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1 IMPLEMENTATION OF ONE DIMENSIONAL
RANDOM WALK

A TF molecule of typex which is bound on the DNA at positionj
will wait an exponentially distributed time with averageτ j

x before
it performs a new action. Having multiple agents in the system (TF
molecules bound to the DNA), we store all the waiting times ina
PriorityQueue. The head of this queue is the soonest event. We call
this in our application the First Reaction Method.

Alternatively, by selecting an option the user can simulatethe
system with the Direct Method, which is an adaptation of Gillespie’s
Direct Method (Gillespie, 1977). In this method, each boundTF
molecule will have a rate to move from its current position, which
is inversely proportional to the waiting time,κj

x = 1/τ j
x , and the

simulator will select the time a molecule will move from its current
position and the ID of that molecule. In addition, to keep themove
rate for each position and total sum, we also keep intermediate sums
for sectors of DNA which reduces the search from

∑

x
TFx to

√
∑

x
TFx, similar to our approach on locating a free site on the

DNA; see section 2.2. For some values, it seems that this approach
is slightly better than the First Reaction Method, but, in general,
we found that the First Reaction Method outperforms the Direct
Method.

2 LOCATING A FREE BINDING POSITION
The simplest implementation of TF binding to the DNA consist
to draw a random number identifying a position on the DNA and
checking if that position is free (Chuet al., 2009). In addition, all
TF size

x right base pairs need to be free as well, in order for the TF to
bind at that position. The time to find a free location is dependent on
the the DNA occupancy and, even if a free position is found, there is
no guarantee that there are enough uncovered base pairs on the right
side. When implementing genome-wide simulations, crowding of
various molecules on the DNA can create problems when searching
for a free spot to bind a molecule.

An alternative implementation was presented by Barnes and Chu
(2010). They proposed that each long enough run of free base pairs
to be stored in an array, while small fragments to be stored ina
different array. On each TF binding, unbinding or random walk

∗to whom correspondence should be addressed

event, the software will keep these arrays updated so that, when
a free spot is required, the simulator will look only in the array
of free spots and, thus, only one random number is generated per
binding event. Thismemory modelwas able to achieve a speed-up
and was reported that it could perform up to105 events per second
on a DNA of4.6 Mbp with 106 TF molecules. Their simulator was
implemented in C++ and the simulations were run on a Mac Pro
3GHz quad-core Intel Xeon with 8G memory running Mac OSX
10.4.

Here, we propose a slightly different model to store free positions.
We create an array list of boolean values for each TF species
(x) and this array stores whether a TF molecule of speciesx is
allowed to bind at positionj, i.e., if A[x][j] is true then a TF
molecule of speciesx can bind at positionj, and otherwise a
molecule will not be allowed to bind. This array is updated after
each event is performed. The memory model is looking through
the entire list of fragments or continuous runs to locate where the
molecule made more room for another TF molecule to bind, or
where it reduced/removed the binding space. In our model, we
look only in neighbouring positions where the TF moved or from
where it moved. Thus, searching in an entire list of fragments
(which can be significantly high) is reduced to searching only
through neighbouring positions (which depends on the size of the
molecules).

The purpose of this mechanism is to eliminate the need to check if
enough base pairs (TF size

x ) on the right side of the selected position
are not covered by other molecules. This, however, comes at the
cost of maintaining a series of arrays updated after each event is
processed; see below.

2.1 Update Available Position Array
Initially any TF can bind anywhere on the DNA. After each event is
performed, we need to update the availability arrays as follows:

• After a TF of typex binds at positionj do

A[y][i] = false, ∀i ∈ (j − TF size
y , j + TF size

x ); ∀y

This update is applied for all TF species, once a molecule of
typex bound to the DNA.

c© Oxford University Press 2011. 1



Zabet and Adryan

• After a TF of typex slides left from positionj to positionj′,
with j′ ∈ (j − TF size

x , j), do

A[y][i] = false, ∀i ∈ (j′ − TF size
y , j − TF size

y ); ∀y

A[y][i] = true, ∀i ∈ (j′ + TF size
x , posEnd); ∀y

whereposEnd = findF irstCoveredBP (j + TF size
x , j +

TF size
x + TF size

y ) − TF size
y if there is a covered base

pair between positions(j + TF size
x , j + TF size

x + TF size
y )

or posEnd = j + TF size
x otherwise. The function

findF irstCoveredBP (s, e) returns the first covered base
pair between positionss ande.

