Bovine collagen injections were popularized years ago, beginning with Zyderm collagen (Allergan, Inc, Irvine, California) in 1981. Since that time, numerous other products have come to market, the most popular of which are the hyaluronic acid (HA) products (Table 1). Hyaluronic acid products are linear, unbranched, high molecular weight glycosaminoglycan complex sugars, consisting of alternating d-glucuronic acid and N-acetyl-d-glucosamine. First described by Meyer and Palmer in 1934 during analysis of bovine vitreous, HA is found in the skin and tissues and performs several functions, both physical (eg, lubrication) as well as chemical (as an essential substrate for many different biological processes, including fertility, embryogenesis, morphogenesis, cellular migration, inflammation, and wound healing). In its natural state, HA is an ideal filler material but has an exceptionally short half-life. Manufacturers have altered the chemistry of HA by crosslinking chains (using various plasticizers such as butanediol diglycidyl ether [BDDE]) to retard natural turnover and increase half-life. By minimally altering the material, manufacturers have been able to create HA products that are well tolerated by the immune system and exhibit favorable properties of longevity and nonreactivity.

Early HA manufacturing attempts used animal-sourced raw materials and were plagued by protein contamination issues. As a result, commercial sources of hyaluronates were developed from Lancefield group A and C *Streptococcus equi* zooepidemicus, which naturally produce a pure hyaluronate mucoid capsule. Large quantities of relatively pure hyaluronates could thus be manufactured from bacterial broths that only required purification of relatively primitive bacterial protein contaminants, rather than the complex proteins that contaminated mammalian or avian sources. Attempts to prolong HA longevity in tissues by creating products with more crosslinks between chains resulted in a net decrease in tissue tolerance because of an increase in immune-mediated adverse events (AE). Thus, a balance was necessary whereby natural HA chemical structure was altered enough from its natural state to reduce its susceptibility to breakdown but was not so deviant as to be recognized by the immune system as foreign material.

Although HA remains the dominant filler product for volumizing tissues, other materials are available as well. Permanent dermal fillers include silicone oils, polymethyl methacrylate (PMMA) microspheres, polyacrylamide, and several other materials either alone or formulated in various combinations with resorbable components. The specific complications that may arise from each filler...
A esthetic Surgery Journal 33(4)

subtype will be ignored for the purposes of this article, and general types of complications will be discussed instead (Table 2). In terms of a generic classification of dermal fillers, it is helpful to separate them into 2 main classes: reversible and irreversible19 (rather than temporary vs permanent). Hyaluronic acid fillers are examples of reversible dermal fillers because they may be completely removed with the use of hyaluronidase.19-27 Because of the overwhelming popularity of HA fillers, the bulk of this Continuing Medical Education review article will address HA filler complications and summarize clinical case reports, both in the medical literature and those seen by the author in cooperation with manufacturers, other clinicians, and by referral.

<table>
<thead>
<tr>
<th>Table 2. Filler Complication Classifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Technical errors</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Inflammatory</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

TECHNICAL AESTHETIC COMPLICATIONS

As with any complication in medicine, avoidance is far preferable to management. Fillers are classified by the US Food and Drug Administration (FDA) as devices, not medications. Therefore, the same precautions taken with other implantable devices apply with dermal fillers. However, the occurrence of posttreatment complications in some patients is inevitable. Reversible HA fillers have the very beneficial quality of responding to hyaluronidase, which allows the physician to simply remove all injected material and start over at a later time. The following complications can be addressed relatively easily if they result from reversible fillers:

1. Volume: too much or too little filler
2. Depth of treatment: filler injected too superficially or too deep
3. Location: unfavorable anatomic location or asymmetry, or injection into the incorrect anatomical location

Problems with irreversible fillers are much more difficult to manage, especially if vital structures have been treated. Excision of filler product28-32 may be possible in some areas without causing too much damage to vital structures and minor errors of symmetry or insufficient volume may be addressed by adding more product, but

