, too. Crossings of dessert with citron watermelons have resulted in hybrid progenies with reduced pollen fertility and massive preferential segregation (Levi et al., 2003; Wehner, 2008; McGregor and Waters, 2013). Although few attempts at crossing dessert and egusi watermelons have been described, there are two reports indicating that degree of success was dependent on the direction of the cross (Fursa, 1983; Gusmini et al., 2004). Genomic sequencing has revealed that the citron, egusi and dessert watermelons differ significantly in genome organization (Guo et al., 2013; Reddy et al., 2013; Chomicki and Renner, 2015), leading Chomicki and Renner (2015) to propose that each be

TABLE 1. English names and equivalent specific, sub-specific, botanical-variety, and cultivar-group names (non-inclusive) of cultivated Citrullus

<table>
<thead>
<tr>
<th>English name</th>
<th>Species1</th>
<th>Subspecies2</th>
<th>Botanical variety3</th>
<th>Cultivar-group(s)4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dessert watermelon</td>
<td>C. lanatus (Thunb.) Matsum. & Nakai</td>
<td>vulgäris (Schrad.) Fursa; cordophanus Ter-Avan.</td>
<td>lanatus; colocyntoides</td>
<td>Dessert; Cordophanus</td>
</tr>
<tr>
<td>Citron watermelon</td>
<td>C. amarus Schrad.</td>
<td></td>
<td>lanatus</td>
<td>Citroides</td>
</tr>
<tr>
<td>Egusi watermelon</td>
<td>C. macusospermus (Fursa) Fursa</td>
<td></td>
<td>macuospermus Fursa</td>
<td>Mucusospermus</td>
</tr>
<tr>
<td>Colocynth</td>
<td>C. colosynthis (L.) Schrad.</td>
<td></td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

1After Renner et al. (2014); Chomicki and Renner (2015).
2After Fursa (1972).
3There are very many designated botanical varieties; only four equivalent to the four listed subspecies are listed here.
4After Jeffrey (2001).
considered a separate species, for a total of seven in the genus *Citrullus* (Table 1). Accordingly, the citron watermelon is *C. amarus* Schrad., the egusi watermelon is *C. mucosospermus* (Fursa) Fursa and the dessert watermelon retains the name *C. lanatus* (Renner et al., 2014).

Caution must be exercised in identifying species of *Citrullus* based solely on individual phenotypic characteristics (Wehner, 2008). Features that are deemed characteristic of one species can occur, albeit rarely, in others. Bitterness of the fruit flesh is not exclusive to colocynths and hardness of the fruit flesh is not exclusive to citron watermelons. Wild *Citrullus* have small, spherical fruits with broad dark stripes, and hard, usually bitter, pale-coloured and seedy fruit flesh (Fig. 1). The dessert, citron and egusi watermelons have often been confused with one another and with colocynths, even though colocynth leaves are smaller, more elongate and gryeer, with coarse, adpressed rather than soft spreading hairs, and the flowers are smaller and greenish-yellow. Colocynths fruits do not exceed 10 cm in diameter; usually they are ±8 cm and are extremely bitter, and as they mature their exterior fades from brightly striped green to light yellow and their flesh desiccates. Colocynth seeds are small, ±8 mm long and, significantly, are distinguished from dessert watermelon seeds by their having a smooth surface and no bulging of the edges next to the hilum (Schweinfurth, 1883; Montasir and Hassib, 1956; Chakravarty, 1966, 1982).

DISTRIBUTION AND USAGE

The current distribution of wild relatives of a crop can provide valuable evidence for a more accurate assessment of crop-plant history. *Citrullus ecirrhosus*, *C. rehuii* and *C. naudinianus* are native to deserts of southern Africa. Though congenic with the dessert watermelon, they are relatively distant to it geographically and genetically (Chomicki and Renner, 2015).

Citrullus colocynthis, the colocynth, grows wild in the deserts spanning northern Africa to southwestern Asia. Colocynths have small, spherical and extremely bitter fruits valued for medicinal use of extracts from their dry, spongy pulp or extraction of the oil from their seeds (Clément-Mullet, 1866; Darby et al., 1977; Amar and Hazot, 2003).

Citron watermelons or ‘tsamma’, which grow wild and are widely cultivated in southern Africa, are usually spherical and weigh several kilograms, but can be oblong and quite large, and vary widely in fruit rind striping and colour pattern. Citrons have hard, bland, sometimes bitter, watery flesh that is white, light green or yellow (Rubatsky, 2001; Jensen, 2012; McGregor, 2012). They are an important source of water, an arable plant, striping pattern and seed size and colour, but their fruit has much improved quality, being tender, highly coloured and sweet.

CITRULLUS FROM ANCIENT EGYPT, LIBYA, SUDAN, EUROPE AND ISRAEL

Artefacts

De Vartavan and Asensi Amoros (1997) listed ten sites in Egypt, dating from the pre-dynastic and dynastic eras, that contain remains of watermelon, *Citrullus lanatus*. Schweinfurth (1883), an accomplished botanist, identified foliage placed in the coffin of an Egyptian priest Nibsoni at Dayr al-Bahari (near Luxor) dating to ~1000 BCE, as of a desert ecotype of the dessert watermelon, which he named as botanical species *colocynthis*. Germer (1988) listed Egyptian remains, including seeds over 4500 years old and fruits over 4000 years old considered to belong to *C. lanatus* var. *colocynthis*. Wasylikowa and van der Veen (2004) recovered watermelon seeds, 5000 years old, in an assemblage of wild seeds and fruits in southwest Libya. De Vartavan (1999) presented photographs of five individual seeds taken from the tomb of Tutankhamen (1323 BCE); significantly, the seeds have distinctly bulging margins flanking the hilum end and therefore these seeds are of watermelon, not colocynth. A watermelon fruit with seeds from ~1500 BCE has been reported from foundation deposits of a temple in Sudan (van Zeist, 1983). Watermelon seeds along with remains of other food plants have been reported from two sites across the Mediterranean, at Krania in central Greece (Margaritis, 2006–2007) and on the eastern island of Samos (Kučan, 2000), dating to ~800 and 650 BCE, respectively.

