Systems biology

Addressing false discoveries in network inference

Tobias Petri¹, Stefan Altmann¹, Ludwig Geistlinger¹, Ralf Zimmer¹ and Robert Küffner¹,²,*

¹Ludwig-Maximilians-Universität München, Institut für Informatik, Munich, Germany and ²Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany

*To whom correspondence should be addressed.

Associate Editor: Igor Jurisica

Received on December 11, 2014; revised on March 11, 2015; accepted on April 7, 2015

Abstract

Motivation: Experimentally determined gene regulatory networks can be enriched by computational inference from high-throughput expression profiles. However, the prediction of regulatory interactions is severely impaired by indirect and spurious effects, particularly for eukaryotes. Recently, published methods report improved predictions by exploiting the a priori known targets of a regulator (its local topology) in addition to expression profiles.

Results: We find that methods exploiting known targets show an unexpectedly high rate of false discoveries. This leads to inflated performance estimates and the prediction of an excessive number of new interactions for regulators with many known targets. These issues are hidden from common evaluation and cross-validation setups, which is due to Simpson’s paradox. We suggest a confidence score recalibration method (CoRe) that reduces the false discovery rate and enables a reliable performance estimation.

Conclusions: CoRe considerably improves the results of network inference methods that exploit known targets. Predictions then display the biological process specificity of regulators more correctly and enable the inference of accurate genome-wide regulatory networks in eukaryotes. For yeast, we propose a network with more than 22 000 confident interactions. We point out that machine learning approaches outside of the area of network inference may be affected as well.

Availability and implementation: Results, executable code and networks are available via our website http://www.bio.ifi.lmu.de/forschung/CoRe.

Contact: robert.kueffner@helmholtz-muenchen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene regulatory networks (GRNs) consist of interactions of regulators such as transcription factors (TFs) that physically bind to specific nucleotide sequences to regulate the expression of target genes. GRNs can be experimentally derived from TF-binding studies (Gerstein et al., 2012) such as Chromatin Immuno-Precipitation [ChIP, Zheng et al. (2010)] or DNase foot-printing (Neph et al., 2012). A large fraction of the interactions reported by these approaches are not associated with changes in target expression (Wu et al., 2007). On the other hand, expression changes in potential TF targets can be detected from TF-knockout profiles (Chua et al., 2006). This approach, however, is prone to indirect or spurious effects (Hu et al., 2007).

Although the number of conducted TF-binding and TF-knockout studies is growing (Petricka and Benfey, 2011) the discovery of novel regulations detected with each additional study decreases.
Thus, a combination of experimental results and computational in-
fERENCE approaches is likely to provide more comprehensive
networks.

Many inference methods use expression data exclusively. An
interaction is predicted if a TF and its putative target are co-
expressed. Such expression-based approaches infer prokaryotic net-
works successfully (Faith et al., 2007; Greenfeld et al., 2013;
Margolin et al., 2006; Michoel et al., 2009). However, they perform
hardly better than random for inference of eukaryotic networks
(Hu et al., 2007; Kuffner et al., 2012; Marbach et al., 2012;
Michoel et al., 2009; Narendra et al., 2011; Soranzo et al., 2007;
Wu and Chan, 2012), although they can achieve useful results in
special cases [e.g. for respiratory genes, Michoel et al. (2009)].
Interactions in eukaryotes are difficult to infer as observable depend-
encies between the expression of regulator and target are weaker
and context-dependent. One reason is the increased level of com-
plexity and the combinatorial nature of the eukaryotic regulation of
transcription (Neph et al., 2012).

The prediction of novel interactions can be improved for
prokaryotic and in silico data by exploiting a priori known interac-
tions [local topology priors, Greenfeld et al. (2013)]. This allows to
determine whether a given TF is active based on the expression of its
known targets (Ciofani et al., 2012; Naem et al., 2012) enabling a
more reliable prediction of novel targets (De Smet and Marchal,
2010; Mordelet and Vert, 2008; Qian et al., 2003). See Supplementary,
Section S5 for an overview on related methods.

