Sequence analysis

Using native and syntenically mapped cDNA alignments to improve \textit{de novo} gene finding

Mario Stanke*, Mark Diekhans, Robert Baertsch and David Haussler

Center for Biomolecular Science and Engineering, University of California Santa Cruz (UCSC), Santa Cruz, CA 95064, USA

Received on October 9, 2007; revised on December 12, 2007; accepted on January 7, 2008

Advance Access publication January 24, 2008

Associate Editor: Alfonso Valencia

ABSTRACT

Motivation: Computational annotation of protein coding genes in genomic DNA is a widely used and essential tool for analyzing newly sequenced genomes. However, current methods suffer from inaccuracy and do poorly with certain types of genes. Including additional sources of evidence of the existence and structure of genes can improve the quality of gene predictions. For many eukaryotic genomes, expressed sequence tags (ESTs) are available as evidence for genes. Related genomes that have been sequenced, annotated, and aligned to the target genome provide evidence of existence and structure of genes.

Results: We incorporate several different evidence sources into the gene finder AUGUSTUS. The sources of evidence are gene and transcript annotations from related species syntenically mapped to the target genome using \textsc{transMap}, evolutionary conservation of DNA, mRNA and ESTs of the target species, and syntenic genes. The predictions include alternative splice variants where evidence supports it. Using only ESTs we were able to correctly predict at least one splice form exactly correct in 57% of human genes. Also using evidence from other species and human mRNAs, this number rises to 77%. Syntenic mapping is well-suited to annotate genomes closely related to genomes that are already annotated or for which extensive transcript evidence is available. Native cDNA evidence is most helpful when the alignments are used as compound information rather than independent positionwise information.

Availability: AUGUSTUS is open source and available at \url{http://augustus.gobics.de}. The gene predictions for human can be browsed and downloaded at the UCSC Genome Browser (\url{http://genome.ucsc.edu})

Contact: mstanke@gwdg.de

Supplementary information: Supplementary data are available at \url{Bioinformatics} online.

1 INTRODUCTION

Eukaryotic genome projects are dependent on automated methods for identifying the genes in the genome assembly. However, the accuracy of current methods is not sufficient for many purposes. For example, taking alternative splicing into account, the best methods predict only 40–50% of human transcripts correctly (Guigo\textquotesingle et al., 2006). Increasing the prediction accuracy is crucial to ensuring a maximal scientific benefit of the genome projects. So-called \textit{ab initio} gene finders just require the target genome as input and some are readily trained for a new genome (Korf, 2004; Lomsadze et al., 2005; Stanke and Waack, 2003) However, the progress of the last years in improving \textit{ab initio} methods is not far reaching enough (Guigo\textquotesingle et al., 2006) and the methods of choice in most genome projects are methods based on extrinsic data such as expressed sequence tags (ESTs), other cDNA evidence, and the information that is provided by related sequenced genomes and their annotation. However, \textit{ab initio} methods are still required to find genes without sufficient support by extrinsic data.

Many genome sequencing projects are also accompanied by EST sequencing efforts. The new pyrosequencing (454) method (Margulies et al., 2005) is also resulting in an increase in the availability of cDNA reads. Several methods have been developed that predict genes based on full-length coverage with transcript alignments and/or protein alignments (e.g. Djebali et al., 2006; Thierry-Mieg and Thierry-Mieg, 2006). However, even with exceptionally extensive cDNA sequencing, as in the case of the human genome, not all genes are covered with transcript alignments. Further, many genes are only partially covered with ESTs and the remaining part needs to be predicted without the help of any cDNA evidence.

Gene finders which incorporate ESTs in their predictions can improve their accuracy over pure \textit{ab initio} predictions (Brejova\textquotesingle et al., 2005; Stanke et al., 2006b). In a recent study, the program N-SCAN/EST, which is based on an \textit{ab initio} model, has been shown to predict approximately 40% of human genes correctly using only ESTs and conservation to three other vertebrate genomes (Wei and Brent, 2006). However, N-SCAN/EST does not incorporate other extrinsic information, it does not take alternative splicing into account, and it does not predict the 3'UTR of genes, which is often covered best by ESTs. Another gene finder that can incorporate ESTs and that does not completely rely on cDNA data for the prediction is EuG\textsc{ene}-M (Foissac and Schiex, 2005). It constrains the gene structure in areas covered by transcripts and uses an \textit{ab initio} model for the prediction in the other areas and for the identification of the coding start and stop. However, the extrinsic
information that is incorporated is limited to transcript alignments. Further, it is trained only for a few plant species and therefore the current version of the program cannot be properly applied to vertebrate genomes.