Citrullus seeds have also been recovered from post-dynastic Egypt through the Coptic period, and the findings are listed by de Vartavan and Asensi Amoros (1997). More recently, seeds dating to the Roman period were uncovered in an archaeologi-cal site at Qusayr al-Qadim on the shore of the Red Sea in Egypt (Cox and van der Veen, 2008; van der Veen, 2011). These seeds were described as having a rough surface and a photograph of them clearly shows bulges and creases adjacent to the hilum, and thus these could not be of colocynth. The seeds are relatively small, 10–11 mm in length, too long to be colocynths but small enough that it is likely that the fruits were consumed for their flesh rather than their seeds. In contrast, seeds dating to the Islamic period at the same site are larger, ~15 mm long, and cracked open in the same way that watermelon seeds are consumed by people today. Seeds of similar
appearance to those from the Roman period at Quasay al-Qadim have also been reported from the Roman outpost of Mons Claudians in Egypt, an inland site ~300 km to the south, in the eastern desert (van der Veen, 1999). Seeds of Citrullus dating to the second century CE have been found in a cave above the Dead Sea near ‘En Gedi in eastern Israel (Kislev and Simhoni, 2009). These seeds, too, are similar in size and have bulges and creases near the hilum end. Clearly then, watermelons were used in Egypt and neighbouring Israel during Roman times.

Images

Depictions of numerous plants have been preserved in ancient Egyptian tombs. An illustration of a round, striped fruit, attached by a thin stem to a short section of vine, including two highly dissected leaves, was reproduced by Keimer (1924, p. 170) (Fig. 2). Given the shape of the leaves and striping of the fruit, this depiction undoubtedly represents a specimen of Citrullus. Another image shows nine round, striped fruits resembling small watermelons neatly placed in a basket adjacent to two large snake melons and two other baskets containing smaller fruits (Feliks, 2005, p. 303). An image, more than 4000 years old, of a fairly large, oblong, boldly striped fruit laid on a tray, has been identified as representing watermelon, *C. lanatus* (Manniche, 1989, p. 92).

Literature

Biblical Hebrew. The Children of Israel, during their sojourn in the Sinai Desert, longed for five vegetables they knew from the Land of Egypt, in the following order: *qishu‘im*, avattihim, *ha‘azir*, bezalim and shumim (*Numbers* 11:5). These have been identified by Feliks (1968) and Janick et al. (2007) as snake melons (*Cucumis melo*), watermelons (*Citrullus lanatus*), leeks (*Allium porrum* L., Amaryllidaceae), onions (*A. cepa* L.) and garlics (*A. sativum* L.), respectively. The Hebrew word *avatthim* is probably derived from an ancient Egyptian language root (Loret, 1892; Darby et al., 1977; Manniche, 1989).

Centuries later, during a time of famine in the Land of Israel, an incident is recorded of the desperate use of the pottage of paqqu‘ot in a kitchen preparation (2 *Kings* 4:39–40). These paqqu‘ot, which resulted in a pottage that was bitter, have been identified as colocynths (*Citrullus colocynthis*) (Feliks, 1968; Janick et al., 2007). At a later time, ~600 BCE, the word for a cucurbit field was *migsha* (*Isaiah* 1:8). This word is derived from *qishu‘im*, indicating that snake melons had been a more common or widely produced commodity than the *avatthim*.

Greek literature (400 BCE–355 CE). The *pepon* of classical Greek literally indicates a sun-ripened fruit and is thought to refer specifically to watermelon, *Citrullus lanatus* (Liddell and Scott, 1948; Andrews, 1958; Stol, 1987; Grant, 2000). Hippocrates, in his *Regimen* (400 BCE), wrote that the *pepones* are easily digested (Jones, 1967). Theophrastus, the botanist, did not use the word *pepon* in his *Enquiry into Plants* (~300 BCE) (Hort, 1976). He did use three other words for cucurbits – *sikyos* for snake melons, *sikya* probably for a form of bottle gourd, *Lagenaria siceraria* (Mol.) Standl., and *kolokynthia* for perhaps bottle gourd or watermelon – only stating that there were no specific cultivars, although some were better and others were worse.

Dioscorides, in the second volume of *On Medical Matters* (~70 CE), wrote that the flesh of the *pepon* is easily digestible and diuretic, and that the rind of the *pepon* is to be applied on top of the head of a child suffering from heat stroke (Osbaldeston and Wood, 2000; Beck, 2005). Clearly, the *pepon* was a large, wet, thick-rinded fruit. Dioscorides described various medicinal uses of other cucurbits, including the *sikyos* (snake melons, *Cucumis melo*), *sikyos agrios* (wild *sikyos*, squirting cucumbers, *Echallium elaterium* (L.) A. Rich.), *kolokynthia edodimos* (edible *kolokynthia*, bottle gourds, *Lagenaria siceraria*) and *kolokynthia agria* (wild *kolokynthia*, colocynths, *Citrullus colocynthis*) (Janick et al., 2007). The colocynth was described as most effective when the green colour of the rind had faded.

Galen, in *On the Properties of Foods* (~180 CE), wrote that the *pepon* was cold and wet and that the *melopepon* (apple-*pepon*) was less so, having a milder effect on the body (Grant, 2000; Powell and Wilkins, 2003). The *pepon* was more diuretic than the *melopepon*, the *sikyos* (snake melons) and the *kolokynite* (bottle gourds). The *kolokynite* were bad for digestion eaten raw, but were a food eaten after boiling, frying or roasting.

![Fig. 2. Ancient images of Citrullus from Egyptian tombs. (Top) A spherical, striped fruit with an adjacent section of foliage (Keimer, 1924). (Centre) Fruits and vegetables, including a basket of small, round, striped Citrullus fruits, the two large, long fruits being snake melons, *Cucumis melo* Flexuosus Group (Feliks, 2005). (Bottom) An oblong, striped fruit on a tray (Manniche, 1989).](image-url)
Athenaeus, in *The Learned Banqueters* (~200 CE), quoted thousands of lines of verse written by ~1000 authors from various times and localities across the Greek-speaking world (Olson, 2006). Phænias is quoted as writing that the kolokynte are inedible raw, but edible after being stewed or baked. Euthydæmus of Athens wrote that the kolokytin is the Indian (= eastern) sikya. Menodorus wrote that the Indian kolokytin, which is called the sikya, is generally stewed but the regular kolokytin is usually baked. However, the inhabitants of Hellespont are quoted as using the word sikyai for long cucurbitas and kolokuntai for round cucurbitas. Diphilus wrote that the kolokynte are not very nutritious but add moisture to the body, and are more easily digested when eaten with water and vinegar or when seasoned. Diocles stated that the best kolokyntas are round, very large, sweet (*kolokyntos*), and are more easily digested when eaten with water and vinegar, which is called the *bottle gourd*.

