A Comparison of the Histologic Effects of Chemabrasion, Dermabrasion, and Laserabrasion in the Minipig

John J. Minoli, MD; and Fritz E. Barton, Jr., MD

This study was designed to evaluate the short- and long-term histologic consequences of some common skin resurfacing methods. Grids were tattooed on the sides of a Yucatan minipig, the standard model for human skin experiments. Each grid cell was treated with one of the following: Jessner's solution, lactic acid, glycolic acid, trichloroacetic acid with and without Retin-A® pretreatment, phenol, dermabrasion, or carbon dioxide laser (Sharplan SilkTouch® or Coherent UltraPulse®). All treatments were given at the usual doses or strengths recommended for human skin. Each treatment method was represented by two grid cells on either side. Biopsy specimens were obtained from each area immediately after treatment and at 1 week, 1 month, and 3 months. The histologic sections were read by an experienced dermatopathologist. The superficial peeling agents (glycolic acid, lactic acid, and Jessner's solution) barely penetrated the epidermis. Wound depth from dermabrasion and laserabrasion could be traced to the papillary-reticular junction of the dermis in the early sections, but by 3 months the skin in these areas had resumed its normal architecture. In contrast, phenol and trichloroacetic acid produced changes to the upper reticular dermis, and these findings persisted for the duration of the observation period. The effects of treatment with the carbon dioxide lasers had dissipated by 3 months. Higher levels of laser energy are apparently needed to induce resurfacing in this model.

Resurfacing techniques date back several millennia. Although time-honored, chemabrasion and dermabrasion have inherent limitations.1–9 Superficial peeling preparations such as glycolic acid, lactic acid, Jessner's solution, and tretinoin are incapable of eliminating deep wrinkles; medium-depth phenol peeling solutions have melanotoxic potential; and deep peeling solutions of ≥50% trichloroacetic acid (TCA) are likely to produce hypertrophic scarring.3–9 Mechanical dermabrasion is operator dependent and typically has the highest rate of blood loss.12–10 Short-pulsed, high-energy CO₂ lasers that vaporize tissue cleanly and minimize thermal damage have become very popular in the last few years.10–14 Comparative animal studies and early histologic studies in human beings show similar tissue effects of CO₂ laser and medium-depth peeling agents,11 but the sampling periods have been short.13 We investigated the histologic effects of the CO₂ laser compared with common chemabrasive and dermabrasive techniques for skin rejuvenation. Our model was the Yucatan miniature pig, whose skin closely resembles human skin.15,16 We

From the Department of Plastic Surgery, the University of Texas Southwestern Medical Center, Dallas, TX.

Accepted for publication Dec. 23, 1997.

Reprint requests: Fritz E. Barton, Jr., MD, 411 N. Washington, no, 6000, Dallas, TX 75246.

Copyright © 1998 by the American Society for Aesthetic Plastic Surgery, Inc.

190-820X/98/$5.00 + 0

70/1/88377
chose a 3-month period of observation to monitor the initial inflammatory and proliferative healing responses into the maturation phase.9,17

Material and Methods

A 6-month-old, 30 kg, nonphotoaged, female Yucatan minipig was our test subject. The pig was kept according to guidelines for the care and maintenance of experimental animals established by the Food and Drug Administration and our institutional review board. At the beginning of each biopsy session, the pig was given general anesthetic, and afterward the wounds were dressed with Telfa\textregistered and Flexin\textregistered. Postinterventional analgesia was a single intramuscular injection of buprenorphine 0.57 mg. Daily intramuscular injections of penicillin G 300,000 units were given prophylactically.

Grids were tattooed on the animal’s sides, each consisting of 18 rectangles 1 cm wide by 12 cm long (Figure 1). A dif-
Figure 3. Mean depth of penetration of each treatment modality immediately after application.

Figure 4. Mean depth of penetration of each treatment modality 1 week after application.

different treatment method was designated for every nine grid cells, taking care to reverse the pattern so that each method was equally represented on dorsal and ventral sites. Tretinoin 0.05% cream was rubbed on half of the TCA grids daily for 2 weeks before treatment was begun. All treatments were given the same day after degreasing the areas with acetone. These treatments are listed in Table 1. Biopsy specimens were obtained immediately after treatment and at 1 week, 1 month, and 3 months. The biopsy cuts were taken through full-thickness skin and oriented vertically to include treated and nontreated skin in each excision (Figure 2). Control biopsy specimens were obtained from the dorsal and ventral flank on either side. All biopsy sites were closed with 2-0 nylon skin sutures. A
was thoroughly disrupted. Both lasers caused upper dermal necrosis, the SilkTouch® involving the papillary layer and the UltraPulse® the upper reticular layer of dermis. Other treatment methods produced no discernible effects (Figure 3).