There are a number of dual or multiple genome-based gene finders which use unannotated related genome sequences to predict the genes in one or two of these sequences by exploiting that functional regions are evolutionary better conserved (Gross and Brent, 2005; Meyer and Durbin, 2002). However, when a new genome is being sequenced, increasingly, related sequenced genomes that previously exist already have an annotation or cDNA data. This is particularly the case for the new mammalian genome projects which can make use of conservation with other mammals and the extensive annotations and mRNA data of human, mouse, rat and other mammals. For this reason, methods have been developed which explicitly exploit the information that the annotation from a syntenic genome sequence provides for annotating the genes in a target genome. Projector (Meyer and Durbin, 2004) uses a pair of homologous sequences from two species to project known genes from one species to the other using a pairHMM. However, this cannot easily be generalized to using multiple informant species and Meyer and Durbin did not propose an annotation pipeline for entire genomes. Another method is used in the AIR pipeline (Florea et al., 2005) which uses a splice graph to find and weight transcripts based on evidence from cDNA and protein sequences. In particular, AIR incorporates annotated features mapped from a closely related species using syntenic mapping information.

In many species, alternative splicing is too frequent to be neglected in the annotation process. There exist a number of non-expression-based methods that allow predicting more than one splice form per gene. The approaches are to predict suboptimal gene structures (HMMGene, Krogh, 1997) or sampling-based (Cawley and Pachter, 2003; Stanke et al., 2006a). The program ExAlt (Allen and Salzberg, 2006) takes a given transcript as input and tries to find alternative splicing, explicitly modeling certain alternative splicing events. Currently, the non-expression-based methods are not accurate enough for a reliable large-scale annotation of alternative splice forms and the most reliable way to predict alternative splicing requires actual transcript evidence for the splice form. Expression-based annotation pipelines that report alternative splicing are ENSEMBL (Curwen et al., 2004), Aceview (Thierry-Mieg and Thierry-Mieg, 2006) and EuGène-M.

The ab initio version of the General-Hidden-Markov-Model-based (GHMM) gene finder AUGUSTUS has been shown to be among the most accurate for several species (Brejova´, 2005; based (GHMM) gene finder AUGUSTUS has been shown to be among the most accurate for several species (Brejova´, 2005; Meyer and Durbin, 2002). However, when a new genome is being sequenced, increasingly, related sequenced genomes that previously exist already have an annotation or cDNA data. This is particularly the case for the new mammalian genome projects which can make use of conservation with other mammals and the extensive annotations and mRNA data of human, mouse, rat and other mammals. For this reason, methods have been developed which explicitly exploit the information that the annotation from a syntenic genome sequence provides for annotating the genes in a target genome. Projector (Meyer and Durbin, 2004) uses a pair of homologous sequences from two species to project known genes from one species to the other using a pairHMM. However, this cannot easily be generalized to using multiple informant species and Meyer and Durbin did not propose an annotation pipeline for entire genomes. Another method is used in the AIR pipeline (Florea et al., 2005) which uses a splice graph to find and weight transcripts based on evidence from cDNA and protein sequences. In particular, AIR incorporates annotated features mapped from a closely related species using syntenic mapping information.

In many species, alternative splicing is too frequent to be neglected in the annotation process. There exist a number of non-expression-based methods that allow predicting more than one splice form per gene. The approaches are to predict suboptimal gene structures (HMMGene, Krogh, 1997) or sampling-based (Cawley and Pachter, 2003; Stanke et al., 2006a). The program ExAlt (Allen and Salzberg, 2006) takes a given transcript as input and tries to find alternative splicing, explicitly modeling certain alternative splicing events. Currently, the non-expression-based methods are not accurate enough for a reliable large-scale annotation of alternative splice forms and the most reliable way to predict alternative splicing requires actual transcript evidence for the splice form. Expression-based annotation pipelines that report alternative splicing are ENSEMBL (Curwen et al., 2004), Aceview (Thierry-Mieg and Thierry-Mieg, 2006) and EuGène-M.