Thus, among the Greeks, there was an inconsistency in the usage, very large, sweet (*kolokuntai*), sikyai, kolokynton, and are more easily digested when eaten with water and vinegar which is called the *bottle gourd*. Which time they desiccate and become like shoe leather, use many ways. Some, after allowing the fruits to become large, at three large codices of Jewish Law were compiled in Israel during the first centuries CE. They are easily searched on-line (Mekhon Maimre, 2015). The Mishna, compiled by Rabbi Yehuda the President in northern Israel around 200 CE, consists of six *sedarim* (orders) that are divided into a total of 63 *massakhitot* (tractates), each of which contains a highly variable number of mishnayot (statements). The Tosefta, probably compiled a century later, is structured similarly to the Mishna but is not as well edited, containing most of the same tractates, but these often differ in content. The Jerusalem Talmud, written in northern Israel around 400 CE, closely follows the Mishna and has much additional rabbinical commentary but, unfortunately, it too was never fully edited. The Mishna, Tosefta and Jerusalem Talmud contain some tractates that focus on issues concerning agriculture, crops and foods, including cucurbitas. There are statements that allude to the three cucurbitas mentioned in the Hebrew Bible, the *qishu*im (snake melons, *Cucumis melo*), *pasqui*ot (colocynths, *Citrus colocynthis*) and *avatit* (*Cucumis melo*), which were cultivated in Israel around 200 CE, of which there were three cultivars, the *qarmulun* (sponge gourds, *Luffa aegyptiaca* Mill.), the *yerqot hamor* (squirtig cucumber, *Echallium elaterium*) and the *melafefon* (sing. *melafefon*) (Feliks, 1967; Janick et al., 2007).

A Latin cookbook, designated *De Re Coquinaria*, is attributed to an individual who is thought to have been named Apicius and lived in the first century. The original work has been lost, but a supplemented version (~400 CE) has been preserved. This book has several recipes for cucurbitas (*Flower* and *Rosenbaum, 1958*). One recipe calls for dressed *pepones et melones*. Others call for cooked *cucurbita* (bottle gourds) and cooked or dressed *cucumeres* (snake melons). Another, for a fricassee, calls for *citrum*, which first has to be ‘cleaned inside and outside, diced and boiled’. The citron, *Citrus medica* (*Rutaceae*), is found elsewhere in this work but *Flower* and *Rosenbaum* (1958) indicated that this recipe would make no sense in the case of *Citrus medica*. Instead, *citrum* is defined by Latinists as a cucurbit (Andrews, 1863; Lewis and Short, 1951). *Citrum* is the forerunner of the English word ‘citron’, *citre* in French, for the hard-fleshed watermelon used in cooking or otherwise processed. Indeed, the citron watermelon, to be included in a fricassee, would require cleaning inside (removal of the seeds) and outside (removal of the rind).

De Observantia Ciborum (~510 CE), attributed to a Pseudo-Hippocrates, lists 101 foods, including three cucurbitas (Mazzini, 1984). *Cucumere* (snake melons) are high on the list, at no. 18 and first among the vegetables. *Cucurbitae* (bottle gourds) are much further down, at no. 67. *Pepone*, at no. 80, are listed among sweet, juicy fruits that are usually eaten raw when ripe, pomegranates, grapes and figs.

Anthemius, in *De Observatione Ciborum Epistula* (~516 CE), a book intended for the ruler of northeastern France, mentioned three cucurbitas (Grant, 2007). The *cucartitas* (bottle gourds) were cooked when young and tender and the *cucumeres* (snake melons), which were not always available, were eaten whole, with the seeds. The *melones* were to be eaten well-ripened, the flesh with the seeds still mixed in being preferable. Hebrew literature (200–400 CE). Three large codices of Jewish Law were compiled in Israel during the first centuries CE. They are easily searched on-line (Mekhon Maimre, 2015). The Mishna, compiled by Rabbi Yehuda the President in northern Israel around 200 CE, consists of six *sedarim* (orders) that are divided into a total of 63 *massakhitot* (tractates), each of which contains a highly variable number of mishnayot (statements). The Tosefta, probably compiled a century later, is structured similarly to the Mishna but is not as well edited, containing most of the same tractates, but these often differ in content. The Jerusalem Talmud, written in northern Israel around 400 CE, closely follows the Mishna and has much additional rabbinical commentary but, unfortunately, it too was never fully edited.

The Mishna, Tosefta and Jerusalem Talmud contain some tractates that focus on issues concerning agriculture, crops and foods, including cucurbitas. There are statements that allude to the three cucurbitas mentioned in the Hebrew Bible, the *qishu*im (snake melons, *Cucumis melo*), *pasqui*ot (colocynths, *Citrus colocynthis*) and *avatit* (*Cucumis melo*), which were cultivated in Israel around 200 CE, of which there were three cultivars, the *qarmulun* (sponge gourds, *Luffa aegyptiaca* Mill.), the *yerqot hamor* (squirtig cucumber, *Echallium elaterium*) and the *melafefon* (sing. *melafefon*) (Feliks, 1967; Janick et al., 2007).
Four cucurbits, the qish‘u’im (snake melons), delu‘im (bottle gourds), avattihim and melafefonot, are considered together in the first chapter of the tractate Kil‘ayim, which focuses on prohibitions regarding the intermingling of plantings or ‘crossing’ in gardens or fields (Feliks, 1967; Janick et al., 2007). The cucurbits, as vine-crop vegetables having large, prominent fruits, were prohibited, in some combinations, from being planted close to one another, in order to prevent the intermingling of their vines (Mishna, Kil‘ayim 1:5; Tosefta, Kil‘ayim 1:4). There are elements of practicality in this prohibition, such as not having to search for snake melons within the rampant foliage of bottle gourds. In other instances, the prohibitions are consistent with modern scientific knowledge. For example, if the edible-fruited bottle gourd was grown in the same vicinity as the utilitarian, bitter-fruited bottle gourd, both of which are Lagernaria siceraria, some of the resulting plants would likely have been hybrids bearing worthless, inedible fruits. The texts, though, also contain recensions of Mediterranean agricultural folklore, such as: ‘A person takes a seed from the flesh of an avattiah and a seed from the flesh of an apple and puts them together in the same hole and they can unite and become an intermingling. This is called in the Greek language molefalon’ (Jerusalem Talmud, Kil‘ayim 1:2, p. 2a). Thus the myth of the apple-pepo was carried across three languages, Greek, Latin and Hebrew. There is in a subsequent passage this comment: ‘Prohibited is the insertion of cuttings from grapevines into an avattiah lest it throw its waters into them’ (Jerusalem Talmud, Kil‘ayim 1:8, p. 4a). Thus, the avattiah, like the Greek pepon, was a watery fruit.