---

This table is not a complete listing of all products available. FDA, US Food and Drug Administration.
*Poly(methyl methacrylate) (PMMA): a synthetic nonbiodegradable polymer also used in bone cement and synthetic intraocular lenses. It is formulated in 40-micron microspheres suspended in bovine collagen.
*Calcium hydroxylapatite: mineral typically found in teeth and bone. Reconstituted as a gel suspension and injected. Lasts approximately 18 months.
*Poly-L-lactic acid: a slowly biodegradable polymer that has been used in suture materials for many years. Results may last up to 2 years, depending on site of injection.
*Hyaluronic acid: polysaccharide that binds water and is sourced from avian (eg, rooster combs) or streptococcal bacteria. The polysaccharide is crosslinked to resist degradation, extending its durability from 6 to 18 months, depending on formulation and region injected.
*Collagen: protein derived from cow (bovine) or human cells, lasting 3 to 4 months, the shortest duration of any of the dermal fillers. Collagen products have been discontinued and are no longer available.

---

This table is not a complete listing of all products available. FDA, US Food and Drug Administration.
irreversible fillers cannot easily be removed. Therefore, the
author strongly recommends that they not be considered
as a first-line choice and should be used only by clinicians
with substantial training and experience with these filler
agents. Even in the best hands, complications may occur,
and this calls for extreme caution, especially when inject-
ing the product around vital facial structures.

Dermal fillers of chemically different families generally
should not be injected into the same anatomic location
because it may obfuscate any attempt to correlate an
adverse reaction with its causative filler. Although litera-
ture support for this hypothesis is scant, the author’s
clinical experience suggests that HA fillers injected over
irreversible fillers (eg, PMMA) may exacerbate/stimulate
nodule formation. This may be related to the biofilm
hypothesis, which will be discussed later, or to some
as yet unknown process. A patient registry failed to illus-
trate an increased risk of nodules from filler mixing, but
the sample size was small and the data set regarding the
fillers administered was incomplete. Factors that may play an important role in the development
of foreign body reactions include particle size and
degree of smoothness, chemical composition, surface
charge, particle concentration, immunogenicity, and
hydrophilicity. When we add to these the multiplicity of
chemical and physical interactions possible between mate-
rials of differing chemical composition that may occur
when these materials are simultaneously injected into the
same area, we make the task of trying to isolate causal
factors ever more difficult. The author believes that some
patients with whom he has consulted regarding this phe-
nomenon experienced complications related to the intro-
duction of small numbers of bacteria (particularly atypical
organisms, such as mycobacteria) into an area with an
existing dermal implant (foreign body), which is consist-
ent with the biofilm hypothesis. Before describing the
most commonly seen categories of dermal filler complica-
tions and suggesting strategies for management that have
been useful in clinical practice, it may be helpful to review
the properties of hyaluronidase.

**Hyaluronidase**

Hyaluronidase (HYAL) is a mucolytic enzyme that hydro-
lyzes both natural and crosslinked HA dermal fillers. Just as
HA appears in so many areas of the human body, HYAL is
also thought to play important roles in many natural bio-
chemical processes and has proven useful in clinical
medicine. It has been applied, for example, in the dispersion
of local anesthetics, administration of resuscitation fluids
by hypodermoclysis, and fertility studies. Hyaluronidase
was initially isolated from microorganisms and subse-
quently from bovine testis and most recently by recombi-
nant technology. The biology of HA metabolism is far from
being completely understood in animal models, let alone in
humans. Furthermore, HYAL is not a single moiety; rather,
it represents a family of compounds with similar but not
identical effects in mammals. There are 3 distinct groups
of HYAL: (1) mammalian, (2) bacterial, and (3) from
leeches, crustaceans, and some parasites. Different formu-
lations of HYAL are available for clinical use in different
countries, which makes it difficult to describe the correct
use of these various products, since activity level varies by
type, pH, and a host of other biochemical factors. In some
countries, there are no commercial, “pharmaceutical grade”
sources of HYAL available. Clinicians in these countries
obtain HYAL from compounding pharmacies, from which
product variation in purity, stability, and effectiveness cre-
ates even more problems for the clinician. Comments in the
literature about the dosage, dilution, and subsequent effec-
tiveness of HYAL must be tempered by the understanding
that the source of the product is likely unknown, unless it
is specified in the article.

