
A Appendix

A.1 Almost universal set of hash function
An invertible matrix A is a sequence of vectors v1, . . . , v2k
such that the ith vector is not in the space spanned by the
vectors v1, . . . , vi−1. This vector space has size 2i−1 and
the number of choices for vi is 22k − 2i−1. Hence

|H| =
2k−1∏
i=0

(22k − 2i) = (22k − 1)

2k−1∏
i=1

(22k − 2i) . (1)

For a given pair (x, y), let N be the number of invertible
matrices for which Ax ≡ Ay (mod 2`), or equivalently
Az ≡ 0 (mod 2`) by setting z = x− y.

Let B be an invertible matrix such that z = Be1, where
e1 = (1, 0, . . . , 0), and let C = AB. B can be con-
structed by setting the first column to z and choosing the
remaining columns as above to make B invertible. Then
the matrix C is invertible if and only if A is invertible and
Az = ABe1 = Ce1. Hence, N is the number of invertible
matrices C for which Ce1 ≡ 0 (mod 2`).

Therefore there is only 22k−` − 1 choice for v1, the first
column of C, and the number of choices for vi, i > 1, is
unchanged. Hence

N = (22k−` − 1)

2k−1∏
i=1

(22k − 2i) . (2)

Provided that 22k � 1 and 22k−` � 1, the relation N ≈
|H|/2` holds.

The proportion of invertible matrices is

Pk =
|H|
22k

=

2k∏
i=1

(
1− 1

2i

)
. (3)

Pk is a decreasing sequence with a limit > 0.28. Hence,
by random drawing, an invertible matrix will be found in
an expected 4 steps.

A.2 Distributed locks to reduce contention
when writing table to disk

When a thread fails to add a key into the hash table be-
cause the table is full, the hash table is written to disk and
reinitialized. For data consistency, all threads must be pre-
vented from making any updates to the hash table while
it is written to disk. A reader-writer lock (e.g. POSIX’s
pthread rwlock) would suffice. However, when the
number of contentions is high, this performs very poorly.

Instead, we implement a distributed reader-writer lock
where the frequent case (acquiring a read lock) is opti-
mized as much as possible at the expense of the infrequent
case (acquiring a write lock). Functionally, the distributed
lock behaves to each thread i as a distinct reader-writer lock

rwlocki. For a thread to make an update to the hash table, it
only needs to acquire a read lock of its own lock, rwlocki.
On the other hand, to write the hash table to disk, a thread
i is required to acquire a write lock on all of the locks,
rwlockj ∀j. In this scheme, the frequent case involves only
acquiring a lock with no contention, which is fairly fast.

The implementation again uses the CAS operation in-
stead of POSIX pthread rwlock reader-writer locks.
Each thread maintains a status variable which can have
three states: FREE, INUSE, BLOCKED. The frequent
non-contentious case is as follows: before an update, a
CAS operation is made to change the status from FREE
to INUSE. In case of success, the read lock is considered
acquired and the thread can proceed with the update. Af-
ter the update, a compare-and-swap operation is made to
change the status from INUSE to FREE. In case of success,
the read lock is considered released and the thread is done.
In this frequent non-contentious case our implementation
incurs only the cost of two compare-and-swap operations.

A thread that discovers a full hash table when it tries to
add a key will set the status variable of every other thread
to BLOCKED. Using a condition variable, it will then wait
for every thread that was in the INUSE state to finish their
update, and then proceed to write the hash table to disk.

While the writing is occurring, every thread’s status vari-
able will be BLOCKED and any thread will fail in an at-
tempt to to change its status from FREE to INUSE using
the CAS operation. If this occurs, the thread waits for the
writing of the hash to disk to be finished (its status changed
from BLOCKED to FREE). If a thread fails to change its
status from INUSE to FREE it notifies, using the condition
variable, the thread that wants to write the hash to disk, that
it is done with its update.

A.3 Impact of mer length on runtime.
Detailed running time of Jellyfish counting k-mers for dif-
ferent values of k on coverage 5x of the Turkey reads.

 0

 50

 100

 150

 200

 250

 300

 5  10  15  20  25  30

T
im

e 
(s

)

mer length "k"

Counting

IO

1