Here, we investigate whether eukaryotic networks are accurately
inferred by methods exploiting topology priors. First, we demon-
strate that many existing performance evaluations are misleading.
They are not adequate for local topology methods and overestimate
network quality substantially. This effect is due to Simpson’s
Paradox, well-known in causal theory (Pearl, 2009; Simpson, 1951).
Second, this also strongly influences the quality and composition of
inferred networks. We develop a simple recalibration strategy and
demonstrate how it can be applied for the inference of a confident
genome-scale regulatory network in yeast.

2 Materials and methods

Network inference methods score all pairs of regulators and putative
target genes to quantify the confidence that a given pair represents a
true interaction. For both types of inference methods discussed here,
namely expression-based methods and local topology methods, con-
fident predictions are selected by applying a unified cutoff.
Expression-based methods are based exclusively on expression data
and ignore known interactions. Local topology methods use expres-
sion data and known interactions (topology priors) to train a
so-called local model per regulator (Fig. 1).

2.1 Data

We obtained five yeast expression compendia (for details see
Supplementary, Section S2.1) from (i) the 5th DREAM Challenge
[challenge 4, Marbach et al. (2012)], (ii) the Many Microbe
Microarray Database [M3D, Faith et al. (2008)], (iii) the study of
Hu et al. (2007), (iv) the study of Chua et al. (2006) and (v) the
Gene Expression Omnibus [GEO, Barrett et al. (2011)]. Case-
control pairs were selected from 2442 yeast microarrays as
described by Kuffner et al. (2012) to compute log_{2} fold-
changes. Thereby, we obtained a matrix \(M \in \mathbb{R}^{p \times n} \) with \(p = 1829 \) microarray
pairs and \(n = 5402 \) genes. We normalize \(M \) by two successive z-score
transformations of rows and columns, respectively.

We then collected experimentally supported interactions from the
YeastRACT database (Abdulrehman et al., 2011), augmented by a
study of Mclsaac et al. (2006). We filtered genes that were not con-
tained in the expression data. We excluded TFs regulating less than
six known targets to enable training and cross-validation (see later).
The resulting reference standard contains 153 TFs, 4870 target
genes and 24 462 interactions derived from 356 TF-target binding
assays.

2.2 Training and assessment of local topologies

A regulatory interaction network of \(n \) genes \(G \) is a directed graph
\(N = (G, I) \), \(G = R \cup T \), where \(R \) is the set of regulators, \(T \) is the set
of targets and \(I \subseteq R \times T \) are regulatory interactions. Each instance
of \(I \) is a regulator-target pair \((r, t)\) in \(R \times T \) that is labeled with a
weight \(w_{rt} \), denoting the number of TF-binding studies that support
interaction \((r, t)\).

Machine learning models are trained to predict novel regulations
\((r, t) \in R \times T \). Based on the known interactions (Supplementary,
Section S2.3.2), each putative regulation is labeled by \(l_{rt} \), where \(l_{rt} \)
is 1 if \(w_{rt} \geq 1 \) and 0 otherwise. The matrix of fold-changes
\(M = (m_{ij}) \in \mathbb{R}^{n \times n} \) represents the feature vectors. The value \(m_{ij} \) is the
fold-change for gene \(j \in G \) in array pair \(i \), and we denote row \(i \) by
\(M_{i} \) and column \(j \) by \(M_{j} \). Then, the feature vector for \((r, t)\) is given
by \(M_{r} \) (Supplementary, Fig. S1).

We train \(|R| \) local models, each predicting confidence estimates
\(\hat{c}_{rt} \) specific for a single regulator \(r \) of putative regulations \((r, t)\):

\[
s : \mathbb{R}^{p+q} \rightarrow \mathbb{R}, s(M_{r}) = \hat{c}_{rt}.
\]

Alternatively, a single global model is trained for all regulators
using combined feature vectors, i.e. feature vectors of regulator and
target are concatenated to represent an interaction (Supplementary,
Section S2.3)

\[
s : \mathbb{R}^{p+q} \rightarrow \mathbb{R}, s(M_{r} \oplus M_{t}) = \hat{c}_{rt}.
\]

From all regulations, we build \(k \) splits for each model stratified
with respect to their label distribution. Cross-validation (here:
3-CV, Supplementary, Section S2.4) is performed by retaining one
split at a time and training a model on the remaining \(k - 1 \) splits, so
that interactions are either used in evaluation or training, but not
both. Every split results in \(|R| \times |T| \) confidence values \(\hat{c}_{rt} \) that score
all regulations \((r, t) \in R \times T \). For regulator \(r \), we denote the distribu-
tion of these confidence values as \(D_{r} \) (Fig. 1b and c).