Hyaluronidase of the mammalian type generally splits
naturally occurring HA into smaller oligomers (mainly hexa-
saccharides). However, the biochemical interaction between
HYAL and commercially sold, crosslinked HA may be alto-
gether different. The amounts, dilution, and method of
administration can thus only be discussed with respect to the
specific agent being injected. The literature offers several
examples of widely divergent doses, but the author recom-
mands that the actual quantity administered be titrated to
effect—that is, to use as much as necessary to achieve the
desired clinical results. If there is no history of patient allergy
to HYAL or to any of the ingredients, the author uses a start-
ing dose of 150 IU but has also injected up to 1500 IU in cases
of vascular compromise. It is important to keep in mind the
distinction between animal-sourced and recombinant human
HYAL since the associated animal protein in the former may
be a source of grief and consternation (causing unintentional
immune mediated reactions in some patients).

Hyaluronidase may be diluted with local anesthetics or
normal saline, but it is crucial to be watchful of the pH of
various diluents since it may adversely affect the efficiency
of HYAL. It may be injected directly and slowly into the
affected site to initiate hydrolysis of the previously injected
HA. Injecting a small amount of suitable local anesthesia
will facilitate massage, which is very important in obtaining
the therapeutic effect. The nature and quality of the
dermal HA filler product are an important consideration
for the effectiveness of HYAL. For example, if a particulate
form of dermal filler is used (eg, Restylane; Q-Med,
Uppsala, Sweden; distributed in North America by Medicis
Aesthetics, Scottsdale, Arizona), HYAL can quickly sur-
round the granules of heavily crosslinked HA and hydrolize
the material over a broad surface area, several orders of
magnitude larger than that of monophasic products (eg,
Juvéderm; Allergan, Inc). The latter takes significantly
longer to clinically disperse than the former, presumably
because of this fundamental biochemical difference. The
Restylane family of products is generally produced by cre-
ating a crosslinked matrix, which is subsequently sepa-
rated into particles that are then suspended and lubricated
by minimally or completely non-crosslinked HA. The non-
crosslinked HA fraction responds immediately (in seconds
to minutes) to HYAL, allowing it to surround the small
particles. With the Juvéderm family of products, HYAL can
only affect the outermost surface of the aliquot, taking far
longer to break down the HA. In the author’s experience,
massage is essential to mechanically mix the HYAL with the HA and promote hydrolysis in the clinical setting. The author tested these principles in vitro in unpublished work and found that the same phenomenon was easily demonstrable; granular product liquefied very quickly, whereas monophasic product took far longer. Readers are encouraged to verify the veracity of this phenomenon with their own HA filler products, since it is both instructive and has direct clinical application.

Formerly, most HYAL preparations were animal-sourced products, and the literature offers several examples of allergic phenomena occurring in patients treated with retrombular blocks associated with ophthalmic surgery. Anaphylaxis has been described following HYAL administration, although this appears to be rare and was likely due to bovine serum proteins in the preparations; reaction may occur even in patients with no known previous exposure. The venom of stinging insects may contain HYAL, and this mechanism may be the source of sensitization in affected individuals.

Hyaluronidase has proven very helpful in the management of many of the complications that may arise from the injection of HA-based dermal fillers. Clinicians are encouraged to have it readily available to treat asymmetry or unfavorable cosmetic outcomes after HA injection, especially in urgent or emergency situations such as impending necrosis due to vascular compromise.