The ab initio version of the General-Hidden-Markov-Model-based (GHMM) gene finder AUGUSTUS has been shown to be among the most accurate for several species (Brejova´, 2005; Guigó et al., 2006; Korf, 2004). In this article, we present an extension of AUGUSTUS, which can incorporate evidence from a variety of sources, predict alternative splicing and allows predicting complete genes including both UTRs and introns therein. This gene finder has a significantly higher accuracy than existing systems when only ESTs are available or only ESTs and related genome sequences are available. Further, we exploit mRNA alignments of other genomes through using the syntenic alignment to the target genome. Our system is capable of incorporating extrinsic information from conservation, native EST and mRNA alignments as well as alien transcript alignments. This enables us to predict up to 77% of genes correctly on the human genome when using all information at the same time. The presented method is very general and allows users to provide evidence for a gene structure from other sources of extrinsic evidence as input.

2 METHODS

2.1 Incorporating hints from extrinsic evidence

Extrinsic evidence is computed or collected beforehand and given as input to AUGUSTUS in the form of ‘hints’ in a file in GFF format. With the word hint we are referring to an uncertain local piece of information about the gene structure of the input sequence such as a likely position of a signal or a likely stretch of coding sequence. We distinguish 16 types of hints shown in Table 1. Each type is associated with a biological label of the gene structure as indicated by the name of the type. Each hint specifies an interval or a position of the target DNA sequence. The hints may also contain strand information.

Table 1. Types of hints

<table>
<thead>
<tr>
<th>Type i of hint</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>Translation start</td>
</tr>
<tr>
<td>stop</td>
<td>Translation stop</td>
</tr>
<tr>
<td>tss</td>
<td>Transcription start site</td>
</tr>
<tr>
<td>tts</td>
<td>Transcription termination site</td>
</tr>
<tr>
<td>ass</td>
<td>Acceptor (3’) splice site</td>
</tr>
<tr>
<td>dss</td>
<td>Donor (5’) splice site</td>
</tr>
<tr>
<td>exon</td>
<td>Exact exon</td>
</tr>
<tr>
<td>exonpart</td>
<td>Part of an exon</td>
</tr>
<tr>
<td>intron</td>
<td>Exact intron (in CDS or UTR)</td>
</tr>
<tr>
<td>intronpart</td>
<td>Part of an intron</td>
</tr>
<tr>
<td>CDS</td>
<td>Coding part of an exon with exact boundaries</td>
</tr>
<tr>
<td>CDSpart</td>
<td>Part of the coding part of an exon</td>
</tr>
<tr>
<td>UTR</td>
<td>Exact boundaries of a UTR exon or the untranslated part of a partially coding exon</td>
</tr>
<tr>
<td>UTRpart</td>
<td>Part of a UTR</td>
</tr>
<tr>
<td>irpart</td>
<td>Part of the intergenic region</td>
</tr>
<tr>
<td>nonexonpart</td>
<td>Part of intergenic region or intron</td>
</tr>
</tbody>
</table>

*Exon’ refers here to exons in the biological sense, i.e. an exon can be completely coding (CDS), completely untranslated (UTR) or it can be partially coding and partially untranslated.

Table 2. Types of hints we used depending on source of evidence

<table>
<thead>
<tr>
<th>Source of extrinsic information</th>
<th>Types of hints</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXONIPHY</td>
<td>CDS, CDSpart</td>
</tr>
<tr>
<td>PRIASTCONS</td>
<td>CDSpart</td>
</tr>
<tr>
<td>native ESTs, mRNAs</td>
<td>exon, intron, exonpart</td>
</tr>
<tr>
<td>TRANSMap RefSeqs</td>
<td>CDSpart, intronpart, intron, UTRpart, start, stop, tss, tts</td>
</tr>
<tr>
<td>TRANSMap mRNAs without ORF information</td>
<td>exonpart, intronpart, intron, tss, tts</td>
</tr>
<tr>
<td>retraposed genes</td>
<td>nonexonpart</td>
</tr>
</tbody>
</table>
and a reading frame, if appropriate. Table 2 shows which types of hints we generate from each source. In a given application setting with various heterogeneous sources of available extrinsic evidence, all hints of all available sources are used simultaneously. The files containing the hints for each source are simply concatenated.

We will use the following vocabulary. By a single-transcript gene structure we refer to a gene structure in which every gene has only one transcript and no genes are overlapping. A single-transcript gene structure obeys a hint if the gene structure has the biological feature as specified in the hint. In that case, we also say that the hint supports the gene structure. Two hints are said to be compatible if there exists a single-transcript gene structure which obeys both hints. A hint g is said to support a hint h if every single-transcript gene structure which obeys g obeys also h. For example, if g and h are CDSpart hints in the same frame and on the same strand, then g supports h if and only if the interval of g contains the interval of h.