The quality of inferred networks is assessed after integrating the
predictions across all regulators. Assessment compares predictions
to a reference standard of a priori known interactions, for instance
by the area under the receiver operator characteristics curve (AUC).
An AUC of 1.0 indicates that the confidence scores for the true inter-
actions are higher than those for false positives, while an AUC of
0.5 would indicate random predictions. Such a cross-validated AUC
analysis is a standard approach for the assessment of inference meth-
ods (Mordelet and Vert, 2008).

2.3 Confidence recalibration

Randomized topologies are generated to share key statistics with the
reference standard of known interactions (Fig. 1a and d). We re-
move all regulations from the network and randomly introduce new
regulations until each node \(k \) has regained its original in- and out-de-
gree [compare Dorogovtsev and Mendes (2003), p.12]. Further, the
association of expression data and genes is shuffled by gene label
permutation. For each of the \(q \) randomized networks \(N^{(1)}, \ldots, N^{(q)} \)
we perform a CV prediction to obtain confidence values \(\hat{c}_{rt}^{(q)} \) as
We minimize false discoveries by selecting regulations from the original network and train models (random re-assignment of targets to regulators). The confidence scores for individual regulators are random, resulting in regulator-specific AUC values of 0.5 (Supplementary, Section S2.3.3). Additionally, we generate random networks (max) that encompasses all confidence values derived from random networks that are associated to regulators of the same out-degree (Fig. 1f).

D^r denotes the randomized complement of D. By comparing these two distributions we select interactions with scores higher than those observed in the randomized case. Each regulation’s confidence \tilde{c}_n is replaced by its complement κ_n (Fig. 1c and g):

$$\kappa_i = \frac{\tilde{c}_i - \text{med}(D^r)}{\max(D^r) - \text{med}(D^r)}.$$

Scores are thus recalibrated based on the median confidence med $\left(D^r\right)$ and the distribution scale $\left(\max(D^r) - \text{med}(D^r)\right)$. A κ value above 1.0 corresponds to a false discovery rate (FDR) of 0, i.e. to confidence estimates not achieved in random topologies.

3 Results

3.1 Simpson’s paradox

We followed the SIRENE approach [Mordelet and Vert (2008); Section 2] and trained local models based on support vector machines (SVMs) to predict confidence values for potential regulations. On a large expression dataset of 2442 yeast microarrays and a regulatory network of 24462 interactions (Section 2.1) the cross-validated predictions achieved a network-wide AUC of 0.784.

However, we found this standard, cross-validated AUC analysis misleading in case of methods integrating topology priors. We demonstrated this by training the methods on randomized networks (random re-assignment of targets to regulators). The confidence scores for individual regulators are random, resulting in regulator-specific AUC values of 0.5 (Supplementary, Section S2.3.3). Strikingly, an evaluation across all regulators yielded an AUC of 0.798, a score above the AUC achieved by SIRENE.

These two results seem to be in conflict: a method that performs randomly for each regulator induced subnetwork should yield random overall performance as well. This effect resembles the Simpson’s or ‘amalgamation’ paradox (Pearl, 2009; Simpson, 1951): each of the regulator-specific distributions achieves an AUC of 0.5, while the AUC of the joint distribution suggests non-random performance (compare Supplementary, Section S3.1).

Here, the paradox results from the fact that predicted confidence score distributions are heterogeneous across regulators and are characterized by different scale and location parameters (Fig. 2a, light gray boxes). In particular, score distributions for regulators with many known targets (high out-degree) such as ste12 are wider and systematically above average. We refer to this effect as High Degree Preference (HDP). These regulators contribute many true positives, i.e. after the integration higher scores become enriched for true positives. This in turn leads to non-random AUC values. Selected high-scoring predictions thus remain unspecific while biologically more specific signals are likely being missed (Pavlidis and Gillis, 2013).