**Retroseptal or Premalar Filler Injection**

As filling of the infraorbital region (nasojugal area) has become more popular, there has been an increase in accidental retroseptal injection (Figure 1). A similar phenomenon may occur with injections anterior to the orbitomalar septum, as described by Pessa et al, resulting in troubling, persistent premalar edema. The orbital septum may accidentally be penetrated when injecting into the infraorbital area, where filler product may be injected behind the orbital septum or anterior to the orbitomalar septum. This may occur when the injector treats too high, treats too close to the infraorbital rim, injects too deep, accidentally penetrates the septum, or simply injects too much product when the integrity of the septum has been previously breached (as with a popular fat repositioning type of blepharoplasty). This results in the appearance of sometimes dramatic eyelid bags where none existed prior to filler treatment. A similar phenomenon occurs with superficial injections of material anterior to the malar septum, which results in severe premalar edema.

---

*References 19, 20, 22, 24, 26, 27, 35, 69-80.*
Hyaluronic acid binds to water,\textsuperscript{90, 91} which may result in significant and is especially crucial with these injections, as the injection of the anatomy of each region treated with HA is important and is especially crucial with these injections, as the septum may dip below the bony infraorbital margin.\textsuperscript{56-89} Hyaluronic acid binds to water,\textsuperscript{90, 91} which may result in significant edema in the retroseptal soft tissues with only a tiny amount of misplaced filler. Good technique involves treating deep to the orbicularis muscle and orbitomalar septum and carefully approaching this area from below to avoid retroseptal injection\textsuperscript{69, 81} or injection anterior to the orbitomalar septum,\textsuperscript{85} which may cause premalar edema.

The author has conferred with several patients who experienced these complications after HA treatment and underwent months of ineffective treatment with cardiac drugs, powerful diuretics, compression, steroids, and other interventions. A small dosage of HYAL can sometimes result in dramatic and immediate improvement. Those who have been injected with calcium hydroxyapatite (Radiesse; Merz Aesthetics, San Mateo, California) may be treated with injections of sterile water or saline (with or without lidocaine for local anesthesia) along with massage to help to mechanically dilute the material. Permanent fillers are far more difficult to treat in the presence of these complications, and excision may be the only possible remedy in some cases. However, HYAL treatment may produce positive results and involves a gentle injection of 25 to 100 IU into the affected areas followed by gentle massage. Because of the great variability in the various formulations of HYAL available in different regions, many of which are compounded by local pharmacies, it is best to treat to effect, rather than by absolute dosage. In other words, physicians should inject as much HYAL as required to achieve the desired effect. Although both naturally occurring, resident HA as well as artificial HA are affected by HYAL, the former is more sensitive than the latter because artificial HA is always crosslinked to various degrees. It is also important to remember that particulate forms of HA derivatives (such as the Restylane family of products) respond at a faster rate than the monophase forms (such as Juvéderm).

\textbf{Tyndall Effect}

The Tyndall effect (Figure 2) results from injection of HA fillers too close to the surface of the skin, which yields a “blush” discoloration that may be readily treated with HYAL.\textsuperscript{93-96} The HA filler causes discoloration due to the refraction of light, so that melanin deep in the dermis displays a blue tint, resulting in “Mongolian spots.” The Tyndall effect looks somewhat like a mild but deep bruise (with which it may often be confused); it does not change over time until the material is removed.

Treatment of the Tyndall effect consists of HYAL injection into the surrounding tissues and subsequent gentle massage.\textsuperscript{93, 92-94} The amount of HYAL that should be injected is not standardized, but the author’s personal experience suggests that 15 to 50 IU produces a good result. Clinical judgment should be exercised while dosage

\textbf{Lumps and Nodules}

Lumps and nodules can be caused by almost any filler when too much is injected into a small area, for a variety of reasons (Figure 3).\textsuperscript{80-82, 35, 37, 39-95} For example, if the syringe is “sticky” and the injector places too much pressure on the plunger, a sudden release may accidentally dispense more filler than intended. The resulting lump or nodule is usually easily treated with a simple incision and drainage using a sharp disposable needle (Figure 3).