• After a TF of typex slides right from positionj to positionj′,
with j′ ∈ (j, j + TF size

x ), do

A[y][i] = false, ∀i ∈ (j + TF size
x , j′ + TF size

x ); ∀y

A[y][i] = true, ∀i ∈ (posStart, j′ − TF size
y ); ∀y

where posStart = findLastCoveredBP (j − TF size
y , j)

if there is a covered base pair between positions(j −
TF size

y , j) or posStart = j − TF size
y otherwise. The function

findLastCoveredBP (s, e) returns the last covered base pair
between positionss ande.

• After a TF of typex unbinds from positionj do

A[y][i] = true, ∀i ∈ (posStart, posEnd); ∀y

whereposStart = findLastCoveredBP (j − TF size
y , j) if

there is a covered base pair between positions(j − TF size
y , j)

or posStart = j − TF size
y otherwise andposEnd =

findF irstCoveredBP (j + TF size
x , j + TF size

x + TF size
y )−

TF size
y if there is a covered base pair between positions(j +

TF size
x , j + TF size

x + TF size
y ) or posEnd = j + TF size

x

otherwise.

2.2 Randomly Select a Free Position
The simplest way to select a free position is selecting a random
number in the interval[0,M), whereM is the length of the analysed
DNA. In a crowded environment, when a significant part of the
DNA is covered by TF the simulator might experience a lot of failed
attempts to find a free position.

Alternatively, one can store the current number of free position for
each speciesAcurrent

x .This is computed before the simulation starts
and whenever any item in the array of available positions is updated,
the current number of available positions is also updated. This does
not put any significant load on the simulation, but reduces the search
time for a free position. When we need to locate a position fora TF
molecule of typex on the DNA, we have an array with all available
positionsA[x] and the current number of available positionsAcurrent

x .
In order to select a free position, we draw a random numberz in the
interval [0, Acurrent

x ) and then we count through the array until we
find thezth available position. This method guarantees that a free

position is found using only one random number, which represents
a significant improvement of the simulation speed.

Since random numbers are uniformly distributed, on averagewe
need to search throughM/2 elements, whereM is the length
in base pairs of the DNA sequence. Thus, the search time for
a free position increases linearly with increasing the length of
the DNA sequence. The search of a thezth free position can be
optimised by dividing the DNA into sectors of sizeR and by keeping
updated the current number of free positions for each sector. This is
similarly implemented as keeping updated the current number of
free positions for the entire DNA and the load on simulation time is
negligible.

When looking for a free position, we first need to search through
the current number of available positions for each sector until we
locate the sector which contains the position of interest and then
look inside that sector. Assuming the same uniform distribution, the
number of steps is

〈steps〉 = 1

2

M

R
+

1

2
R

The minimum number of steps is obtained by checking where the
first derivative with respect to the sector size is zero,∂〈steps〉/R

1

2

M

R2
+

1

2
= 0 ⇒ R = 0, R =

√
M (1)

The only positive solution isR =
√
M , which leads to an average

number of steps equal to〈steps〉 =
√
M .

3 AFFINITY LANDSCAPE
The affinity landscape can be computed using one of the three
following methods: (i) mismatch energy (Gerlandet al., 2002), (ii)
PFM and information theory (Stormo, 2000) and (iii) PFM and
energy affinity (Berg and von Hippel, 1987). For exemplification
purposes, we consider that the DNA binding motif of lacI tetramer
is the following

AATTGTNNNNNNNNNACAATT

, a spaced inverted repeat. We consider that the dimeric lacI
recognizes5’-AATTGT-3’ and that the binding site has21 bp
(Turner, 2001).

We used this sequence in conjunction with mismatch energy
(Gerlandet al., 2002) and for the PFM we constructed an equivalent
position frequency matrixPFMlacI. To construct thePFMlacI we
consider40 identical sequences and in the gap we assumed that all
nucleotides have equal probabilities; seePFMlacI Figure 1.