The same four cucurbits, the qish‘u’im, delu‘im, avattihim and melafefonot, being foodstuffs, were also discussed in the first chapter of Ma‘asrot, the tractate on tithing (Mishna, Ma‘asrot 1:4,5; Tosefta, Ma‘asrot 1:5,6; Jerusalem Talmud, Ma‘asrot 1:4,5). Prior to eating, the qish‘u’im (snake melons) and the delu‘im (bottle gourds) were to undergo piqqus, rubbing off of the hairs on their surfaces (Paris, 2012). As young cucurbit fruits are softly hairy but the hairs naturally slough off as the fruits grow and mature, the snake melons and bottle gourds must have been consumed when they were young and tender. The harvested fruits were gathered in a pile for tithing and, in the Jerusalem Talmud (Ma‘asrot 1:4, p. 4a), this pile had a special name, paqquesusiyya, a derivative of piqqus and forerunner of the Arabic word for snake melons, faqjous.

The avattihim, in contrast, were to be tithed after they underwent shilluq (Ma‘asrot 1:4–6), a word which usually means scalding or blanching (Lieberman, 1955, p. 671; Feliks, 2005, p. 65). However, shilluq has a rarely used, second meaning of slicking or polishing (Even-Shoshan, 2003, p. 1908). The great 12th-century scholar Maimonides, in his Commentary on the Mishna (~1168), explained that shilluq of avattihim meant yahlq beyado, smoothing by hand of the fruit surface to remove the zihuv (yellowing) on it (Qafah, 1963). Yellow-coloured dust accumulates on fruits over the course of growth and ripening in the field, in the rainless Middle Eastern summer. ‘Smoothing’ would result in a cleaner, more attractive product for marketing. Also, the avattihim were not to be offered for sale in a pile. Instead, they were laid out separately, side by side (Mishna, Ma‘asrot 1:5). This arrangement had a special name, shallequqiyya (Jerusalem Talmud, Ma‘asrot 1:4, p. 4a). The laying out one by one of the avattihim suggests that they were too fragile to be piled on top of one another and, indeed, as Maimonides explained in his Commentary, the laying out of the fruits was a precaution to prevent breakage.

The melafefonot were to be tithed after they were lifted out of the yora (Tosefta, Ma‘asrot 1:6), a cauldron or large kettle of boiling water (Lieberman, 1955, p. 672; Feliks, 2005, p. 65). If the melafefonot are dessert melons, as indicated by Feliks (1968) and Janick et al. (2007), then the reason for dipping them in boiling water is perplexing. Feliks (2005, p. 55), though, in his analysis of the tithing of figs (Jerusalem Talmud, Ma‘asrot 1:3), interpreted the insertion mesheyuru as meaning ripening of the second yield in the fig orchard. He explained that fig trees ripen their fruits in two waves over the course of the summer and, accordingly, the weak consonant alef (’) must have dropped out of the word meshey[’e] uru. If the melafefonot also ripened in two waves over the course of the growing season, then the alef (’) must have dropped out of y[’e] oru and the passage becomes logical. Specifically, the grower was not obliged to tithe the second wave of ripening melafefonot fruits until it was lifted out of the field (eno hayav ‘ad sheya’al min haye’oru). This statement is parallel to the previous ones concerning the snake melons, bottle gourds and avattihim: fruit vegetables were to be tithed after harvesting, when they were gathered.

Significantly, in the second and third chapters of the tractate on tithing, the avattihim, but not the other cucurbits, are discussed together with three other fruits, the te‘enim (figs), eshkhol (cluster of table grapes) and rimmonim (pomegranates). They were exempt from tithing if they were picked in the garden or field and eaten there (Mishna, Ma‘asrot 2:6; Jerusalem Talmud, Ma‘asrot 2:4, p. 11a). Evidently, the avattihim, like the other three, were common fruits that were eaten raw without any culinary preparation, and were juicy and sweet. The text specifies that figs were simply chosen and eaten, grapes were picked from a cluster one by one and eaten, pomegranates were plucked and eaten, and avattihim were sliced and eaten (Feliks, 2005; Perez, 2005).

The tractate on fruit stems, ‘Oqazin, instructs that a pomegranate or an avattiah that withers at one of its ends, or in the middle, is not normally eaten and thus not among the items that can result in ritual impurity (Mishna, ‘Oqazin 2:3). Cucurbit plants, as well as fruit-bearing trees, often set more fruits than can be supported through fruit maturity and ripening, the excess withering before reaching maturity. The avattiah, like the pomegranate, was eaten when ripe.

The tractate on tithing, Ma‘asrot, also instructs that the seeds of the melafefon were to be tithed and those of the avattiah were not (Jerusalem Talmud, Ma‘asrot 1:2, 2b). The reason, explained by one of the rabbis, is that the seeds of the melafefon are eaten and those of the avattiah are not, being used only for sowing (Feliks, 2005, pp. 39–40).

One of the topics discussed in the tractate on contributions, Terumot, is the amount of time, post-harvest, that various fruits and vegetables are acceptable as contributions. As the young, succulent snake melons and bottle gourds were highly perishable, they were deemed suitable as contributions for only 1 d (Tosefta, Terumot 4:5). The melafefonot were deemed suitable for contribution for 3 d. For the avattihim, though, no time restriction is specified as, apparently, they kept for a longer, indefinite period of time.
The *paqqu’ot* fruits, colocynths, were not used as food and not subject to tithing (Feliks, 1968, p. 202). The oil extracted from the seeds was used for illumination (Mishna, Shabbat 2: 2; Tosefta, Shabbat 2: 3; Jerusalem Talmud, Shabbat 2: 2). The dry shells of *paqqu’ot* fruits are mentioned in the tractate on tools (Mishna, Kellim 17: 17).