Consider a fixed set of sources of evidence, a single type t and the biological feature (label) f that type of hints refers to. For each type, we define a penalty factor \(0 \leq m(t) \leq 1\), that we call malus. When a candidate single-transcript gene structure is evaluated by the GHMM, each feature f of the gene structure that is not supported by any hint is penalized by multiplying the factor \(m(t)\) to its probability. For the types ending in ‘part’, the malus is applied for each base position of the exon, intron, or intergenic region that is not covered by the hint. For all other types it is applied only once for each signal or interval. Further, with each hint h a bonus factor \(b(h) > 1\) is associated. A candidate gene structure is rewarded for each feature f by multiplying its probability with

\[
\prod_h b(h),
\]

where \(h\) ranges over all hints that support feature f. For example, consider intron hints. Then, for each hint h indicating an intron, that intron is rewarded by multiplying its probability with \(b(h)\). An intron candidate for which no supporting intron hints exists is penalized by multiplying its probability with \(m(t)\).

The bonus factor \(b(h)\) depends mainly on the type of hint and the source of evidence, but can also depend on a score associated with the hint and the degree of compatibility of the hint with all other hints. Let \(H\) be the collection of all hints. Then

\[
b(h) := \max\{b(t, s) \cdot b(\text{score}(h)) \mid t \in H, s = h\}.
\]

\(b(t, s)\) is a bonus factor associated with the type t and the source s, taking into consideration the fact that some sources are more reliable than others. \(b(\text{score}(h))\) is a function of the score field in the GFF file. For almost all types and sources in our applications presented in this paper this is not used (i.e. \(b(\text{score}(h)) = 1\)). For the other cases, we distinguish only ‘low’- from ‘high’-scoring hints. \(0 < c(h, H) < 2\) is a modifier depending on how well h is compatible with other hints in H:

\[
c(h, H) = 2(5S + 5)(S + I + 10),
\]

where S is the number of hints in H that support h and I is the number of hints in H that are incompatible with h. So, when there are few other hints, supportive or incompatible, \(c(h, H)\) is close to 1 and does not affect the bonus much. \(c(h, H) < 1\) if and only if there are more incompatible hints than supportive. We introduced this modification to downweight the impact of spurious EST alignments that often disagree with the majority of other EST alignments. In our experiments, ESTs were by far the source with the highest number of hints.

The number of parameters for the integration of hints is relatively small, often small enough to be adjusted by hand. For example, in a de novo setting, where only hints from ExonPhy (Siepel and Haussler, 2004) are used, there are only four parameters. We use malus(CDS) = 0.25, \(b(\text{CDs, ExonPhy}) = 25\), malus(CDSpart) = 0.992, \(b(\text{CDSpart, ExonPhy}) = 400\). For comparison, N-SCANs fifth-order Markov chain for the conservation sequence requires the training of several thousands of parameters. In the most inclusive application setting, when hints from ExonPhy, TransMap Refseq, ESTs, mRNAs and retroposed genes are used at the same time, the total number of parameters for the hints is 29. These parameters for the hints are listed in the configuration files extrinsic.*.cfg in the supplementary data.

2.2 Alternative splicing

Each individual hint contains only local information. However, in the presence of alternative splicing or, in general, when the transcript alignments ‘contradict’ each other, an alignment usually contains more information than the set of independent hints derived from it. It also indicates that these hints belong to the same transcript. Therefore, we allow that the hints are grouped such that all hints from one group are thought to belong to the same transcript. All hints that are derived from a single (native or TransMap) alignment are grouped together. Hints from different alignments belong to different groups. Similarly, the CDSpart and CDS hint derived from a single predicted ExonPhy exon belong to one group.

In an initial step of the AUGUSTUS algorithm the compatibility of all hint groups with each other is determined. Two hint groups are considered compatible if and only if there is a possible single-transcript gene structure that is compatible with both hint groups. In particular, alignments suggesting alternative splice variants of a gene yield incompatible hint groups. Also, alignments suggesting a gene contained in an intron of another gene or overlapping genes on opposite strands yield incompatible hint groups. The input sequence is then internally split into segments such that no hint groups are separated and no genes are separated, if possible. Here, we use predicted genes from a first run of the Viterbi algorithm using all hints simultaneously.

