Autologous platelet gel is now being used in many surgical specialties. It is appropriate for use in plastic surgery procedures that entail a significant risk of hematoma, such as breast surgery, face lifts, nasal surgery, and skin grafting. Advantages include adhesive benefits, a reduction in risk of bleeding, and the added bonus of increased leukocyte concentration. (Aesthetic Surg J 2001;21:377-379.)

Autologous platelet gel is a wound sealant that has properties similar to those of fibrin glue as well as many advantages of its own. Because it is produced in the operating room from the patient’s own blood, platelet gel eliminates risks associated with donor blood, such as compatibility problems, disease transmission dangers, and clerical or storage errors.

Platelets can also be produced in much larger volumes and at much less cost than cryoprecipitate. The fibrinogen content of concentrated platelets is the same as that of the blood from which it came: 2 to 4 mg/mL. Because this level is much lower than that found in cryoprecipitate, the resultant platelet gel does not have the same tensile strength as cryo-based fibrin glue. However, it is adequate for clinical use as a wound sealant and tissue adhesive.

Mechanism of Adhesion
The mechanism of fibrinogen adhesion combines 2 components—commercially available thrombin in solution with calcium chloride, and concentrated fibrinogen and factor XIII drawn preoperatively from the patient’s whole blood—to mimic a portion of normal blood coagulation. When these components are mixed, thrombin transforms fibrinogen to fibrin monomers. Factor XIII is activated by thrombin in the presence of calcium ions, causing cross-linking and thus further stabilization of the fibrin coagulum. A firm coagulum is produced in 2 to 3 minutes. Increasing the concentration of thrombin allows more rapid coagulum formation at the cost of decreased tensile strength.

The inclusion of the buffy coat of platelet and leukocyte-enriched plasma appears to have several beneficial effects. Various cytokines and mediators found in the platelets and dense granules can promote angiogenesis and collagen synthesis, thereby enhancing soft-tissue healing. These factors include platelet-derived growth factor, platelet-derived epidermal growth factor, fibroblast growth factor, transforming growth factor-β, and platelet-derived angiogenesis factor.1-3 These mediators have been found to accelerate epidermal regeneration and angiogenesis and to enhance collagen synthesis. In addition to the growth factors listed above, release of local thrombin, thromboxane A₂, and adenosine diphosphate from the platelet granules attracts additional platelets, enhancing the hemostatic response.4-6

Technique
After the patient is anesthetized, 1 unit of blood is withdrawn. The platelets are separated in a Medtronic Sequestra 1000 autotransfusion centrifuge (Medtronic, Parker, CO) (Figure 1). Once the platelets are separated, the blood is transfused back into the patient (Figure 2). One unit of blood will yield approximately 40 mL of platelets with the first pass with a 125-mL bowl, and 100 mL with a 225-mL bowl. Fibrinogen levels are between 2 and 4 mg/mL.7-9 The platelet count is approximately 5 to 10 × 10⁸/mL. The processing time is approximately 22 minutes for the first pass and 12 minutes for each additional pass. On completion of the surgical procedure, operative hemostasis is obtained. Before wound closure, 7 mL of the platelets is drawn into a 10-mL syringe. Then 1 to 2 mL of thrombin-calcium solution is added, leaving 1 to 2 mL of “air space” in the syringe (Figure 3). The syringe is gently rotated back and forth. Within 30 to 60 seconds, the solution begins to gel. At this stage, the contents of the syringe are sprayed into the cavity or under the flaps (Figure 4). Tissues are then approximated with gentle
pressure for 1 to 2 minutes. Closure of the subcutaneous tissues and skin is then completed, and light compression dressings are applied.

Applications in Plastic Surgery

Autologous platelet gel can be used in plastic surgery procedures that entail a risk of hematoma formation, such as...
breast implant removal, surgical treatment of gynecomas-
tia, and face lifts. Other uses include nasal surgery and
skin grafting. My experience in using platelet gel in
breast surgery procedures includes 46 consecutive cases
of silicone gel breast implant explantation and capsulec-
tomy without the use of drains. Bruising and swelling
were minimal in all cases. Patients were able to go home
the same day with a compressive dressing, without hav-
ing to return for drain removal. The lone complication
involved one patient who had a postoperative hematoma
in the recovery room caused by use of an incorrect con-
centration of calcium to activate the platelets, which
necessitated return of the patient to the operating room
for drainage. Seven cases of male gynecomastia were
wound healing: growth factor and macrophage interaction. J Trauma
factor -BB and transforming growth factor beta-1 selectivity modulat-
ed glycosaminoglycans, collagen and myofibroblasts in excisional
4. Hom DB, Maisel RH. Angiogenic growth factors: their effects and
potential in soft tissue wound healing. Ann Otol Rhinol
5. Knighton DR, Hunt TK, Thakral KK, Goodson WH. The role of platelets
and fibrin in healing sequence: an in vivo study of angiogenesis and
6. Green DM. Platelet gel as an intraoperatively procured platelet-based
7. Gibble JW, Ness PM. Fibrin glue: the perfect operative sealant?
8. McCarthy MM. Fibrin glue in cardiothoracic surgery. Transfusion Med
9. Von Segesser LK. Use of glue to avoid formation of perfused recesses

Reprint requests: Edward P. Melmed, MD, 777 Forest Lane, Suite A-210,
Dallas, TX 75230.
Copyright © 2001 by The American Society for Aesthetic Plastic Surgery, Inc.
1084-0761/2001/$35.00 + 0 70/1/118027

Platelet gel has the triple advantage of being an adhesive
that is hemostatic and contains a high concentration of
leukocytes. The cost is only slightly higher than with the
use of drains and is justified by the decreased risk of
hematoma. The fibrinogen content of concentrated
platelets is the same as that of the blood from which it
came: 2 to 4 mg/mL. The main disadvantage of the pro-
cedure is that it must be done by a qualified perfusionist
and requires the use of a special centrifuge.

References
Blood Conservation in the Surgical Patient. Baltimore; Williams &
2. Cromack DT, Porras-Reyes B, Mustoe TA. Current concepts in wound

Figure 4. Activated platelet gel is sprayed into cavity. Note gel formation.