DISCUSSION

Domesticated plants are derived from small samples of wild source populations, and thus are themselves founder populations that contain only a small fraction of the genetic diversity in their wild ancestors (Ladizinsky, 1985). Cultigens have various traits that were selected early and continually in the domestication process, such as lack of bitterness, increased size of the harvested parts, increased yield and novel coloration (Heslop-Harrison and Schwarzacher, 2012). The sweet dessert watermelon, *Citrullus lanatus*, which has relatively little genetic diversity (Levi et al., 2000, 2001; Dane et al., 2004; Nimmakayala et al., 2014a, b; Reddy et al., 2015), follows this general pattern of crop-plant domestication. The fruit flesh of wild and primitive *Citrullus* is bitter or insipid, hard and pale-coloured (Wehner, 2008). Non-bitterness of the fruits was probably the first and most important trait to be selected in the process of watermelon domestication and, in effect, success in its selection acted as a preadaptive evolutionary event (Cohen et al., 2014) for subsequent selection for tender and sweet fruit flesh. As non-bitterness is conferred by a single recessive gene (Chambiss et al., 1968; Navot et al., 1990; Wehner, 2007), this trait should have been relatively easy to maintain if isolation from neighbouring wild populations was feasible. The modes of inheritance of hard versus tender and of insipid versus sweet flesh in *Citrullus* have not been illuminated.

The present investigation, which has focused mainly on ancient literature, has attempted to define a narrower time frame and geographic range within which the dessert watermelons having non-bitter, tender, highly coloured, sweet flesh were developed. The latest possible date for this time frame is provided by illustrations of both red-flesh sweet dessert watermelons and colocynths in illuminated manuscripts prepared in northern Italy dating to the end of the 14th century (Paris et al., 2009, 2013). Botanists of the European Renaissance, such as Fuchs (1542), Gerard (1597), Dalechamps (1613) and Chabrey (1666), observed various cultivars of watermelons that had red and sweet or white and insipid flesh, and noted that the finest watermelons were found in warm regions. The adaptation of watermelons to warm, sunny climates indicates that much of their history lies to the south of Europe (Paris et al., 2013).

Although it is agreed that the genus *Citrullus* is of African origin (Whitaker and Davis, 1962; Maynard and Maynard, 2000; Zohary et al., 2012), there has been major disagreement concerning where in Africa the dessert watermelon originated. Much of the controversy stems from phenotypic variations that overlap among citron, egusi and dessert watermelons and colocynths. Wild and primitive *Citrullus* fruits, regardless of taxon, typically have hard, bitter or bland, weakly coloured flesh and, as indicated by Wehner (2008), this situation has repeatedly been a source of incorrect taxonomic identifications. For example, both the citron watermelon PI 296341 and the egusi watermelon PI 457916 have small, spherical, striped fruits with hard, bitter flesh (Fig. 1). As discussed by Chomicki and Renner (2015), in but few cases have voucher specimens been preserved and thus taxonomic identifications often cannot be verified. Accounts of seed sample origins and germplasm descriptions that could help assign taxonomic identity are sometimes lacking, for example a case involving a cross between a dessert watermelon and a purported colocynth (Shimotsuma, 1958). Further confusion has been generated by the inconsistent use of nomenclature; for example, Pangalo (1930) applied the name *colocynthoides* to the citron watermelon even though he knew that name had been given a half-century earlier by Schweinfurth (1883) to the wild watermelons of the Nile Valley. Thus, some conclusions drawn from crossing experiments within *Citrullus* have been based on questionable or incorrect taxonomic identities of the parents. Confused taxonomy, together with the weakness of crossability barriers among species of *Citrullus*, has resulted in several hypotheses for the origin of the sweet dessert watermelon.

One hypothesis for the origin of the dessert watermelon is that it is descended from the colocynth of northern Africa (Singh, 1978; Sain et al., 2002; McCreight et al., 2013). *Citrullus lanatus* and *C. colocynthis* have been observed to cross spontaneously in the field (Fulks et al., 1979). However, the hybrid plants exhibit chromosome irregularities and lower fertility (Whitaker and Davis, 1962; Shimotsuma, 1963; Sain et al., 2002; Wehner, 2008). Results of investigations using techniques of molecular genetics and genomics indicate that colocynths are more distant from dessert watermelons than are citron watermelons (Jarret and Newman, 2000; Levi et al., 2000, 2001, 2013; Dane et al., 2004; Dane and Lang, 2004; Dane and Liu, 2007; Chomicki and Renner, 2015).

A second, widely accepted hypothesis for the origin of the dessert watermelon is that it is descended from the citron watermelon of southern Africa (Robinson and Decker-Walters, 1997; Maynard and Maynard, 2000; Rubatsky, 2001). However, the findings of 4000-year-old artefacts of watermelon in Egypt are contradictory, as farming was not yet under way in southern Africa at that time (Zohary et al., 2012; Mead and Martens, 2013). Massive preferential segregation (Levi et al., 2003) and reduced pollen fertility (McGregor and Waters, 2013) occur in progenies of crosses between citron and dessert watermelons. Moreover, there are major differences in genome organization between the two (Guo et al., 2013; Reddy et al., 2013; Chomicki and Renner, 2015).

A third, newer hypothesis is that ‘the recent progenitor of modern cultivated watermelon’ is the egusi watermelon of western Africa (Guo et al., 2013). Egusi and dessert watermelons are sister species that diverged only 3.1 million years ago (Chomicki and Renner, 2015). However, the egusi watermelons have peculiar soft, thick, moist, mucilaginous seed coats not reported in any other *Citrullus*. The wild-type PI 457916 has this trait (Fig. 1) and egusi were domesticated for the consumption of their seeds, not their flesh. Besides the unidirectional crossing ability between dessert and egusi watermelons (Fursa, 1983; Gusmini et al., 2004), egusi watermelons have high nucleotide divergence of reproductive barrier genes from the dessert watermelons, for which has been offered the tenuous explanation that ‘the domestication of watermelon could be a
possible force responsible for the rapid evolution of reproductive barriers’ (Guo et al., 2013).