One Week
Most specimens bore signs of change except the glycolic acid group, which appeared to be unaffected (Figure 4). Lactic acid and Jessner’s grid cells showed evidence of partial epidermal necrosis. The dermabrasion specimens were notable for vast epidermal necrosis and beginning reepithelialization. The papillary dermis was diffusely involved, showing wavy and disorganized collagen architecture, regional absence of elastin, and mild proliferation of fibroblasts and granulation tissue (Figure 5).

Laser treatment induced epidermal necrosis and reepithelialization, as well as a moderate inflammatory reaction. Numerous fibroblasts and abundant granulation tissues were seen in the papillary and upper reticular dermis. Collagen was coagulated, horizontally compacted, and occasionally disorganized, and elastin was absent (Figure 6). The histologic changes produced by phenol and by TCA with and without Retin-A® were similar to those of the lasers, but deeper (Figure 7). Phenol-induced effects were seen in the midreticular layer of dermis. TCA penetrated well into the upper reticular dermis, and pretreatment with tretinoin seemed to facilitate tissue encroachment.

One Month
The histologic sections of biopsy specimens obtained 1 month after treatment showed normal skin for specimens
treated with glycolic acid, lactic acid, and Jessner’s solution (Figure 8). The dermabrasion specimens exhibited normal collagen deposition, an absence of elastin, and mild fibroblastic proliferation to the papillary dermis. SilkTouch® laserabrasion sections showed a disorganized collagen layer, normal elastin, and fibroblastic invasion to the upper reticular dermis. Specimens treated with phenol and trichloroacetic acid with or without pretreatment with Retin-A® showed various collagen patterns, at times wavy and disorganized and other times horizontally compacted.
Elastin was absent, and fibroblasts and granulation tissue showed moderate to severe proliferation. The level of penetration seemed progressively deeper, from superficial for TCA, upper reticular dermis for TCA with Retin-A®, and midreticular dermis for phenol.

Three Months
By the last observation period, only the TCA and phenol groups showed histologic changes consisting of residual fibroblastic proliferation and densely compacted, horizontally oriented collagen amid a hyaline matrix devoid of elastin. Granulation tissue was evident in the upper reticular dermis (Figures 9 to 12). The other treatment groups showed essentially normal skin, with slightly increased dermal thickness across the board.3,7,9 Once again a progressive depth of penetration was noted from TCA to phenol, but this time only into the upper reticular dermis. A summary of these histologic findings is presented in Table 2.

Examination of the control biopsy specimens revealed that full-thickness dorsal skin tended to be thicker (mean 2.8 mm) than ventral skin (mean 2.5 mm) in our model. The histologic effects of treatment went deeper in the thinner ventral skin of our animal (0.955 ± 0.566 mm) than on the dorsum (0.550 ± 0.452 mm).

Discussion
This study was designed to identify specific short- and long-term microscopic changes produced by common skin resurfacing techniques. Many of our results agreed with those of other investigators.3,7,9 Light peeling agents (glycolic acid, lactic acid, Jessner’s solution) confined their effects primarily to the epidermis. Intermediate peeling agents (TCA with and without Retin-A®, phenol) caused permanent compaction, orderly reorientation, and hyalinization of collagen, as well as a decrease in elastin. The effects of dermabrasion and laserabrasion were less striking. Even though these methods produced short-term dermal changes (disorganized, coagulated, and compacted collagen; diminished elastin), by 3 months the skin had reverted to normal. Several studies have also shown that dermabrasion does not induce the profound histologic response seen after medium-depth chemabrasion.18-20 Dermabrasion elicits neocollagen synthesis, but late biopsy specimens showed a return to the pretreatment skin architecture.21

Our pig’s tough truncal skin probably muted the effects of the lasers, which were set for human facial skin. Most clinicians rely on the appearance of a faint yellow hue to signal
Table 2
Summary of Histologic Findings by Treatment Method

