CODEX: exploration of semantic changes between ontology versions

Michael Hartung1,2,*, Anika Gross1,2 and Erhard Rahm1,2

1Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany and 2Department of Computer Science, University of Leipzig, Leipzig, Germany

Abstract
Summary: Life science ontologies substantially change over time to meet the requirements of their users and to include the newest domain knowledge. Thus, an important task is to know what has been modified between two versions of an ontology (diff). This diff should contain all performed changes as compact and understandable as possible. We present CODEX (Complex Ontology Diff Explorer), a tool that allows determining semantic changes between two versions of an ontology, which users can interactively analyze in multiple ways. Availability and implementation: CODEX is available under http://www.izbi.de/codex and is supported by all major browsers. It is implemented in Java based on Google Web Toolkit technology. Additionally, users can access a web service interface to use the diff functionality in their applications and analyses.

Contact: hartungweb.uni-leipzig.de

Received on November 25, 2011; revised on January 4, 2012; accepted on January 11, 2012

1 INTRODUCTION

Recently ontologies have become very popular in the life sciences. They consist of a harmonized vocabulary of terms (concepts) describing and structuring a domain of interest. Their main application is the consistent and uniform description (annotation) of biological entities such as genes and proteins enabling analyses such as term enrichment or gene expression data studies. The most used ontology in bioinformatics is the Gene Ontology (GO) (Harris et al., 2004) consisting of subontologies for molecular functions, biological processes and cellular components. A huge number of life science ontologies are managed within the Open Biomedical Ontologies Foundry (OBO) (Smith et al., 2007), which has established the common OBO format as representation language.

The content of ontologies is not static. Due to new knowledge (e.g. from experimental results) or design errors made in earlier versions, they undergo continuous changes to enhance their quality. The OnEX tool (Hartung et al., 2009) already allows studying the evolution of life science ontologies over the recent years, e.g. one may notice that the Biological Processes of GO doubled in their size to ~21,000 concepts between 2006 and 2011. However, OnEX considers rather simple changes (e.g. concept additions and deletions) such that there is still an increasing need to figure out what has exactly been changed between the two versions of an ontology (diff). The complexity and size of life science ontologies requires that a diff should be as compact and human-understandable as possible. Semantic changes such as concept merges, additions of entire subgraphs or moves of concepts should be reported instead of long lists of rather basic changes as generated by tools such as obodiff of OBO-Edit (Day-Richter et al., 2007). A semantic diff can be valuable for both ontology users and developers, e.g. if a user likes to perform a term enrichment analysis based on a new ontology version, she may be interested in revised concepts compared with the previously used version, or a developer likes to know which changes were performed in the last year to plan future modifications. Current ontology browsers such as AmiGO or Ontology Lookup Service are limited to the latest available version and do not offer diff facilities. We therefore present CODEX, a web tool to ad hoc compute a semantically rich diff between two ontology versions.

2 OVERVIEW OF CODEX

CODEX consists of a web front-end, a web service interface and a repository for diff calculations at the back-end. The main diff algorithm used by CODEX is described in Hartung et al. (2010). Particularly, it first performs a match between the input versions to determine equal or slightly changed ontology elements. It then generates a basic diff which is based on simple changes: add, del and map of concepts, relationships and attributes. Taking this basic diff as input, an iterative application of rules generates more and more semantic changes (e.g. merge, split, substitute, move, addLeaf, addSubGraph, toOntolet, ...) as long as a compaction is possible. Thus, the final diff result represents the most compact diff between the input versions. For a full list and description of supported changes, we refer to Hartung et al. (2010) or the help pages of CODEX. We will now describe the web front-end and web service of CODEX in more detail and then show some application results from determining diffs for selected ontology versions.

2.1 Web front-end

The web front-end contains two main sections as displayed in Figure 1. The input section offers different possibilities to specify the input versions for a diff computation. CODEX supports ontologies formatted in OBO as well as OWL. First, users can directly put the ontology contents into appropriate file input areas (A1). Second, one can simply provide the URLs of the ontology versions to process (A2). Third, there is the possibility to upload ontology files stored on the local machine of a user (A3). Finally, ontology versions already available in OnEX can be selected as input (A4). Currently, OnEX provides access to ~850 versions of 16 ontologies. For each variant, a submit button is used to start the diff computation after the input has been specified. Example buttons allow for running predefined examples.

After the online diff computation, users can enter the result analysis section to explore the resulting diff in more detail. For a first overview, one can study the Overall Statistics (B1) of the ontology versions and their diff. Version statistics such as number of concepts and relationships, the
We apply CODEX to determine and analyze the difference between compact diff starting at the most compact changes.

Finally, by a change or not. Again tag clouds and tree-based navigation simplify concepts of a given set of accession numbers of interest were influenced cloud in (B2)]. This shows that a lot of knowledge has been revised.

Other frequent semantic changes are moves of concepts (188) and attribute value changes (2423) especially changes of definitions. The presented CODEX application allows to compare different ontology versions and determines a compact diff based on semantic changes. Thus, users can flexibly determine semantic diffs and use this knowledge for understanding the ontology evolution or to adapt dependent data. The application can be accessed via an interactive web front-end or a web service interface. In contrast, eight subgraphs have been inserted; the largest one (SO:0001659—promoter_element) contained 11 concepts.

As a second example, we determine the diff between the January and December 2010 version of GO Molecular Functions [see example in (A4)]. This time the ontology grew by ∼3% and the diff encompasses 3300 changes. The changes are dominated by attribute value changes (2423) especially changes of definitions. Other frequent semantic changes are moves of concepts (188) and leaf additions (169). However, there was a huge amount of revisions including merges (60) as well as obsolete changes (20). The largest of the 33 added subgraphs with 29 new concepts is GO:0000988 (protein binding transcription factor activity).

REFERENCES

Conflict of Interest: none declared.

Funding: DFG grant [RA 497/18-1] (Evolution of Ontologies and Mappings).