Figure 2 confirms that the computed binding energy is Gaussian
distributed and only a few number of sites have high affinity.

We investigated the correlation between these three versions for
an affinity landscape of lacI tetramer on theE.coli K-12 genome
and found that there is a high correlation between all three methods
(Gerlandet al., 2002; Berg and von Hippel, 1987; Stormo, 2000);
with a Pearson coefficient of correlation equal to0.99. Although the
binding energies of the three methods are highly correlated, their
mean and variance differ significantly. However, these differences
can be corrected, by selecting the appropriateτ0 term. This will
scale the actual waiting times, so the waiting times will have similar
values for the three methods.
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PFMlacI =

1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21
A 40 40 0 0 0 0 10 10 10 10 10 10 10 10 10 40 0 40 40 0 0
C 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 0 40 0 0 0 0
G 0 0 0 0 40 0 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0
T 0 0 40 40 0 40 10 10 10 10 10 10 10 10 10 0 0 0 0 40 40

Fig. 1. PFM. Equivalent PFMs for the AATTGTNNNNNNNNNACAATT binding motif and40 binding sequences. In the gap region (between position7 to
15) we consider equal probability to see any of the nucleotides.

We also investigated the affinity landscape computed with the
aforementioned methods in a biased genome (70% AT and only
30% CG content). The results showed that there is a high correlation
between Gerlandet al. (2002) and Berg and von Hippel (1987)
methods (a Pearson correlation coefficient of1) and a very low
between these two and the Stormo (2000) approach (a Pearson
correlation coefficient of0.69). This result can be explained by the
fact that the Stormo (2000) method takes into account the frequency
of a nucleotide in the entire genome, which does not appear inthe
two other methods, Gerlandet al. (2002) and Berg and von Hippel
(1987).

4 ESTIMATING MODEL PARAMETERS

4.1 Estimating Specific Waiting Time from the Affinity
Landscape

For sobs
l = 90 bp, a residence time oftR = 5 ms (Elf et al., 2007)

and an average binding energy of the lacI tetramer〈exp (−Ex)〉 ∈
{3.73e − 06, 3.44, 2.10e − 12} (see Figure 2) we obtain the
following specific waiting times

τ 0

lacI = 0.33 s for Gerlandet al. (2002)

τ 0

lacI = 3.58e − 07 s for Stormo (2000) (2)

τ 0

lacI = 5.87e + 05 s for Berg and von Hippel (1987)

Note that, for Stormo (2000) and Berg and von Hippel (1987), we
weighted the energy contribution byε∗lacI = 1KBT .

In addition, we computed the specific waiting time for non-
cognate species (see Figure 2) asτ 0

nc = 0.33 s, where the average
exponential binding energy was〈exp (−Enc)〉 = 3.72e − 06.

All the above mentioned parameters, are listed in Table 1.

5 VALIDATION OF THE PARAMETERS
ESTIMATION APPROACH

We systematically investigated the accuracy of the proposed
method to estimate model parameters. Figure 3 confirms that our
proposed approach leads to the results of simulations deviating only
negligible from the ones predicted mathematically. In particular,
we considered four parameters: (i) sliding length, (ii) observable
sliding length, (iii) residence time and (iv) proportion of time
bound to the DNA. Figure 3 shows that only the residence time
has higher variability, but the average residence time of multiple (or
longer) simulations matches well the value computed analytically.
This variability can be reduced by running the simulations for longer
times, which would lead to more accurate averages for the measures.

We also compared the one dimensional diffusion coefficient from
our simulations to the one proposed in (Elfet al., 2007). Figure 4

confirms that our simulations reproduces the value proposedby Elf
et al. (2007) with negligible error.

6 SIMULATION APPROXIMATIONS
The binding rate (kbind

x ) has to be evaluated whenever the number
of available positions on the DNA change, which includes binding,
unbinding, hopping and sliding events.

This has a negative effect for the performance of the simulation,
because we need to draw another random number for next binding
event each time a TF molecule slides on the DNA. From the
parameters that we estimated above, it means that we may drawup
to 4000 random numbers before a new binding event actually takes
place, which is highly inefficient.