In a subsequent step we make several prediction runs for each segment, each using the Viterbi algorithm. In each prediction run, a different subset of the hint groups is deactivated, meaning that these hints are not used at all in the prediction run. The set of prediction runs is the smallest set of prediction runs such that for each hint group g there is at least one prediction run in which all groups that are incompatible with g are deactivated. This gives AUGUSTUS the chance to predict splice forms that are compatible with all the hint groups. However, if the bonuses and maluses are moderate, AUGUSTUS may not obey all hint groups, since it is allowed to ignore individual hints. This will happen if all gene structures that obey a certain hint have, even with the bonus, a lower likelihood than some gene structure that disobeys the hint. Figure 1 shows an example of a prediction obeying some hints for alternative splicing, but not all.

In a post-processing step, transcripts from the previous step are grouped to genes. For each transcript, the fraction of coding exons, non-coding exons, and introns is computed that is supported by hints (see Fig. S1). Transcripts whose supporting fraction is smaller than 86% of the supporting fraction of another transcript of the same gene are discarded.

2.3 Pre-processing of hints

Hint groups from mRNA or EST alignments are deleted by AUGUSTUS if any of the hints in the group is unsatisfiable. Introns are required to have the GT/AC consensus. AUGUSTUS predicts the much less frequent GC-donor splice site only when it is supported by a hint. Some loci of the human genome contain thousands of EST alignments and therefore usually also a very large number of incompatible hint groups solely due to errors. To reduce the number of prediction runs triggered by spurious EST alignments, AUGUSTUS further discards hint groups where a hint has a suspiciously high number I of incompatible other hints compared to the number S of other hints supporting it. We discard the group if \(I \geq 9(S+1)\).
The drawback is that splice variants supported by less than 10% of the EST evidence might not be found.

Hint groups can be given a priority number. In this case, any hint group which is incompatible with another hint group of higher-priority is discarded. The purpose of this procedure is to use not-so-reliable hints only when no better information source is available for the gene. For example, native transcripts can be set to override alien transcripts to account for divergence in the gene structures. However, parts of the gene structure suggested by higher-priority hint groups containing incomplete information can be extended using lower-priority hint groups. In our experiments, we used the following priorities depending on the source of the hints: retrogenes 5, human RNAs 4, TRANSMAP alignments 4, EXONIPHY 4, human spliced ESTs 2.

2.4 Generation of hints

TRANSMAP Orthologous Genes Orthologous gene hints were produced by TRANSMAP (Siepel et al., 2007; Zhu et al., 2007), a methodology for generating cross-species genomic alignments of cDNAs by combining the results of two alignment methods that are optimized for different tasks. Alignments of cDNA sequences to their cognate genome are done using BLAT (Kent, 2002). BLAT is designed to align transcripts of at least 95% identity to DNA sequences, producing intron-spanning alignments of the full cDNA. TRANSMAP projects the cDNA to genome alignments through BLASTZ (Schwartz et al., 2003) cross-species genomic alignments to a target species genome. BLASTZ is a highly-sensitive aligner, optimized for aligning diverged, orthologous genomic sequences. BLASTZ alignment chains identified as syntenic (Kent et al., 2003) are used in the mappings. The use of alignment chains allows for the mapping of mRNAs as a whole, rather than as independent exons. The syntenic filtering removes paralogs, with the exception of those caused by tandem gene duplication, and alignments to processed pseudogenes. TRANSMAP was chosen for generating orthologous gene hints due to its relative immunity to pseudogenes and the ability to map a larger fraction of the gene structure than protein translation alignment methods. For a detail description of the TRANSMAP methodology, see Zhu et al. (2007). The cDNA alignments produced by TRANSMAP are used to generate hints, without the heuristic correction of gene structure used in this work. The evolutionary changes in gene structure were handled by generating hints that are part hints, which do not delineate the exact beginning and end of features. Alignment gaps that correspond to the location of introns in the mRNA in the source organism are used to generate intron hints.

The TRANSMAP hints were generated by mapping the BLAT alignments of RefSeq mRNAs (Pruitt et al., 2007) for five organisms obtained from the UCSC genome browser database (Kuhn et al., 2006). The number of transcripts that were mapped from mouse, rat, cow,
EXONIPHY exons are often correct but in the cases when they are not correct, they are often still approximate to a real exon. Further, in the de novo category, we used hints of type CDS part created from the PHASTCons conserved elements predictions (Siepel et al., 2005) using the script phastconsDB2hints.pl in the AUGUSTUS distribution.