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Epidermis</th>
<th>Collagen</th>
<th>Elastin</th>
<th>Depth of penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycolic acid 50%</td>
<td>No change</td>
<td>No change</td>
<td>No change</td>
<td>None measured</td>
</tr>
<tr>
<td>Lactic acid 70%</td>
<td>Minimal necrosis first week; no change at 1 month</td>
<td>No change</td>
<td>No change</td>
<td>To epidermis at 1 week, none at 1 or 3 months</td>
</tr>
<tr>
<td>Jessner’s solution</td>
<td>Minimal necrosis first week; no change at 1 and 3 months</td>
<td>No change</td>
<td>No change</td>
<td>To epidermis at 1 week, none at 1 or 3 months</td>
</tr>
<tr>
<td>Dermabrasion</td>
<td>Reepithelialization after 1 week</td>
<td>Wavy and disorganized at 1 week; normal at 1 and 3 months</td>
<td>Absent at 1 week and 1 month; normal at 3 months</td>
<td>To epidermis immediately; to papillary dermis at 1 week and 1 month; none at 3 months</td>
</tr>
<tr>
<td>SilkTouch® laser</td>
<td>Immediate necrosis; reepithelialization after 1 week</td>
<td>Compact and coagulated at 1 week; disorganized at 1 month; normal at 3 months</td>
<td>Absent at 1 week; normal at 1 month</td>
<td>Immediate to papillary dermis; papillary to upper reticular dermis at 1 week and 1 month; none at 3 months</td>
</tr>
<tr>
<td>UltraPulse® laser</td>
<td>Immediate necrosis; reepithelialization after 1 week</td>
<td>Compact, coagulated, and disorganized at 1 week, normal at 1 and 3 months</td>
<td>Absent at 1 week; normal at 1 and 3 months</td>
<td>Papillary to upper reticular dermis immediately and at 1 week; none at 1 and 3 months</td>
</tr>
<tr>
<td>TCA</td>
<td>Reepithelialization after 1 week</td>
<td>Compact, coagulated, and disorganized at 1 week and 1 month; hyalinization at 3 months</td>
<td>Absent at 1 week, 1 month, and 3 months</td>
<td>Upper reticular dermis at 1 week; to upper/midreticular dermis at 1 month; to upper reticular dermis at 3 months</td>
</tr>
<tr>
<td>TCA + Retin-A®</td>
<td>Reepithelialization after 1 week; hyperkeratosis at 3 months</td>
<td>Compact, coagulated, and wavy/disorganized at 1 week and 1 month; hyalinization at 3 months</td>
<td>Diminished to absent at 1 week, 1 month, and 3 months</td>
<td>Upper/midreticular dermis at 1 month; upper reticular dermis at 1 week and 3 months</td>
</tr>
<tr>
<td>Phenol</td>
<td>Reepithelialization after 1 week; hyperkeratosis at 3 months</td>
<td>Compact, coagulated, and wavy/disorganized at 1 week and 1 month; hyalinization at 3 months</td>
<td>Diminished to absent at 1 week, 1 month, and 3 months</td>
<td>Upper/midreticular dermis at 1 week and 1 month; upper reticular dermis at 3 months</td>
</tr>
</tbody>
</table>

the end point of treatment,22 but we adhered to our protocol, which called for predetermined energy levels and number of passes. The UltraPulse® parameters used in this study—three passes at 250 mJ with a 2.25 mm spot and 30% overlap—were similar to the laser settings that barely penetrated a Yorkshire pig dermis in a study by Fitzpatrick et al.13 These authors determined that UltraPulse® energy of 350 to 450 mJ in two to three passes was required to breach the upper reticular dermis and increase dermal fibrosis.13 When we did use a clinical sign—tissue frosting—to indicate the end point of treatment with TCA and phenol, the resultant histologic changes reached a deeper level and were longer lasting than for other resurfacing methods. Skin primed for 2 weeks with tretinoin 0.05%
cream appeared less cornified and allowed deeper penetration of the agent than skin that had not been pretreated with Retin-A®.

The resurfacing CO₂ laser delivers energy in short pulses that limit tissue dwell-time to less than 1 msec. The targeted tissue is accurately vaporized, whereas thermal damage to surrounding structures is kept to a minimum. Because the short-pulsed CO₂ laser is relatively new, no studies of its long-term effects on skin have been published to date. Clinically, the laser seems to shrink human epidermal and dermal tissues. Fitzpatrick et al. describe three tissue layers after exposure to the CO₂ laser: a vaporized zone, a necrotic zone, and a zone of reversible thermal damage. Within this last zone collagen shrinkage is believed to occur, and this is presumably the mechanism responsible for the disappearance of fine wrinkles.

We chose a Yucatan miniature pig as our animal model because the skin of this breed is said to be similar to human skin in gross and microscopic architecture and absorptive properties. Nevertheless, our pig’s hide was unquestionably tougher overall and had a considerably deeper stratum corneum than human skin. We believe that the thicker porcine epidermis limited penetration of the skin resurfacing agents and blunted their histologic effects. The apparent lack of lasting results seen after treatment with the CO₂ laser is attributed to insufficient doses for this model and is not meant to represent the clinical situation.

Conclusion

We compared depth of penetration of several nonsurgical methods of skin rejuvenation in a minipig model. Biopsy specimens were obtained immediately after treatment and at 1 week, 1 month, and 3 months. Only those areas treated with phenol or TCA showed any discernible histologic changes at 3 months. This finding corresponded with deeper skin penetration by those agents.

This study would have been impossible without Max Solano, MD, dermatopathologist. We are greatly indebted to him for his cheerful cooperation and tireless examination of our tissue slides. We also thank Grace Darling, ELS, for her editorial assistance in the preparation of this manuscript.

References