Following this line of argument, the regulator out-degree confounds the integration of confidence values. This is consistent with results demonstrated for the prediction of genes involved in biological processes (Gillis and Pavlidis, 2011).

To examine whether the paradox is an artifact of SVMs we trained further model classes (e.g. decision trees and logistic regression; Supplementary, Sections S2.6 and S3). We observed similar effects across all examined techniques, suggesting that regulator-specific methods using topology priors are generally affected by an HDP.

Besides the confounding of network quality measures, the composition of predicted networks is also affected. We predicted networks by selecting high-scoring interactions using a threshold determined from the estimated size of the complete yeast network (Supplementary, Sections S2.2 and S3), which should be twice as large as the known network. A score threshold was chosen so that selected regulations contain 50% previously confirmed ones (the Precision-50, or P50 network).

For a regulator with out-degree d we obtained two types of score distributions: (i) from the model trained on its known targets and (ii) from models trained on the targets of randomized regulators with out-degree d (Fig. 2a). A unified cutoff selects an excessive number of predictions for high-degree TFs that overlap with random scores. To quantify this, we computed the FDR based on the number of interactions scored above the P50 threshold in distribution (ii) divided by the total number of interactions above that threshold in (i) and (ii).
For example, the FDR is 44.4% for high-degree ste12 and 22% across all TFs (Fig. 2f), which is unacceptably high. In contrast to ste12, all predictions are rejected in case of low-degree TFs such as cat8, even if they substantially exceed random scores (Fig. 2a). Only 81 of 153 TFs (53%) receive predictions. We concluded that neither cross-validation nor AUC analysis are sufficient to ensure the overall quality of networks inferred using structural priors.

We also assessed whether TFs frequently regulate the expression of targets that share similar biological functions (Segal et al., 2003). We therefore tested whether known and predicted targets of the same TF exhibit substantial functional overlaps (Supplementary, Section S2.8). We observed that the high proportion of random scores (e.g., for ste12) concealed most of the signal as interactions with higher scores hardly showed an increased functional coherence (Fig. 2b).

3.2 Correction through score recalibration

We introduce a confidence recalibration (CoRe) as a wrapper for existing methods (Section 2.3). Based on the random networks, we derived expected location (median score) and scale (maximum score) properties for each out-degree \(d \) and used them to transform the predicted confidences into topology-corrected scores. Scores for each regulator are recalibrated by scaling the median and maximum scores to 0 and 1, respectively (Fig. 2c). This renders score distributions comparable so that they can be integrated across TFs. The FDR is then 0 for predictions with scores above 1 as they appear only for the true but not for the randomized networks. Thus, interactions for each regulator selected after CoRe are scored above the random level.

To obtain a P50 network, we select interactions that achieve a corrected score of \(> 0.92 \). The FDR for this network was reduced to 1.4% (as compared with 22.0% without recalibration). We observed that predictions are now balanced across TF degrees (Fig. 2g), predicting interactions for 138 TFs versus 81 without recalibration.

To gain further insight in the nature of the corrected network, we estimated the functional relationship between known and novel predicted targets (Supplementary, Section S2.8). Regulatory patterns were more coherent for the corrected network (compare Figs 2ba and e).

3.3 Application of CoRe to network inference

For all subsequent methods and analyses we report corrected results. To evaluate the yeast regulatory network obtained, we conducted a comparative assessment of frequently used inference approaches and a consensus approach (Supplementary, Sections S2.3.4 and S2.6). The approaches are roughly classified by five attributes (Fig. 3a and Supplementary, Section S5):

1. method: unsupervised expression-based (Faith et al., 2007) versus supervised using a structure prior;
2. formulation: one-class (Mordelet and Vert, 2010) versus two-class that treat unknown interactions as informative;
3. strategy: lazy (Supplementary, Section S5) versus parameterized models;
4. data handling: non-integrative versus integrative e.g. using TF-binding site preferences (Ernst et al., 2008);
5. models: global (Yip et al., 2009) versus local (regulator-specific).
SIRENE (Mordelet and Vert, 2008) is a supervised, two-class, parameterized, non-integrative, local approach. For all methods, we predicted confidence scores in a 3-CV scheme and recalibrated them as described earlier.

