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S. 1 Effects of Slight Variations on the Tree Structure
  We design two variants of the tree based representations of the hierarchy of cellular compartments (i.e. T1, T2 as shown in Figure S1 and Figure S2), which are constructed by making slight variations on our proposed hierarchy of subcellular locations. Specifically, on one hand, for the tree representation T1, we neglect the hierarchical structure of 4 cellular compartments (i.e. Lysosome, Vesicle, Golgi, ER) under the node of Secreted Pathway. On the other hand, for the tree representation T2, we misuse Cytoplasm (which is originally under the node of Intra Cellular) as a metabolic functional compartment (under the node of Secreted Pathway). In addition, the corresponding codeword matrices of these two tree based representations (i.e. T1 and T2) are shown in Table S1 and Table S2, respectively. 
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Figure S1. Tree representations of the hierarchy of cellular compartments T1

              
         







Table S1. Corresponding coding matrix to the tree representation T1
	
	h1
	h2
	h3
	h4
	h5
	h6
	h7
	h8
	h9

	Cytoplasm
	-1
	1
	1
	0
	0
	0
	0
	0
	0

	ER
	1
	0
	0
	1
	1
	1
	0
	0
	0

	Golgi
	1
	0
	0
	-1
	0
	0
	1
	1
	0

	Lysosome
	1
	0
	0
	0
	-1
	0
	-1
	0
	1

	Mito
	-1
	1
	-1
	0
	0
	0
	0
	0
	0

	Nuclear
	-1
	-1
	0
	0
	0
	0
	0
	0
	0

	Vesicle
	1
	0
	0
	0
	0
	-1
	0
	-1
	-1
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   Figure S2. Tree representations of the hierarchy of cellular compartments T2



Table S2 Corresponding coding matrix to the tree representation T2
	
	h1
	h2
	h3
	h4
	h5
	h6
	h7

	Cytoplasm
	1
	0
	1
	0
	1
	1
	0

	ER
	1
	0
	1
	0
	-1
	0
	1

	Golgi
	1
	0
	1
	0
	0
	-1
	-1

	Lysosome
	1
	0
	-1
	-1
	0
	0
	0

	Mito
	-1
	-1
	0
	0
	0
	0
	0

	Nuclear
	-1
	1
	0
	0
	0
	0
	0

	Vesicle
	1
	0
	-1
	1
	0
	0
	0













  Furthermore, we compare S-PSorter based tree representation with the above 2 variants of tree representations (i.e. T1 and T2) for predicting image-based protein subcellular location. The classification accuracies for each db model and their ensemble results are shown in Table S3 and Table S4, respectively.  

Table S3. Classification accuracies by using different tree representations for different db models
	
	db1
	db2
	db3
	db4
	db5
	db6
	db7
	db8
	db9
	db10

	T1
	0.810
	0.814
	0.838
	0.840
	0.835
	0.839
	0.833
	0.830
	0.834
	0.814

	T2
	0.791
	0.781
	0.828
	0.816
	0.819
	0.817
	0.819
	0.809
	0.807
	0.790

	S-PSorter
	0.822
	0.820
	0.846
	0.846
	0.843
	0.848
	0.835
	0.834
	0.842
	0.821



   
Table S4. Comparisons between individual and ensemble classification for different tree representations

	
	Best independent
classifier
	Ensemble prediction

	T1
	0.840
	0.866

	T2
	0.828
	0.842

	S-PSorter
	0.848
	0.874 








  As can be seen from Table S3, the misuse of the prior biological information changes the tree representation of different cellular compartments, and leads to decreases in the classification accuracies for all of the 10 db models when comparing with S-PSorter method. These results indicate that our proposed S-PSorter based tree representation (i.e., Figure 2) is superior to the other two variations (i.e., T1 and T2 in Figures S1 and S2, respectively). Moreover, Table S3 indicates that, the classification accuracies of the tree representation T1 are superior to that of T2. The reason might lie in that the former changes original tree structure less than the latter. Specifically, for the tree representation T1, we only neglect the hierarchical structure under the node of Secreted Pathway, while for T2, we misuse Cytoplasm (which is originally under the node of Intra Cellular) as a metabolic functional compartment (under the node of Secreted Pathway) and this change will both affect the hierarchical structure under Secreted Pathway and Intra-cellular nodes. Finally, as can be seen from Table S4, the ensemble classification results for these two tree representations (i.e., T1 and T2) are 0.866 and 0.842, respectively. Although these results are a bit lower than those of our original S-PSorter method, they are still higher than those of previously published methods (i.e., Xu, et al., 2013 and Yang, et al., 2014). These results suggest that the proposed tree representation in Figure 2 may reflect the true hierarchy of subcellular compartments. 
S. 2 Number of Selected Features for Different Categories 
As can be seen in Section 2.3, for every protein image, we can get a 1096-dimensional descriptor for each db wavelet if we directly combine global feature (i.e. Hralick feature and DNA feature) and local feature (LBP feature) together. After using SDA method to extract the most distinguishing features, we show the selected number of features for different categories (i.e. global feature and local feature) in Table S5. As can be seen from Table S5, after applying SDA method to extract the most distinguishing features, both the global and local features will be included. And thus, we can utilize both types of features to accomplish the classification task.
	