Alternatively, one might consider an approximate system, in
which the binding of TF molecules is affected by occupancy,
but the update is performed only when a molecule binds/unbinds
and not when any other event (sliding or hopping) would lead to
change in the number of available binding sites on the DNA. This
approximation reduces the load of updates caused by the sliding
events, but at the same time seems to follow with good accuracy
the behaviour of the exact system. In Figure 5, red and blue lines
represent the approximate system, while green and orange lines is
the exact one.

Henceforth, when computing and comparing the speed, we will
use only the approximate system, since the difference between the
approximation and the exact system is negligible. Nevertheless, the
user has the possibility to use the exact system in any simulation.

7 SIMULATION SPEED

7.1 DNA Sectors and Event List Subgroups
The simulation speed is measured as the number of events simulated
per second and the simulator was run forT s. We used a Mac Pro
2x2.26GHz quad-core Intel Xeon with 32GB memory running Mac
OSX 10.6.8.

In our model section, we proposed that searching in an array
of available positions can be optimised by maintaining themfor
smaller sectors. The left part of Figure 6 confirms that thereis
an optimal sector size (R =

√
M ), which can lead to significant

increase in simulation speed (in our case the number of operations
performed per second doubles).

Furthermore, we tested the effect of dividing the event listin
smaller sub-groups and found that, for theDirect Method, the speed
increased significantly when the size of the sub-group equalled the
square root of the non-cognate copy number, while in the caseof the
First Reactionmethod breaking the event list into smaller sub-lists
did not increase the speed; see right part of Figure 6.
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7.2 TF Abundance
Finally, we observed that the simulation speed can depend strongly
on the number of TF molecules in the system. This mainly comes
from the fact that the event list storing the events associated with
each molecule increases with the number of TF molecules. For
the First Reactionmethod, keeping the queue sorted is the most
time consuming step, while in theDirect Method the bottleneck
is represented by the search of the next TF molecule to move on
the DNA. SinceFirst Reactionuses a PriorityQueue, which has a
search time equal tolog

2

(
∑

x
TFx

)

, while our implementation of
theDirect Methodhas a search time of

√
∑

x
TFx, one can see that

for long lists theFirst Reactionis much more efficient compared
to theDirect Method; see right end of Figure 7. However, Figure
7 shows that for intermediate number of molecules in the system
(≈ 104) theDirect Methodalgorithm seems to slightly outperform
theFirst Reactionmethod.

Barnes and Chu (2010) indicated that their implementation could
simulate100000 events/s for 1000000 non-cognate molecules.
Figure 7 indicates that our program can simulate approximately
4 times more events per second (400000 events/s) for same
number of non-cognate molecules. One might argue that, by using
molecules that cover46 base pairs on the DNA, only a small
fraction of our TFs will bind to the DNA. In fact we observed
that only 8% of the molecules bind to the DNA in the case of
TFnc = 106. To investigate whether this is the reason behind the
speed-up, we reduced the size of the non-cognate molecules to
4 bp and changed the association rate so that we get≈ 85% of
the molecules are bound to the DNA. The results showed that even
when we accommodate a higher number of molecules on the DNA,
our simulator will still perform≈ 400000 events/s.
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Fig. 2. Density plot of binding energies. We computed the binding energy for the genome ofE.coliK-12 genome of: (white) a non-cognate TF specie, (red) lacI
reressor using the mismatch energy method and theO1 operator site (Gerlandet al., 2002), (blue) lacI repressor and (Stormo, 2000) and (yellow) lacI repressor
and (Berg and von Hippel, 1987). We usedPFMlacI for the third and forth plots and the motif consensus AATTGTNNNNNNNNNACAATT for the second
plot. The density plot for non-cognates follows a Gaussian distribution and all values were allowed. For lac repressor,since we selected an energetic penalty
of ε∗lacI = 2 KBT we get the values in bins separated by2 KBT , but which follows a Gaussian distribution as well. The meanvalues for the binding energy
are: (white) 〈E〉 ≈ 13, (red) 〈E〉 ≈ 18, (blue) 〈E〉 ≈ 5, (yellow) 〈E〉 ≈ 22.8. The means of the exponential energy are: (white) 〈exp (−E)〉 ≈ 3.72e−06,
(red) 〈exp (−E)〉 ≈ 3.73e− 06, (blue) 〈exp (−E)〉 ≈ 13.46, (yellow) 〈exp (−E)〉 ≈ 4.46e− 09.
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parameter description