Subsequently, we analyzed network motifs (Supplementary, Section S2.7) to capture method- and topology-specific preferences (Fig. 3b). Unsupervised, expression-based approaches do not use topology priors but infer interactions if expression profiles of TFs and putative targets are mutually dependent. An example is CLR (context likelihood of relatedness, Faith et al., 2007). These methods are unable to detect auto-regulation as in this case both expression profiles would be identical. Confirming previous findings (Marbach et al., 2012), expression-based approaches could hardly detect feedforward motifs or the correct direction of interactions. In contrast, regulator-specific approaches were less affected by such difficult cases and exhibited a consistently higher performance. For cascades and low in-degree targets, a slight decrease in performance was observed. Potentially, the latter indicated the prediction of novel interactions. Unsupervised, expression-based approaches do not use

The dendrogram groups methods according to the similarity of their predictions. Properties that discriminate between different classes of methods are indicated by the check boxes. Panel (b) shows if interactions in particular network motifs are easier (dark) or harder (light) to detect in comparison to all interactions. In (c) method performance (AUC) and the number of interactions predicted at a precision of 50% or better (P50) (bars with dotted borders) are assessed. Furthermore, we encoded experimentally determined targets of TFs into additional features (bars with solid borders, Supplementary, Sections S2.6.8 and S3.9) and integrated them into the consensus approach (method 11). Panel (d) illustrates mean results from integrating all subsets of $c = 1..5$ compendia and $m = 1..5$ methods. All results are based on recalibrated scores.

3.4 A comprehensive yeast network

Our final yeast network includes 22,231 interactions with 153 TFs and 3,747 target genes. Of all predicted regulations, 12,869 are contained in the reference standard, while 9,362 are novel predictions. The remaining $24.462 - 12.869 = 11.593$ reference standard interactions (Supplementary, Fig. S4a) lacking an observable effect on expression and were thus not included.

The visualization and interpretation of organism-wide networks is challenging due to their size and complexity. Instead of fully depicting each regulator, target and their interactions, we employed a modular visualization. We derived regulatory modules by grouping TFs with overlapping target sets and, vice versa, target modules by grouping genes regulated by overlapping sets of TFs. We connected regulator and target modules via meta-interactions if >40% of all induced regulator-target pairs were connected. This reduced representation featured 13 meta-interactions among 9 target and 9 regulatory modules, capturing half of the final interactions (11,232 interactions, 50.5% of all predicted). See Figure 4 for an excerpt (full details are in Supplementary, Sections S2.9 and S6, accessible through clickable maps, see availability).

This modular view enables an integrated display of the network as well as module-associated expression profiles. Given current data and knowledge, the respective TF-modules likely control the formation of transcriptional response patterns in the regulated target modules. Some key aspects of module-associated expression profiles are summarized below (for a comprehensive literature review on all network modules see Supplementary, Section S6). A representative gene was selected manually for each module.

The hxt2 module features the most versatile regulation in our network, regulated by three different TF clusters comprising the highest total number of TFs (Fig. 4). According to GO (The Gene Ontology Consortium, 2010), most of the 190 genes of the hxt2
cluster belong either to sugar transport (hxt genes) or glycogen metabolic process (e.g. gac1). Consequently, we observe differential expression of these genes under low- versus high-glucose growth conditions. When glucose is available, the sugar transporters are abundantly expressed (Ozcan and Johnston, 1995), whereas under glucose starvation glycogen storage is catabolized to produce glucose preferably for fermentation (François and Parrou, 2001).

The pdr1 (pleiotropic drug response) cluster comprised the largest number of hxt2 regulators. It consisted of 16 TFs, all tightly connected to the cellular response to drug and nutrition stress such as differing glucose concentrations. Despite this general response mediated by the pdr TFs (ahl4 and msd1), much of the regulation was performed by pseudohyphal growth TFs (mg1, mga1 and ash1) in conditions of nitrogen limitation and abundant fermentable carbon sources like glucose (Lorenz and Heitman, 1998).

Interestingly, a strong regulatory impact on the hxt2 module was also observed for regulators of the oxidative stress response—on the one hand from the cad1 cluster (5 TFs, also responding to resulting DNA damage), and, on the other hand, from the tec1 cluster (11 TFs, also driving pseudohyphal growth). Oxidative stress results in cellular protection mechanisms, e.g. DNA repair and targeted protein degradation, which is associated with increased energy consumption (Morano et al., 2012), initiated by the hxt2 cluster via increased glucose uptake.