	db1
	db2
	db3
	db4
	db5
	db6
	db7
	db8
	db9
	db10
	Average

	Global feature
	58
	62
	52
	50
	53
	48
	50
	48
	47
	50
	  52

	Local feature
	42
	43
	45
	42
	42
	48
	45
	46
	47
	45
	  45

	Total
	100
	105
	97
	92
	85
	96
	95
	94
	94
	95
	  95


Table S5. Selected number of features for different categories


S. 3 Comparisons with Existing Works for Predicting Unseen Protein
  As mentioned in Section 3.1, we use images from the same protein to evaluate the performance of SC-PSorter method. However, a strict test, i.e., recognizing subcellular patterns in new protein, is also very important. So we have added one more experiment to compare SC-PSorter method with the other two methods (i.e., Xu, et al., 2013 and Yang, et al., 2014) for predicting proteins that are not included in the training set. Specifically, we use all of the 1636 images derived from 21 proteins to train SC-PSorter based models. Then, we generate another collection of 790 images from 173 proteins (also available in our code package), which are not included in the training set, as the testing dataset. The experimental results are reported in Table S6.

Table S6. Classification accuracies achieved by SC-PSorter and the other two methods for predicting unseen proteins
 
	
	db1
	db2
	db3
	db4
	db5
	db6
	db7
	db8
	db9
	db10

	Xu et al. 
	0.625
	0.601
	0.653
	0.675
	0.644
	0.679
	0.656
	0.646
	0.667
	0.682

	Yang et al. 
	0.580
	0.517
	0.609
	0.624
	0.586
	0.617
	0.617
	0.589
	0.601
	0.622

	SC-PSorter 
	0.743
	0.701
	0.715
	0.739
	0.760
	0.784
	0.718
	0.714
	0.767
	0.773



  As can be seen in Table S6, our proposed SC-PSorter method consistently achieves better classification accuracies than the other two approaches for all of the 10 db wavelets. Moreover, when performing the classifier ensemble via majority voting, the classification accuracies for SC-PSorter, Xu et al. (2013) and Yang et al. (2014) methods are 0.809, 0.684 and 0.603, respectively. This result again validates the advantage of our proposed SC-PSorter method for the prediction of protein subcellular location. Last but not least, when comparing the classification results in Table S6 and Figure 6, it is worth nothing that, the classification accuracies of the above 3 methods on unseen protein are lower than those of predicting the proteins which have appeared in both training and testing dataset. This result implies that predicting unseen proteins is much more challenging than predicting proteins appearing in both training and testing set.
 
S. 4 Further Improvement by Adding Checking Bits
  As we know, the merit of ECOC framework in solving multi-class classification problems is that the complete correctness for all the basic classifiers is not indispensable. That is, in decoding procedure, several mistakes in some bits can be corrected by the decoding procedure (T.G. Dietterich et al 1995). However, when applying the codeword matrix shown in Table 2, it cannot tolerate any errors induced by its basic classifiers, and we will prove it as follows.
  Here, we denote as the output vector of protein P by applying S-PSorter method, where . Let represents the codeword of i-th cellular compartment. Suppose P is an intracellular protein and the binary classification error only happens for predicting the first bit of its corresponding codeword. It can be easily inferred that the hamming distance between X and the codewords of any intracellular proteins are equal or greater than 5. Meanwhile, the hamming distance between  and the codewords of the secretary pathway based proteins, i.e ER，Golgi，Lysosome, Vesicle are and , respectively. No matter which values of  and  are selected, the minimum value of the above four formulas is 3, which is smaller than the distances between  and any intracellular compartments. Thus, after decoding procedure, protein P will be wrongly predicted as a secretary pathway based protein. Similar to the above analytical procedures, we can also prove that, the S-PSorter method cannot correctly predict the subcellular location of protein P，if one bit of its corresponding codeword is wrongly predicted.
  From the above analysis, it is worth noting that the classification accuracy of the S-PSorter method may be further improved if we could strengthen its error-correcting ability. Actually, the underlying cause of less error-correcting ability is that the Hamming distance between pairs of codewords are too short (e.g. there is only 1 bit difference between the codewords under the nodes of Cytoplasm, Metabolic Function and Metabolic Function), and thus the codeword matrix shown in Table 2 has insufficient capacity in correcting binary classification errors (Dietterich et al 1995). So, besides the six bits derived from the S-PSorter based codeword matrix, which are used for reflecting the hierarchical structure of cellular compartments, we also need to add some checking bits to enlarge the hamming distances between pairs of codewords. Here, for example, we have added 8 checking bits for each codeword, denoted as , and the newly derived codeword matrix SC is shown in Table S7
  




Table S7. The Codeword Matrix SC 
	
	hroot
	hintra
	hcyto
	hsp
	hmeta
	hmodi
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8