A fourth hypothesis is that the dessert watermelon originated and was first domesticated in northeastern Africa (Fig. 3). Accordingly, the wild, often hard, bitter or insipid watermelons given the botanical variety name colocynthoides by Schweinfurth (1883) and subspecies cordophanus by Ter-Avanesyn (1966) (Table 1) are living representatives of the ancestor of the sweet dessert watermelon (Fusa and Gavrilukyuk, 1990). Wild watermelons are widespread in Sudan (Andrews, 1950) and occur in areas of savannah and desert (Bebawi and Neugebahr, 1991; Hassan et al., 2009), centred in the Nile Valley (Schweinfurth, 1873, 1883; Gouda, 2007; Mariod et al., 2009), to the west in Kordofan (Ter-Avanesyn, 1966) and Darfur (Robinson, 2005) and to the east in Shaqadud (Abdel-Magid, 1989). Their distribution extends north into Egypt (Muschler, 1912; Shimitsumi, 1963), and perhaps south to Kenya (Jeffrey, 1967, 2001) and east to Ethiopia (Fig. 1). The largest extant population of wild dessert watermelons may be one that has been reported adjacent to the Nile River in Sudan (Mariod et al., 2009). The wild population at Shaqadud, in the eastern desert some 140 km northeast of Khartoum, is enjoyed by local residents for water and sustenance (Abdel-Magid, 1989). Landraces in Darfur are used as a source of water (Keith-Roach, 1924). Wild watermelons are known in Sudan as gurum (Ziyada and Elhusseini, 2008; Mariod et al., 2009) and in central and southern Egypt as gurma (Schweinfurth, 1883; Issa Bey, 1930; Manniche, 1989). Unfortunately, Citrullus samples derived from Sudan and Egypt have not been subjected to extensive molecular-genetic scrutiny. Results from DNA-sequence-based, systematic investigations of Citrullus have been presented for only a few accessions from Egypt and none from Sudan (Levi et al., 2013; Nimmakayala et al., 2014b). Two of the Egyptian accessions, listed as US plant introductions PI 525081 and PI 525083, which had been previously thought, based on phenotype, to be a colocynth and a citron, respectively, were observed by Levi et al. (2013) to cluster with dessert watermelons. Next-generation sequencing of ancient DNA (Brown et al., 2014), if applied to comparing watermelon artefacts with modern Citrullus, can be expected to identify the artefacts taxonomically. The latest sequencing and genomics technologies (Guo et al., 2013; Levi et al., 2013; Nimmakayala et al., 2014a, b; Chomicki and Renner, 2015) also should be directed to comparing the wild and primitive watermelons from northeastern Africa with modern, sweet dessert watermelons as well as other Citrullus taxa. If applied to such germplasm, the results can be expected to determine whether the dessert watermelon, Citrullus lanatus, indeed exhibits a clear wild/domesticated dimorphism or merely a continuum from wild to domesticated gene pools reflective of continual selection for improved horticultural traits (Abbo et al., 2014).

Archaeological artefacts, mostly seeds, and images found in tombs of ancient Egyptian nobility provide important evidence for the presence of Citrullus in northeastern Africa >4000 years ago (Schweinfurth, 1883; Keimer, 1924; Darby et al., 1977; Germer, 1985; de Vartavan and Asensi Amoros, 1997; Zohary et al., 2012). However, the Arabist Watson (1983) has questioned whether the various findings are of watermelon, C. lanatus, or colocynth, C. colocynthis. Both C. lanatus var. colocynthoides and C. colocynthis have been recorded as wild plants in Egypt (Muschler, 1912) and these two taxa are easily confused. Besides taking no account of the Hebrew-language evidence, Watson dismissed all of the archaeological, iconographic and other literary evidence from pre-Islamic times as indicating colocynth or melon rather than watermelon, and pronounced that sweet watermelons originated in the Indian subcontinent and diffused westward as a result of Islamic conquests. There can be no mistaking, though, that seeds >10 mm long, with bulges adjacent to the hilum and having a rough surface, are not of colocynths. The photographs and drawings of seeds presented by de Vartavan (1999) and Wasylikowa and van der Veen (2004) prove that watermelons were present in Egypt and Libya thousands of years ago. Seeds of Citrullus that date from the Roman period at Qusayr al-Qadim in Egypt (Cox and van der Veen, 2008; van der Veen, 2011) and, several hundred kilometres to the north, near the Dead Sea in Israel (Kislev and Simhoni, 2009), shown in clear photographs, likewise cannot be of colocynths. Hence, there can be no remaining doubt that watermelons were present in Egypt and its immediate neighbours for centuries, even millennia, prior to the rise of Islam.

Although the watermelon must have been a familiar item valued by the Egyptians of pharaonic times, from the remains alone it is not clear whether the fruits were gathered from wild or cultivated plants. However, the image of a large, oblong, striped fruit in an Egyptian tomb, >4000 years old (Manniche, 1989, p. 92), is suggestive of a cultivated watermelon. The wild and primitive watermelons of northeastern Africa are typically spherical (Schweinfurth, 1883; Ter-Avanesyn, 1966) (Fig. 1), and therefore this oblong-shaped specimen obviously deviates from the wild type. This fruit appears on a tray served, undoubtedly, to a royal receiver, surely indicating the esteem given to this item and that it was to be eaten fresh (Chomicki and Renner, 2015). Indeed, this fruit could not have been a citron watermelon because citron fruit flesh is too hard to be enjoyed fresh in large quantity. Although melons, Cucumis melo, are large fruits and can be striped, the stripping of mature, ripe melons is rarely as stark as that shown in the image. As this large, striped fruit was enjoyed fresh, it must have been non-bitter and tender-fleshed, and its oblong shape indicates that it was taken from a cultivated plant. However, this fruit was not necessarily sweet, at least not according to modern standards (Mohr, 1986; Maynard, 2001). The longing for avatthim by the Children of Israel (Numbers 11:5) places them, at the time of the Exodus, in the same category as the qishu’im (snake melons) and various Alliaceae. Like the snake melons, leeks, onions and garlics, the avatthim of that early time were probably eaten fresh, pickled or cooked, not better tasting than snake melons and certainly not sweet like modern dessert watermelons.