M the length of the DNA measured in base pairs (M ≈ 4.6 Mbp) (Riley et al., 2006)

TF free
x , TF bound

x

andTFx

the number of free (TF free
x ), bound (TF bound

x ) or total (TFx = TF free
x + TF bound

x ) molecules of speciesx

f the relative time a TF molecule stays bound to the DNA (f ≈ 0.9) (Elf et al., 2007)

kbind
x the rate at which a TF molecule of speciesx will bind to the DNA

kassoc
x the association rate constant for speciesx, see equation (19) in main text

kdissoc the dissociation rate constant between a TF molecule and theDNA, see equation (18) in main text, (kdissoc
x = 200)

sobs
l

observed sliding length, the average number of base pairs scanned during a slide including small dissociations from
the DNA (hops), (sobs

l = 90 bp) (Elf et al., 2007)

sl sliding length, the average number of base pairs scanned during a slide, see equation (14) in main text, (sl ≈ 40 bp)

Nobs
se

number of one dimensional random walk events performed until the TF molecule performs a full dissociation from
the DNA, see equation (15) in main text, (Nobs

se ≈ 4000)

Nse
number of one dimensional random walk events performed until the TF molecule performs a dissociation from the
DNA (including a hop), see equation (12) in main text, (Nse ≈ 700)

tR
residence time, the time a TF spends performing one dimensional random walk before it unbinds (tR = 5ms) (Elf
et al., 2007)

Punbind the probability to unbind from the DNA, see equation (13) in main text,Punbind= 0.0012

Pleft, Pright
the probability to slide left (Pleft) or right (Pright) on the DNA, see equation (16) in main text, (Pleft = Pright =
0.4994)

Pjump

the probability that the molecule completely dissociates from the DNA during an unbinding event, while(1−Pjump)
represents the probability that a molecule will rebind fastafter a dissociation (hop), (Pjump = 0.1675) (Wunderlich
and Mirny, 2008) or (Pjump = 0.001) (DeSantiset al., 2011)

σ2

hop
the variance of the hop distance, which is Gaussian distributed around previous position (σ2

hop = 1 bp) (Wunderlich
and Mirny, 2008)

djump the distance over which a hop becomes a jump (djump = 100 bp) (Wunderlich and Mirny, 2008)

τ j
x , κj

x the average waiting time (τ j
x) and the average move rate (κj

x = 1/τ j
x) at positionj for speciesx

τ 0

x the average waiting time for speciesx when bound specifically, see equation (17) in main text.

Ej
x the binding energy of speciex at positionj

Sx the specific binding sequence of TF speciesx

εjx(k) the energetic penalty at positionk within the motif

ε∗x the constant energetic penalty for a mismatch. (ε∗x ≈ 2 ·KBT ) (Gerlandet al., 2002)

nx
0,k

the highest number of occurrences of any nucleotide in position k of all known high affinity binding sequences of
speciesx (Berg and von Hippel, 1987)

nx
j,k

the number of occurrences of the nucleotide at positionj + k on the DNA in positionk of all known high affinity
binding sequences of speciesx (Berg and von Hippel, 1987)

ζ the pseudo-count term ensures that the energy penalty is notεjx(k) = −∞. (ζ = 1) (Berg and von Hippel, 1987)

νx
j,k

the frequency of occurrences of the nucleotide at positionj+ k on the DNA in positionk of all known high affinity
binding sites (Stormo, 2000)

νj the frequency of the nucleotide at positionj in the entire genome (Stormo, 2000)

TF size
x the number of base pairs covered by a bound TF molecule. (TFnc ≥ 20 bp (Stormo and Fields, 1998))

TFmotif
x , TF left

x and
TF right

x

the number of base pairs covered by the DNA binding domain (TFmotif
x ), to the left (TF left

x ) of the DNA binding
domain and to the right (TF right

x ) of the DNA binding domain. We analysed the crystallographic structure of the
lacI-DNA complex (PDB ID: 1EFA, (Bell and Lewis, 2000))and found thatTF left

x = TF
right
x = 0.