2.5 Training and testing

AUGUSTUS has previously been trained on 1284 human genes retrieved from Genbank in 2002. The parameters for the hints were trained to optimize prediction accuracy against RefSeq genes on a part of human chromosome 17, which has no overlap with the ENCODE regions. This was done using a simple semi-automatic optimization procedure, iterating changes to the bonuses and maluses and measuring accuracy against the RefSeq annotation. However, a fully manual adjustment of the hint parameters to new sources or species is similarly effective.

As a reference set for evaluation of gene predictions we used the ENCODE reference annotation on human genome version hg17 from the GENCODE consortium (Harrow et al., 2006). Many gene finders have been evaluated on this set previously (Guigo et al., 2006). The N-SCAN/EST predictions were only available for 1tr, which have previously been predicted with de novo AUGUSTUS. The latter we did to simulate the absence of mRNA sequence data for the target genome.

Table 3. Accuracy on the ENCODE test regions against the reference annotation from EGASP

<table>
<thead>
<tr>
<th>Program</th>
<th>Gene</th>
<th>Transcript</th>
<th>Exon</th>
<th>Base</th>
<th>tr./ gene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sn[%]</td>
<td>sp[%]</td>
<td>sn[%]</td>
<td>sp[%]</td>
<td>sn[%]</td>
</tr>
<tr>
<td>De novo methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>AUGUSTUS +X,p</td>
<td>33.78</td>
<td>37.04</td>
<td>16.02</td>
<td>37.04</td>
<td>66.39</td>
</tr>
<tr>
<td>AUGUSTUS +X,p,RA</td>
<td>32.09</td>
<td>39.26</td>
<td>15.25</td>
<td>39.26</td>
<td>65.45</td>
</tr>
<tr>
<td>N-SCAN*</td>
<td>35.47</td>
<td>36.71</td>
<td>16.95</td>
<td>36.71</td>
<td>67.66</td>
</tr>
<tr>
<td>Methods using only genome sequences and ESTs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>AUGUSTUS +E</td>
<td>56.76</td>
<td>53.16</td>
<td>30.82</td>
<td>39.36</td>
<td>77.35</td>
</tr>
<tr>
<td>AUGUSTUS +X,p,E</td>
<td>53.38</td>
<td>59.40</td>
<td>26.50</td>
<td>49.85</td>
<td>75.80</td>
</tr>
<tr>
<td>AUGUSTUS +X,p,E 1tr</td>
<td>51.01</td>
<td>58.08</td>
<td>24.35</td>
<td>58.08</td>
<td>74.24</td>
</tr>
<tr>
<td>N-SCAN/EST</td>
<td>36.15</td>
<td>35.55</td>
<td>17.41</td>
<td>35.55</td>
<td>72.00</td>
</tr>
<tr>
<td>Methods using any type of information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>AUGUSTUS +X,R,T,E,m</td>
<td>77.36</td>
<td>72.96</td>
<td>46.84</td>
<td>48.70</td>
<td>84.99</td>
</tr>
<tr>
<td>AUGUSTUS +X,R,T,E,m 1tr</td>
<td>67.57</td>
<td>62.89</td>
<td>32.05</td>
<td>62.89</td>
<td>80.39</td>
</tr>
<tr>
<td>JIGSAW*</td>
<td>72.64</td>
<td>65.95</td>
<td>34.05</td>
<td>65.95</td>
<td>80.61</td>
</tr>
<tr>
<td>ENSEMBL*</td>
<td>71.62</td>
<td>67.32</td>
<td>39.75</td>
<td>54.64</td>
<td>77.53</td>
</tr>
<tr>
<td>N-SCAN PASA-EST</td>
<td>58.89</td>
<td>59.65</td>
<td>34.96</td>
<td>39.64</td>
<td>75.55</td>
</tr>
<tr>
<td>Methods using no transcribed data of target species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>AUGUSTUS +T</td>
<td>62.16</td>
<td>65.70</td>
<td>30.82</td>
<td>57.02</td>
<td>74.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>89.64</td>
</tr>
</tbody>
</table>

Sources of information: X: EXONIPhy, p: PHASTCONS, RA: retroposed genes based on AUGUSTUS prediction, R: retroposed genes based on mRNA, T: TRANSMAP predictions were only available for 1tr, which have previously been predicted with de novo AUGUSTUS. The latter we did to simulate the absence of mRNA sequence data for the target genome.