Greek, Latin and Hebrew writers of the first centuries CE clearly distinguished watermelons, melons and colocynths. Physicians writing in Greek, from Hippocrates (~400 BCE) (Jones, 1967) to Dioscorides (first century) (Osbaldeston and Wood, 2000; Beck, 2005), Galen (second century) (Grant, 2000; Powell and Wilkins, 2003) and Oribasius (fourth century) (Grant, 1997), indicated that the pepon was wet, abundantly cooling, easily digested and diuretic. The pepon must have been large enough to be placed on the head of a child and quite wet and cooling so as to reduce fever, as instructed by Dioscorides. To Pliny, the pepo was a food that was most cooling (Rackham, 1950; Jones, 1951). The Jerusalem Talmud
(Kil’ayim 1:8, p. 4a) indicates that the avattiah was a watery fruit. The pepon of the Greek physicians, the pepo of the Latin encyclopaedist Pliny and the avattiah of the Hebrew scholars were one and the same large, watery fruit – the watermelon. The melopepon, the supposed hybrid of an apple with a pepon, had a less moisturizing and cooling effect, according to Galen and Oribasius. The melopepo may indeed have been a new introduction, as stated by Pliny (first century), because it is not mentioned by his contemporary, Dioscorides. According to Pliny, the melopepo became yellow and aromatic and spontaneously detached from the plant when it ripened. Thus the melopepo is without question the melon, Cucumis melo, an edible
cucurbit that typically yellows and becomes aromatic, and is
the only one that absides from the plant upon ripening
(Whitaker and Davis, 1962; Robinson and Decker-Walters,
1997). The same taxonomic identity of the Hebrew rendition,
\textit{melafefon}, is established by the identical mythical perception of
its being an apple-pepon admixture (Jerusalem Talmud, \textit{Kit'ayim} 1:2, p. 2a). The \textit{kolokyntha agria} or colocyntis, colocynt,
described by the Greek physicians and by Pliny, was a
familiar, highly regarded commodity for medicinal preparations
and as such could not possibly be distinguished from the wa-
termelon (Amar and Lev, 2011). To some of the Greek writers
quoted by Athenaeus (Olson, 2006), the edible, cultivated \textit{kolo-
kunte} were large and could be sweet, and thus distinguished
from the inedible, wild \textit{kolokyntha agria}, the colocynt. Indeed,
the extremely bitter \textit{paqqu’ot} (2 Kings 4:39–40), colocynts,
were already clearly distinguished in biblical times from the
cultivated, non-sweet but pleasant-tasting \textit{avatthim} (Feliks,
1968; Janick et al., 2007). The \textit{paqqu’ot}, like the \textit{yeroqat hamor}
(squirtig cucumber, \textit{Echallium elaterium}), are absent from the
tractate on tithing, \textit{Ma’asrot}, and thus they were not food items,
although they were used for other purposes (Feliks, 1968;
Janick et al., 2007). Moreover, the Latin recipe book of Apicius
distinguished between two kinds of watermelons, using the
word \textit{pepones} for fruits that were dressed and eaten fresh and
the word \textit{citrum} for a fruit that was cooked (Flower and
Rosenbaum, 1958).

The Hebrew-language literature provides considerably more
information concerning the cucurbit food crops than does the
close-contemporary Greek and Latin literature.

Four cucurbit, the \textit{qishu’im}, \textit{delu’im}, \textit{avatthim} and \textit{mela-
fefonot}, are discussed together in some passages. Each of these
four must have been widely cultivated, often in the same field,
because there are prohibitions on planting them too close to one
another (Mishna, \textit{Kit’ayim} 1:5; Tosefta, \textit{Kit’ayim} 1:4).
However, each must have been grown for the consumption of
its fruits because the tractate on tithing contains a number of
pertinent instructions concerning each of them. Prior to eating,
the \textit{qishu’im} (snake melons) and the \textit{delu’im} (bottle gourds)
were to undergo \textit{piqqu}, rubbing off of the hairs, and thus these
fruits were consumed when young (Feliks, 1968; Janick et al.,
2007). In contrast, the \textit{avatthim} and the \textit{melafefonot} were to
undergo \textit{shillug}, smoothing of the fruit surface to remove ac-
cumulated dust (Qafah, 1963), and thus these fruits were to
be eaten mature, upon ripening (Mishna, \textit{Tosefta} and Jerusalem
Talmud, \textit{Ma’asrot} 1:4–6). The use of the \textit{avatthim} when they
were ripe, like pomegranates, is confirmed in the tractate on
fruit stems (Mishna, \textit{’Oqazin} 2:3).

The descriptions of the \textit{pepon} or \textit{melopepon}/\textit{avatthah} as being watery
with a thick rind and the \textit{melopepon}/\textit{melopepon}/\textit{melafefon} as be-
coming yellow and aromatic and spontaneously detaching from
the plant when ripe, are sufficient to identify them as water-
melons and melons, respectively. Other traits mentioned in the
Hebrew literature reinforce these identifications. The \textit{melafefo-
not}, but not the \textit{avatthim}, ripened in two main waves over the
course of the growing season (Tosefta, \textit{Ma’asrot} 1:6). Ripening
in waves is a well-known characteristic of melon crops (Rosa,
1924; McGlasson and Pratt, 1963; Pratt et al., 1977). For tith-
ing, the \textit{avatthim} were to be laid out individually rather than
stacked (Mishna, \textit{Ma’asrot} 1:5). Indeed, the watermelons of
yesteryear had fragile rinds and thus were highly subject to
splitting. They were replaced during the mid-20th century by
newly bred cultivars having tough-rinded fruits (Parris, 1949;
Ivanooff, 1954). After harvest, the \textit{avatthim} were fit for con-
tribution for an indefinite period, but the \textit{melafefonot} could
be contributed only during the first 3 d after harvest (Tosefta,
\textit{Terumot} 4:5). Whilst dessert watermelons have a shelf-life of
several weeks or months (Keith-Roach, 1924; Rushing et al.,
2001), muskmelons and cantaloupes, if not refrigerated, have a
shelf-life of only 3–4 d (Burger et al., 2010).

In the tractate on tithing, watermelons are discussed with
figs, table grapes and pomegranates (Mishna, \textit{Ma’asrot} 2:6,
3:9; Jerusalem Talmud, \textit{Ma’asrot} 2:4, 3:4), fruits which are
juicy and sweet, and therefore the watermelons of the time
must have been likewise. Although the watermelons and mel-
ons are usually mentioned together in the Jewish literature, only
the watermelons are mentioned with the other three sweet
fruits. Sweet melons are thought to have originated in
Khorasan, Central Asia, reaching the Mediterranean Basin
much later, in the 11th century, and these are the \textit{battikh}
that diffused westward after the rise of Islam (Paris et al.,
2012b). Route was documented by Athenaeus (second century) as saying
that the best \textit{kolokynthes} are \textit{glukies}, sweet (Olson, 2006).
The early sixth-century \textit{De Observantia Ciborum} lists the \textit{pepe}-
nonce among pomegranates, grapes and figs, confirming the presence
of sweet watermelons in what is now Italy (Mazzini, 1984).
The early sixth-century writing of Anthimus (Grant, 2007) indi-
cates that the \textit{melones} were eaten when they were ripe and
freshly cut, the seeds still mixed in the flesh. Anthimus, evi-
dently, used the word \textit{melones} for watermelons, the same word
used for them in the 14th- and 15th-century \textit{Tacuinum Sanitatis
(Paris et al., 2009). Hence, by the second decade of the sixth
century, at the very latest, the eating of sweet, ripe watermelons
had spread beyond Israel and Greece to Italy and possibly
France (Fig. 3). Sweet watermelons had diffused to Europe cen-
turies before their earliest recorded presence in Moorish Spain,
in the \textit{Cordoban Calendar} of 961 \textit{CE} (Pellat, 1961).