If nodules due to excess product are multiple or deep, a formal incision and drainage may not be feasible. In such cases, HA products can be treated with HYAL. Capsular contracture around tissue fillers is quite rare, but the author has seen and treated these on occasion. If a large amount of filler has been injected into an area with the “lake technique,” the resulting rare complication may present as a nodule or lump that becomes increasingly prominent as contraction of the capsule creates a spherical shape (analogous to a hardening breast implant capsule). The sphere is formed to hold the largest volume relative to the least surface area, which creates the deformity. This capsule may cause the patient pain and discomfort. A small amount of local anesthesia may be needed to pass a larger-bore needle or 16-gauge Luer-Lok syringe to break through the capsule and aspirate the material within. Hyaluronidase may be administered to clean up whatever remains behind. It may also be administered to attempt to treat nodules that are not responding to aspiration, even in patients who were injected with a material of unknown origin. (It should be noted that patients are only rarely aware of the products they received, and some may not even remember the name of the physician who originally injected them.) Hyaluronidase should be used with caution if infection is suspected, since this may result in spreading of the infection to surrounding areas. Nodules caused by other types of dermal fillers have varied etiology, including incorrect dilution or reconstitution, or incorrect placement or technique.\textsuperscript{7} Simple excision may suffice in straightforward cases, but multiple nodules within vital anatomic structures pose great challenges to surgeons, and often call for unique methods of treatment (Figure 4).\textsuperscript{128}

\textbf{INFLAMMATORY COMPLICATIONS}

\textbf{Infection}

Infection following filler treatment is uncommon\textsuperscript{129} but may be caused by bacterial, viral, and \textit{Candida} species,\textsuperscript{125} references 98, 101, 104, 119, 121, 122.\textsuperscript{125}
and it may sometimes occur as polymicrobial infection. The most common viral infection to occur in the skin after injection is herpes simplex. Patients with a strong history of cold sores or fever blisters may be pretreated with acyclovir, famciclovir, or valacyclovir to reduce the severity and duration of cutaneous herpes infections. If there is
any question of ocular infection, consultation with an ophthalmologist is recommended, since surgical debridement of the cornea may be required. The initial presentation of clear vesicles in the skin may not be evident in some cases, and some patients will develop secondary bacterial infections, further confusing clinical analysis. In cases where the etiology is uncertain and local laboratory support is lacking, a multipronged approach is reasonable, utilizing both antibiotics and antiviral agents. Impetigenized herpes simplex is not uncommon (Figure 5). Candida species may sometimes complicate the picture further and should be kept in consideration for immunocompromised patients and those not responding to treatment with antiviral agents and antibiotics alone.

Rarely, patients may present with multiple red, tender lumps along with signs and symptoms of infection. True granulomatous inflammation may also be present in multiple, simultaneous sites of involvement since it is a systemic response (see below). If a single facial abscess occurs, it would be reasonable to assume that contamination through the skin occurred during treatment. However, if a patient presents with multiple abscesses, it is reasonable to assume that contamination occurred in the syringe prior to injection. Unfortunately, mixing or reformulating products in less-than-ideal conditions is a common occurrence in clinics. Dramatic complications due to microbial contamination of the material may result from these unfortunate instances (Figure 6). Abscesses should not be treated with antibiotics alone, although they may be treated with incision and drainage alone in the absence of surrounding cellulitis.

Hyaluronidase should not be used in the primary phase of treatment, due to the risk of spreading the infected material diffusely into the tissues if active cellulitis is present. Many bacteria (eg, staphylococci, streptococci, and anaerobes) naturally produce HYAL, which plays a role in their pathogenicity and allows them to spread quickly through the subcutaneous tissues, consuming hyaluronan as they go. The infection should first be controlled with incision and drainage, followed by HYAL if necessary. The author recently treated a patient who presented with recurrent ipsilateral cheek abscess formation on 3 separate occasions despite thorough incision, drainage, and courses of culture-appropriate oral antibiotics. Each of these treatments was apparently successful, but the condition continued to recur after a few weeks. After she was treated with HYAL, no further infection recurred.