4 Discussion

GRNs are crucial to understand how regulators like TFs affect their target genes on the expression level. Experimentally derived networks are typically incomplete as the number of available experiments is limited. To complement them, computational inference of networks has been introduced. We revealed critical aspects but also demonstrated that inference is necessary and feasible in eukaryotes.

Even in well-studied eukaryotes such as yeast, where ~900 publications on experimental TF-binding studies are available, current networks are far from complete and benefit from computational predictions. We found that only about half of all regulations that induce detectable expression changes (‘active’ interactions) are currently known. In addition, experimental techniques are prone to discover regulations without effect on the expression level. We applied computational inference both for the detection of novel active and the pruning of inactive regulations.

We reported three crucial findings based on the analysis of a wide spectrum of data-driven inference methods (for reviews see De Smet and Marchal, 2010; Myers et al., 2006). First, we demonstrated that inference incorporating experimentally derived interactions as topology priors possess sufficient predictive power for the inference of eukaryotic networks. Methods using expression data alone fail here (Marbach et al., 2012; Narendra et al., 2011). We also showed that topology priors lead to Simpson’s paradox (Pearl, 2009; Simpson, 1951) distorting prediction and assessment of regulatory interactions. Finally, we showed how to avoid the occurrence of the paradox.

Generally, network inference methods that exploit the local topology assign an excessive number of predictions to TFs with many known targets (Ambroise et al., 2012; De Smet and Marchal, 2010), and it has been doubted whether a correction is possible or sensible (Gillis and Pavlidis, 2011; Myers et al., 2006). Our analysis revealed that the number of known targets for a regulator is a confounder of regulator-target predictions. This effect is not detected by common
cross-validation routines: surprisingly, the same performance reported for published network inference approaches can be achieved by guessing random distributions. We developed a CoRe approach wrapping existing methods and showed that it corrected for both the over-estimation of performance and the distortion of the topology toward TFs with many known targets (HDP).

We conducted a comprehensive assessment of methods integrating topology priors and identified methods suitable to derive a corrected, accurate yeast regulatory network of active regulations. We describe disadvantages of several methods, which we excluded due to prediction performance, or the inadequate scale-up for large expression datasets. Our evaluation suggested that the selected methods detect several types of interactions successfully that are difficult to predict. For instance, auto-regulatory interactions and the assignment of directions are handled accurately, and immediate and indirect interactions could be distinguished. We then integrated the predictions from the selected methods to construct a network consisting of half novel and half experimentally determined regulations. This choice was based on our extrapolation of the size of the complete yeast network. Our final yeast network (see availability) contains 153 TFs that regulate 3747 target genes via 22,231 interactions. These include many novel and confident hypotheses of regulatory relationships, while we expect less than 150 false positives in total. At the same time, we reject more than half of the experimentally determined interactions as they appear to be without observable regulatory effect.

To gain an overview of the network, we derived modules of target genes that were jointly regulated by sets of TFs. The resulting modular structure was strikingly simple featuring 13 meta-regulations that represent an index for inspecting the expression effects of interactions. A thorough literature review confirmed that the modules and their expression patterns correspond well to biological processes such as respiration, sulfate/energy metabolism, transport, stress response and cell division.

We conclude that methods integrating local topology can extend known networks substantially and at a high reliability, even in well-studied model organisms. These methods, in contrast to those using expression data alone, are well-suited for the prediction of interactions in yeast and presumably other eukaryotes. Due to Simpson’s paradox, however, their application was more difficult than previously acknowledged and required a correction approach. We emphasize that topology, structural priors and parameterized models are widely applied beyond network inference (Supplementary, Section S5 for an overview) and encourage a review of fields that may benefit from confidence recalibration strategies such as CoRe.

Funding
Parts of this work have been funded by the BMBF under project AgroClustEr/Phaenomics FKZ 0315536B and the Bavarian Research Network of Molecular Biosystems (BioSysNet). LG has been supported by the DFG, GRK 1563. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of Interest: none declared.

References

Addressing false discoveries in network inference