A[x][j] array that stores whether a TF molecule of typex can bind at positionj

Acurrent
x andAmax

x the current (Acurrent
x ) and maximum (Amax

x ) number of free sites on the DNA where the molecule of typex can bind

R the length of the DNA sector used to speed-up the search process of a free spot on the DNA (R =
√
M )

cy,j
′

x,j

cooperativity term for DNA mediated cooperative behaviourterm between a molecule of typex bound at position
j and a molecule of typey bound at positionj′

cyx
cooperativity term for direct TF-TF cooperativive behaviour between a molecule of typex and a molecule of type
y

KB andT Boltzmann constant (KB) and temperature (T ).
Table 1. Nomenclature. We usually denote species indexes byx or y and positions on the DNA or motif byj, j′, i or k. To avoid increase in notations, we did
not add an explicit index to the one dimensional random walk parameters (such asPunbindor sl), but it is implicitly assumed that these parameters are specific
to each TF species. Where there is a default value of the parameter, we specified it in the parentheses at the end of the description.
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Fig. 3. Validation of the parameters estimation approach (1). We compare the values obtained from simulations with the ones estimated from our approach.
The triangles represent the computed values, while the box plots the simulation ones. To compute the affinity landscape we used the (Gerlandet al., 2002)
mismatch approach. In addition, we considered105 non-cognate TFs (each covering46 bp of DNA) with the default parameters and5 lacI molecules
with the default parameters. We considered four measurableparameters, namely: (i) sliding length, (ii) observable sliding length, (iii) residence time
and (iv) proportion of time bound to the DNA. We kept everything fixedand for each of these measurable parameters we varied one microscopic
parameter which: (i) for sliding length we varied unbinding probability (P lacI

unbind ∈ {7.09E − 3, 2.78E − 3, 1.47E − 3, 9.13E − 4, 6.20E − 4}),
(ii) for observable sliding length we varied the jumping probability (P lacI

jump ∈ {0.28, 0.21, 0.17, 0.13, 0.12}), (iii) for residence time we varied the

specific waiting times (τ0lacI ∈ {0.20, 0.27, 0.33, 0.40, 0.47} s) and (iv) for proportion of time bound to the DNA we varied the association rate
(kassoc

lacI
0 ∈ {892, 1263, 2000, 4238, 22082} s−1). For each set of parameters we performed20 simulations each running for1 s (for sliding length and

observable sliding length) and10 s (for residence time and proportion of time bound to the DNA).The blue error bars represent the original system (the one
using our default parameters estimates). The errors between the computed values and the ones measured from the simulations are negligible.
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Fig. 4. Validation of the parameters estimation approach (2). We compare one dimensional diffusion measurements of our simulations (box plots) that we
obtained with the ones proposed by Elfet al. (2007) (triangle). To compute the affinity landscape we usedthe (Gerlandet al., 2002) mismatch approach. In
addition, we considered105 non-cognate TFs (each covering46 bp of DNA) with the default parameters and5 lacI molecules with the default parameters.
The mean value for our one dimensional diffusion coefficientis 0.046 µm2s−1 which is the same value Elfet al. (2007) proposed. Since the resolution of our
method is much higher than the one of the experimental measures, we discretized the sample data to fit resolution in (Elfet al., 2007) (we disregarded sliding
events that lasted less than1 ms). Without removing those data points the mean one dimensional diffusion coefficient is0.056 µm2s−1 which is still close
to the value proposed in (Elfet al., 2007).
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Fig. 6. Influence of sector size on simulation speed. The system consists of10000 non-cognate TFs and5 cognate ones (lacI) and theE.coli K-12 genome.
Left The DNA sector size plays an important role for the speed, in the sense that there is an optimal sector size (R =

√
M ) which maximizes number of

events performed per second.Right The sub-group size of the random walk event list plays an important role only for Direct Method, where the optimal event
list subgroup size is

√
∑

x TFx.
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Fig. 7. Simulation speed is inversely proportional with the numberof TF molecules. The system consists of5 cognate TF and the number of non-cognate TF
molecules is varied between1 and106.
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