Biofilms have been implicated in the development of some filler complications. Because bacteria can safely hide from immune defenses when ensconced in their biofilm fortress, antibiotics cannot reach them. As a result, when conditions are favorable, the bacteria can emerge from their planktonic state and reestablish active infection. Some bacteria secrete a self-made extracellular polymeric substance—a highly protective “slime layer”—that acts as a form of armor, blocking out the local environment to the point that antimicrobial drugs are no longer effective. Any type of implant, including all fillers, significantly reduces the threshold at which contaminating bacteria can cause infection. Once a biofilm has developed, the bacteria have a “safe room.”
and neither the immune system nor drugs or medication can penetrate the protective layer. Thus, bacteria can lie dormant for very long periods, only to reawaken and cause more problems once the environment is favorable again. When they do arise from their planktonic state, they can cause granulomatous inflammation, abscesses, nodules, and even full-blown recurrent infection. Until the foreign body is completely removed, it is difficult if not impossible to remove the biofilm; the bacteria are irrevocably bound to the foreign material. Furthermore, inflammation may be reactivated by punctures of repeated injections. With solid implants, such as hip or knee joint prostheses, it is impossible to completely clean the devices ex vivo, and they must be replaced. New strategies for addressing this issue in solid implants include drug-eluting implant coatings, and future permanent fillers may utilize this strategy. With permanent fillers (eg, PMMA), excision may be the only recourse available. If permanent implants are used in vital structures such as the lips or eyelids, clinical options are limited and difficult choices must be made (Figure 4). The clinician should consider these issues carefully when selecting between permanent or long-lasting fillers in such critical structures. The simplicity of being able to remove HA fillers with HYAL is a very strong benefit.

To date, it has not been conclusively proven that biofilms are involved in granuloma formation, but several recent studies present arguments in favor of this hypothesis. One of these has reported detection of bacteria in culture-negative filler lesions. Considering that these fillers are analogous to permanent implants, one wonders at the often lackadaisical manner in which they are commonly demonstrated at clinical teaching symposia, sometimes in unsanitary locations such as hotel rooms and auditoriums. Skin preparation prior to injection should follow standard procedure, which has reduced iatrogenic infection for more than 150 years. Although no evidence-based studies exist on the correct choice for skin preparation prior to dermal filler injection, it seems prudent to follow guidelines for reduction of health care–associated infection. These reports recommend the application of 2% chlorhexidine gluconate in 70% alcohol as skin preparation prior to insertion of venous catheters. Disposable sterile dressing trays with containers for prep solution, gauze, and disposable sterile drapes are convenient and inexpensive, and they provide a safe, clean work area in an office setting. To date, there is no proof that a simple alcohol swab prep and the use of nonsterile gloves is insufficient in preventing granulomas or filler infections, but the author believes that transferring surgical expertise in sterile technique to the clinic treatment room may further reduce the prevalence of these complications.

An important distinction between nodules and granulomas is that the former is descriptive; it is the correct term whenever a pathological diagnosis is not available. The latter term should only be used when pathological specimens have been obtained and the required pathological criteria for granulomas have been satisfied—typically described in pathology textbooks as clumps of plump macrophages with hematoxylin-stained nuclei, multinucleated giant cells, and sometimes peripheral lymphocytes. Too often, clinicians refer to all nodules as “granulomas” when no histological pathology has been performed. This is an error that results in sloppy planning and treatment. A nodule should not be diagnosed as a granuloma until it has been confirmed as such.

Immune-Mediated (Noninfectious)

When considering the causes of inflammation apart from infection, product sensitivity and immune-mediated inflammation are of particular importance. When Restylane was first formulated, its manufacturer was producing a raw substrate procured from a biologics company that turned out to have an unacceptably high impurity rate. As a result, a moderate number of patients had various inflammatory complications following filler treatment. The company subsequently sourced higher-purity raw materials and significantly reformulated its product. This all occurred prior to FDA approval studies conducted in the United States. The literature is replete with similar stories involving other fillers, many of which moved from country to country, changing names each time to counter reports of AE occurring with earlier formulations. For example, Artefill (Suneva Medical, Inc, San Diego, California) went through several name and formulation changes prior to being approved in the United States. Similar stories can be found with many other products that originated in Eastern European and Asian countries. Somehow, these companies were able to create “clean slates” each time, renaming and tweaking their products as they sought new markets for approval.