3 RESULTS

We evaluated the gene predictions of AUGUSTUS using hints from different combinations of sources of evidence on the human ENCODE regions. In Table 3, we compare the accuracy to that of several other programs, in particular to some which had performed among the best in the ENCODE Genome Annotation Assessment Project (EGASP) (Guigo et al., 2006).
It should be noted that it is hard to compute very precise absolute accuracy numbers as the reference annotation is likely to have errors as well. Nevertheless, we think it is appropriate for a relative comparison of different programs, especially when they only use a subset of the complete information.

Among the de novo programs, which use only the target genome and other genome sequences as input, N-SCAN previously was by far the best-performing program for human (Guigo et al., 2006). Here we report the original EGASP results as the accuracy of the whole-genome predictions of N-SCAN on the UCSC Genome Browser are somewhat worse. In this category of programs, we gave AUGUSTUS hints from genomic conservation through EXONIPHY and PHASTCONS (AUGUSTUS +X,p). In another run (AUGUSTUS +X,p,E), we also added hints from de novo predicted retroposed genes. Incorporating the hints from retroposed genes, removed a small percentage of predicted genes and increased the specificity of AUGUSTUS at the cost of a somewhat lower sensitivity. The impact of the retroposed gene predictions on the average accuracy is relatively small. These results are in agreement with van Baren and Brent (2006). However, these hints are helpful when trying to avoid false positive ‘new’ genes.

Next, we tried variants that use no other evidence than genome sequences and ESTs (no full length mRNAs). We tried a variant of AUGUSTUS that uses human ESTs only (AUGUSTUS +E), and two variants that use human ESTs in addition to genomic conservation (AUGUSTUS +X,p,E and AUGUSTUS +X,p,E 1tr). We compared to N-SCAN/EST, which has previously been reported to perform best on human within this category of programs (Wei and Brent, 2006). Using ESTs only, AUGUSTUS predicts 77% more transcripts correctly than N-SCAN/EST, while at the same time having a higher transcript specificity. Incorporating information from genomic conservation substantially improves the specificity over pure EST-based predictions. We also tried reporting only one transcript per gene (AUGUSTUS +X,p,E 1tr) for a more direct comparison to N-SCAN/EST. As can be expected, this generally further increases specificity so that more than 58% of the transcripts predicted by AUGUSTUS match perfectly a reference transcript (N-SCAN/EST: 36%).

We also compared programs that use human mRNAs as well as other evidence. In this category we gave AUGUSTUS evidence from human mRNAs; mouse, rat, cow, chicken and dog RefSeqs mapped to the human genome using TRANSMAP; and genomic conservation and predicted retroposed genes using human mRNA. When AUGUSTUS is configured to predict alternative splice variants (AUGUSTUS +X,R,T,E,m) it predicts at least one splice variant correctly for more than 77% of the reference genes. In the EGASP experiment, JIGSAW had, with 72.64%, the highest gene-level sensitivity. However, JIGSAW has in most measures a higher specificity, which, in part, can be explained by the fact that it only predicts one splice form per gene. N-SCAN PASA-EST is a recently developed combination of N-SCAN/EST with PASA (Haas et al., 2003), in which PASA is used to create the input ESTseq for N-SCAN/EST from alignments of mRNAs and ESTs and also to find alternative splice variants to the single-transcript genes predicted by N-SCAN/EST.

To simulate the performance on a genome for which no transcribed data at all exists, but where the gene annotation of related genomes is available, we ran AUGUSTUS using only hints from running TRANSMap on RefSeqs from non-human species (mouse, rat, cow, chicken and dog). Somewhat surprisingly, AUGUSTUS +T is not very much behind the methods that use human mRNAs besides other evidence. For example, AUGUSTUS +T has a gene-level accuracy of only 10 percentage points lower than JIGSAW at approximately the same gene-level specificity, however JIGSAW used human mRNA, human and non-human RefSeqs, the UCSC KnownGenes, the ENSEMBL predictions, PHASTCONS and the predictions of six other gene finders, which themselves include further evidence. We have to note that the human genome as a test case is somewhat special. The non-human RefSeq mRNA annotations could have been influenced by the knowledge of the annotators of the human genes, so that possibly a circularity effect might lead to an overestimation of accuracy. On the other hand, non-human mammalian target genomes would benefit from the availability of the well-annotated human informant genome. Table S3 shows the accuracy when all mRNAs from Genbank of the five informant species are used and not only the RefSeq mRNAs.