Athenaeus (late second century) quoted Phaeasias as stating
that the \textit{pepon} is edible, except for the seeds, when the flesh be-
comes soft (Olson, 2006) and Quintus Gargilius Martilus (mid-
third century) wrote that the \textit{pepon} are good to eat after the rind
and seeds have been removed (Maire, 2007). The Jerusalem
Talmud (\textit{Ma’asrot} 1:2, 2b) instructs that the seeds of the \textit{melafefo-
not} are tithed and those of the \textit{avatthah} are not, because the for-
mer were eaten and the latter were not (Feliks, 2005). Thus, in
Roman times around the Mediterranean, the tender, sweet, juicy
ripe fruit flesh of the watermelons was consumed and the seeds
were not. In Byzantine-era mosaics (350–600 \textit{CE}) in Israel,
watermelons of a variety of sizes and rind colour patterns are depicted.
One mosaic has what appears to be a cut fruit with yellow-orange

Watson (1983) cited the medieval Arabic names \textit{battikh hindi}
and \textit{battikh sindi} as evidence for the derivation of the sweet des-
t watermelon in the Indian subcontinent. The former name
was first recorded in the \textit{Cordoban Calendar} of 961 \textit{CE} (Pellat,
1961) and the latter as the source of the modern Spanish word
for watermelon, \textit{sandia}, Sind being a province in Pakistan.
Although \textit{Citrullus lanatus} is native to Africa, it is conceivable
that a cultivar of sweet watermelon could have emerged else-
where, isolated from local wild or cultivated plants having infer-
ior horticultural traits. Indeed, contamination of an elite
watermelon cultivar was described by the late 15th-century writer Ibn Shihina (Sarkis, 1909). Seeds of an excellent watermelon, ‘Raqqi’ (from the environs of Raqqqa, adjacent to the Euphrates River in Syria), were imported annually by Gazans because seeds taken from ‘Raqqi’ fruits grown in Gaza and planted the following year produced inferior fruits. Undoubtedly, growing in or near Gaza were local cultivars or wild populations of insipid or bitter Citrullus; some such populations still exist (Shemida’ and Danin, 1983). To the present, watermelons in Iraq are called raqqi (Chakravarty, 1966; Perry, 2005; Nasrallah, 2007) and therefore it is possible that, similarly, the names battikh hindi and battikh sindi reflected the introduction of a superior cultivar from the Indian sub-continent or, at least, from a land to the east. Such a watermelon was grown in Khwarizm, near the Aral Sea in Central Asia, and its fruits were carefully packed and shipped to the caliphs Wathiq and Ma’mun of Baghdad during the first half of the ninth century (Bosworth, 1968; Said, 1973). On the other hand, there is also much precedent for the use of exotic names for cucurbits as a marketing ploy. The Cucurbita moschata Duchesne ‘Tahitian’ squash has an exotic name, but it is not proof of its geographic origin (Robinson, 1980). Indeed, the familiar dessert watermelon ‘Congo’ was bred in the USA (Levi et al., 2004). The Indian or Sindian battikh would have sounded exotic in medieval Andalusia, as Spain was at the far western end and Pakistan was at the far eastern end of the Islamic Empire. Significantly, battikh hindi and battikh sindi were given as synonyms of dolla’ in the medieval lexicon of northern Africa and Andalusia (Meyerhof and Sobhy, 1938; Dozy and Engelmann, 1915; Pellat, 1961; Amar, 2000). Dolla’ is a Berber word for sweet dessert watermelon which appears to share the same Semitic root, d-l’, as the Hebrew word for bottle gourd, dela’at. The existence of the Berber word indicates an established regional familiarity with the sweet watermelon. Indeed, Ysaac Judaeus, a physician of Qayrawan, Tunisia, in his Book of Particulars in Diet (~ 920) (Sabbah, 1992), mentioned the dolla‘ four decades prior to the first recording of the battikh hindi and battikh sindi in Spain (Pellat, 1961). Also, it is tempting to parallel the juggling of bottle gourd with sweet watermelon between Hebrew and Berber with that of kolokynte and pepon by various Greek writers, as related by Atheneaus (Olson, 2006). Whitaker and Davis (1962) believed, based on historical records and indigenous names for watermelon of Egyptians and Berbers, that the sweet dessert watermelon has its origins in Africa.

The combination of literary evidence, especially that in Hebrew, with the archaeological and iconographic evidence from Egypt and Sudan, and the modern distribution of wild and primitive watermelons in Sudan and neighbouring countries, is overwhelming. Dessert watermelons are native to northeastern Africa and sweet dessert watermelons were selected in Mediterranean lands by no later than the second century CE.

CONCLUSIONS

The dessert watermelon, Citrullus lanatus, is native to northeastern Africa. Wild C. lanatus populations in Sudan, reported as bearing small, round, inferior-quality fruits, are living representatives of the wild ancestor of the sweet dessert watermelon. Ancient seeds, fruits and images of watermelons have been found in Sudan and Egypt and one image seems to depict the serving of a large, oblong, striped fruit which likely had non-bitter, tender flesh but was not sweet by modern standards. Hebrew-language literature from the first centuries CE indicates that, by Roman times, sweet dessert watermelons were esteemed in the Land of Israel and thus likely were present in other Mediterranean lands as well. The ripe fruit flesh, which was probably distinctly coloured rather than pale, was eaten raw and had sweetness comparable to that of figs, grapes and pomegranates. The seeds were not consumed. During or prior to the Roman era, the citron watermelon arrived in Mediterranean lands and its fruit flesh was consumed after being cooked.

ACKNOWLEDGEMENTS

I thank Susanne S. Renner of the University of Munich (Germany) for provocative, illuminating and fruitful correspondence. This work was supported in part by a grant from the Lillian Goldman Charitable Trust (New York).

LITERATURE CITED

Jarret RL, Newman M. 2000. Phylogenetic relationships among species of Citrullus and the placement of C. rehmi. De Winter as determined by...