Implementation of a gene expression index calculation method based on the PDNN model

Henrik Bjørn Nielsen*, Laurent Gautier and Steen Knudsen
Center for Biological Sequence Analysis, BioCentrum-DTU Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark

Received on March 9, 2004; revised on September 14, 2004; accepted on September 27, 2004
Advance Access publication October 27, 2004

ABSTRACT
Summary: Gene expression index calculations from Affymetrix Gene-Chips have been dominated by the Affymetrix MAS, dChip, and RMA methods. A new method to estimate the gene expression value utilizing the probe sequence information named position-dependent nearest-neighbor (PDNN) has been suggested by Zhang et al. (2003). Here we describe an open source implementation of the PDNN method for the statistical language R.

Contact: hbjorn@cbs.dtu.dk

INTRODUCTION
Short oligonucleotide microarrays, such as the GeneChip from Affymetrix, use multiple probes per targeted transcript. This type of microarray has shown that the probe signals are not always consistent between different probes. This inconsistency is only marginally due to noise in the measurements. The main differences in the signal are due to the differences in the probes’ properties.

In order to obtain a single expression index value representing a gene expression, several data processing methods have been developed. The most widely used are the MAS v.5, the dChip, and the RMA [Affymetrix, Inc., Santa Clara, CA, USA; Li and Wong, 2001; Irizarry et al., 2003], Zhang et al. (2003) developed a position-dependent nearest-neighbor (PDNN) model over the probe signals that enables estimation of a gene expression index. The variation in expression index values between experiments was shown to be superior to both the MAS v.5 and the dChip methods (Zhang et al., 2003). However, our studies show that the results are comparable to the dChip method, when the latter uses PM probes only in the expression index calculation (Fig. 1). On the other hand, the PDNN method is justified not only by its performance, but also by its applicability. The method requires only one chip to estimate gene expression index values, in contrast to the dChip method that requires a series of chips to perform well. In theory the method should also be able to calculate the correct gene expression value in cases where the probes are very similar in properties or partially overlapping. Such probes may be problematic for the dChip method, because dChip assumes independent probe measurements within a probe set. In contrast the PDNN method does the corrections based on the total set of probes on the array.

*To whom correspondence should be addressed.

© The Author 2004. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org
where B is the global background, N^* is the amount of RNA molecules that contribute to non-specific binding (NSB), and

$$\lambda_{ij} = \sqrt{I_{ij}(1 - e^{E_{ij}})}$$

If we consider a probe as a string of bases $\{b_1, b_2, \ldots, b_{25}\}$, and ω_k as position-dependent weights, the target-specific free energy E and the average free energy for NSB, E^*, can be calculated as a weighted sum of stacking energies (ε):

$$E_{ij} = \sum \omega_k \varepsilon(b_k, b_{k+1})$$

$$E^*_{ij} = \sum \omega^*_k \varepsilon^*(b_k, b_{k+1})$$

The minimization of F is done by permuting the B and N^* values and recalculating \hat{I}. We investigated the F landscape for a series of different chip types and found it to be smooth and with only one minimum, i.e., the global minimum (Fig. 2). Therefore a steepest descent method for minimizing F was implemented.

In order to calculate \hat{I} fast for N^* and B values, N^* and B were isolated in Equation (1). Thus, \hat{I} can be calculated as:

$$\hat{I}_{ij} = k_1_{ij} - B k_2_{ij} - N^* k_3_{ij}$$

where k_1_{ij}, k_2_{ij} and k_3_{ij} are constant matrices:

$$k_{1ij} = \sum \frac{I_{ij}}{(1 - e^{E_{ij}}) \lambda_{ij}} (1 - e^{E_{ij}})$$

$$k_{2ij} = \sum \frac{1}{\lambda_{ij}} \left(\frac{1}{(1 - e^{E_{ij}}) \lambda_{ij}} (1 - e^{E_{ij}}) - 1 \right)$$

$$k_{3ij} = \sum \frac{1}{(1 - e^{E^*_{ij}}) \lambda_{ij}} (1 - e^{E^*_{ij}}) - \frac{1}{(1 - e^{E_{ij}})}$$

Zhang et al. (2003) suggest an outlier rejection criterion for probes where \hat{I} deviates more than three standard deviations from I. We tested this criterion and found that the overall variation between replicates diminished when the criterion was less strict (data not shown). However, it cannot be excluded that chip hybridizations of dubious quality will benefit from such a criterion. As a consequence we implemented the criterion to be user-specifiable.

The package was developed as an add-on for the affy package (Gautier et al., 2004) for the analysis of Affymetrix Gene chips and can be used in this context. This not only allows the scientist to use the PDNN method in concert with a series of normalization and higher-level analysis tools, but also allows easy comparison between different gene expression index calculations methods, like dChip, MAS v.5, AverageDifference, etc.

REFERENCES