As mentioned earlier, sometimes patients are unaware of the nature of the product with which they have been injected. Many patients also forget that they received a specific filler. Therefore, it is important, when possible, to obtain a tissue diagnosis of the problem area. Often, these diagnoses surprise both surgeons and patients, some of whom were not told that they had been injected with silicone, PMMA, or other fillers. Unfortunately, some physicians go as far as to falsify their medical records, and patients in search of a “good deal” are sometimes treated by unlicensed practitioners and are injected with illegal substances such as bathtub caulk, as reported in a recently publicized case that resulted in death.

A large number of publications report granulomatous inflammation involving almost every kind of filler available. There appears to be little consistency in the actual definition of granuloma in these case reports; some

References 34, 36-39, 99, 134, 147-149.
authors seem to call every solitary nodule a granuloma, whereas others use polymorphonuclear foreign body type giant cells. The pathology of single nodules is different from that of true granulomatous inflammation, which is a systemic response (type IV hypersensitivity reaction). In a true granulomatous process, all sites that were originally injected with filler material appear adversely affected at the same time. If 4 sites on the patient were injected, then all 4 sites typically are involved at presentation. Solitary nodules have multiple possible causes, and if only 1 of several injected sites is affected, one of the alternative explanations should be considered. In other words, this appears to be a systemic process. Thus, it is likely an error in most cases to call a solitary nodule a “granulomatous lesion” because it is not typically pathologically verified as granulomatous inflammation.

The treatment of granulomatous inflammation should begin with an investigation of what agents have been injected. From there, the physician must decide the best pathway to success. Unfortunately, removal of the product that has been diffusely injected into vital structures such as the lips is neither practical nor desirable. The options, then, consist of methods to control the inflammation and halt the process. Once the diagnosis of granulomatous inflammation has been made as a result of treatment history, physical and, if possible, tissue biopsy, options for treatment are serial injection with cortisone or trials with various drugs. The author has found some success in treatment of these lesions with graduated injections of triamcinolone acetonide, starting with intraskeletal injections of 0.1 mL of a 10-mg/mL solution and then increasing the concentration to 20 mg/mL and 40 mg/mL with repeated injections until effective. Treatment should occur approximately every 4 weeks, and the amount injected should be carefully controlled to prevent posttreatment soft tissue atrophy. Another possible remedy may be 5-florouracil, but the author has used this only once and is therefore not qualified to discuss its proper administration. The multitude of warnings on the label, as well as the requirement for safe use and disposal of 5-florouracil products, may also discourage others from utilizing it as a first-line choice.

CONCLUSIONS

In this article, common technical errors in the use of dermal fillers and typical inflammatory complications (both immune and those caused by infectious agents) were reviewed. The prevalence of these complications tends to decrease as clinical experience accumulates. Hyaluronic acid dermal fillers have the advantage of being easily treatable with HYAL, which clinicians are encouraged to have readily available. Reversible filler agents have favorable properties in comparison to permanent, irreversible fillers for the treatment of vital facial structures. Avoidance of minor complications after filler procedures can be accomplished with technical “best practices” and detailed anatomical education. Biofilms may play a role in the development of nodules, but surgical preparation and good sterile technique may reduce the incidence of these complications. Detailed knowledge of tissue planes in the periorbital region will reduce the incidence of accidental retroseptal injection, or injection anterior to the orbitomalar septum (which causes premalar edema). Importantly, being prepared for emergencies should reduce the severity of adverse outcomes due to improper injection of HA and other filler products.

Disclosures

The author is a medical director, paid consultant, and a member of the speakers bureau for Merz Pharma Canada Inc (Burlington, Ontario), Allergan Canada Inc (Markham, Ontario), Medicis Aesthetics Canada Ltd (Toronto, Ontario), Ethicon Endo-Surgery Inc (Cincinnati, Ohio), and Baxter International Inc (Deerfield, Illinois).

Funding

The author received no financial support for the research, authorship, and publication of this article.

REFERENCES


DeLorenzi