This new version of AUGUSTUS has been applied to the genes in Galdieria sulphuraria (manuscript in preparation). In this genome project, we incorporate extensive cDNA sequence data sequenced with 454 technology besides protein-level conservation [protein hints not discussed here, see Stanke et al. (2006b)]. We find that the method presented here also works well when using the shorter ESTs from 454 sequencing.

4 DISCUSSION

In this study, we used the human genome to evaluate our program for several reasons. Besides the direct interest in the human genome, we chose it because it is relatively well annotated for a complex genome and many gene prediction tools are adjusted and have previously been evaluated using standard reference sets. However, the many newly sequenced genomes, in which the genes need to be indentified, have less available transcript evidence, in particular much fewer full length mRNA sequences than human. For many species, even a little native EST data exists. Therefore, restricting the gene prediction in human to the usage of different evidence sources can be seen as an estimate of the performance in other species where direct gene prediction assessment is more difficult.

De novo gene finding is useful mostly for finding genes or parts of genes for which insufficient evidence exists from transcript or protein data. The de novo method presented here is modular and simple. Nevertheless, it approximately achieves the accuracy of N-SCAN, the previously most accurate de novo gene finder for human. Further, PHASTCONS is not a specific method for finding conserved protein coding regions. We only included it to supplement EXONIPHY as it sometimes misses conserved exons. We expect that further improvements can be achieved by using a more inclusive prediction of evolutionary conserved exons.
Using only ESTs and genomic conservation, AUGUSTUS is significantly more accurate than N-SCAN/EST. However, each of the two programs can be seen as an extension of a GHMM-based comparative gene finder, AUGUSTUS +X,p,RA and N-SCAN, respectively, which have similar performances. The main difference between the two methods of incorporating EST alignments is that AUGUSTUS interprets these alignments as information about intervals and N-SCAN/EST interprets them as information about individual positions. N-SCAN/EST reduces the information of the EST alignments to a so-called ESTseq, a set of likely intronic bases and a disjoint set of likely exonic bases. When predicting a gene structure, it rewards or penalizes the classification of individual bases as exonic or intronic based on the ESTseq. So, a predicted intron having overlap with many intronic bases from the ESTseq may be rewarded although it actually contradicts the splicing suggested by EST alignments. In contrast to the method proposed here, the N-SCAN/EST approach also loses the information about possibly complicated alternative splicing and nesting of genes by projecting the EST alignments to a single ESTseq. In light of these differences, we attribute the advantage of AUGUSTUS X,p,E over N-SCAN/EST to a more careful method of evidence integration.

5 CONCLUSION

We conclude that our gene annotation pipeline is particularly strong in two major settings: First, when the major source of gene evidence for the genome is ESTs and, second, when one or more well-annotated informant genomes are available that are related closely enough to show synteny.

We showed that despite the quality issues of ESTs and their fragmented nature, EST-supported gene finding can be much more accurate than previously shown in mammals. Further, the accuracy, mainly the specificity, can be increased using genomic conservation in addition to the EST evidence. We expect that ESTs will play an even more important role for the annotation of future genomes because cheaper new sequencing methods allow for economically obtaining a good coverage of the transcriptome.

The indirect use of alien cDNA by mapping it syntenically to the target genome can produce almost as accurate gene models as methods that use native transcripts, even when exceptionally many and full-length native mRNAs are available as in the case of human. This method is very well-suited to annotate, e.g. the mammalian genomes, making use of the relatively good human, mouse and rat annotations, and the fact that usually only little native transcript data is available. In upcoming genome projects this setting will also become more relevant as for most finished genomes there will be suitable informant genomes that have been annotated before. Also, with AUGUSTUS native and alien transcripts can be combined and complement each other to achieve even higher accuracy.

ACKNOWLEDGEMENTS

This work was supported by a fellowship within the Postdoc Program of the German Academic Exchange Service (DAAD) to M.S. This work was partially supported by Federal Ministry of Research and Education (BMBF) project ‘MediGRID’ (BMBF 01AK803G). This project has been funded in whole or in part with Federal Funds from the National Cancer Institute, National Institutes of Health, under Contract No. NOI-CO-12400.

We thank Michael Brent and Jeltje van Baren for giving us the N-SCAN/EST+PASA predictions, Adam Siepel for providing the ExonPhy and PhastCons tracks, and the anonymous referees for their helpful suggestions to improve the manuscript.

Conflict of Interest: none declared.

REFERENCES