	Cytoplasm
	-1
	1
	1
	0
	0
	0
	1
	1
	0
	0
	1
	0
	0
	0

	ER
	1
	0
	0
	-1
	0
	1
	-1
	0
	1
	0
	0
	0
	1
	0

	Golgi
	1
	0
	0
	-1
	0
	-1
	-1
	0
	1
	0
	0
	0
	0
	1

	Lysosome
	1
	0
	0
	1
	1
	0
	0
	-1
	0
	1
	0
	0
	-1
	0

	Mito
	-1
	1
	-1
	0
	0
	0
	1
	1
	0
	0
	0
	1
	0
	0

	Nuclear
	-1
	-1
	0
	0
	0
	0
	0
	0
	-1
	-1
	-1
	-1
	0
	0

	Vesicle
	1
	0
	0
	1
	-1
	0
	0
	-1
	0
	1
	0
	0
	0
	-1



As can be seen from Table S7, SC is comprised of 2 parts. The first 6 bits of SC are just as same as the codeword matrix shown in Table 2, and the newly added 8 checking bits are used for distinguishing different nodes or cellular compartments (e.g. c1 is used to distinguish between Modified Function and Cytoplasm based proteins). Here, we denote the two new ECOC-based classification methods, whose codeword matrices are C and SC, as C-PSorter and SC-PSorter, respectively. Table S8 presents the individual classification accuracies of the above two methods for all the 10 db models, when comparing with S-PSorter method, which is also shown as follows.
  
Table S8. Comparisons between S-PSorter method and other two ECOC-based methods
		
	db1
	db2
	db3
	db4
	db5
	db6
	db7
	db8
	db9
	db10

	S-PSorter
	0.822
	0.822
	0.846
	0.846
	0.843
	0.848
	0.835
	0.834
	0.842
	0.821

	C-PSorter
	0.577
	0.590
	0.569
	0.576
	0.570
	0.556
	0.572
	0.562
	0.557
	0.551

	SC-PSorter
	0.833
	0.833
	0.856
	0.854
	0.860
	0.853
	0.853
	0.845   
	0.858
	0.840



  As can be seen from Table S8, on one hand, SC-PSorter consistently outperforms S-PSorter on all of the 10 db wavelets. This is because we enlarge the hamming distances between pairs of codewords, and thus a few mistakes in some bits can be corrected by the decoding procedure. For example, if protein P belongs to the cellular compartment of Cytoplasm, suppose the classification error only happens in the first binary classifier, and the output vector . When applying SC-PSorter method, the hamming distance between X and the codewords of the 7 cellular compartments (i.e. Cytoplasm, ER, Golgi, Lysosome, Mito, Nuclear, and Vesicle) are 10, 12, 14, 12, 12, 20 and 14, respectively. Then, protein P will be correctly classified as Cytoplasm since it has the shortest hamming distance to the output vector X. Since the SC-PSorter method can correct the errors induced by basic classifier, it can obtain better classification accuracies than S-PSorter. Moreover, when performing the classifier ensemble via majority voting, SC-PSorter and S-PSorter (as well as Lin et al.’s method) achieve the classification accuracies of 89.0% and 87.2%, respectively. These results further validate the advantage of the SC-PSorter method. On the other hand, Table S8 also shows the classification accuracies of C-PSorter method is consistently inferior to the other methods, which is because these 8 checking bits are just designed to distinguish different nodes or cellular compartments, and they do not reflect the hierarchical structure of cellular compartments shown in Figure 2. 

S. 5 Comparison with Tree-based Classifier
  In Lin et al.’s work (Lin et al., 2011), they build a tree-based classifier to predict the sequence-based protein subcellular location. That is, they design an algorithm that walks down the pre-defined tree of cellular compartments, with a binary classifier at each node. It is worth noting that, although both our proposed S-PSorter method and Lin et al.’s method use tree structures, their underlying mechanism are completely different. Specifically, in Lin et al.’s method, the sample need to be put into the learned binary classifiers in sequential order and then its corresponding label will be predicted by the path it walks down on the pre-defined tree. In contrast, our S-PSorter method is following the ECOC framework, and we can apply parallel method to get the classification result of each binary classifier denoted by the ECOC-based codeword matrix simultaneously. 
  We also adopt the tree-based classification algorithm (i.e., Lin et al. 2011) to predict the image-based protein subcellular location according to the hierarchical structure in Figure 2. Surprisingly and interestingly, the classification accuracies achieved by the tree-based classifier are exactly the same as those of our S-PSorter method for all of the 10 db wavelets (see last row of Table S3 in supplementary file) when using the same binary classifiers in both of these two methods (i.e., tree-based and S-PSorter method). So, a natural question is that why those two (seemingly very different) methods achieve the same classification results? In what follows, we will try to answer this question.
  To answer the question, we first investigate whether ECOC-based method and tree-based method still achieve the same performances when using different tree structures. For that aim, we use these two methods to predict image-based protein subcellular location using the hierarchical structure shown in Figure S1, which is a variant of the tree structure shown in Figure 2. The experimental results are reported in Table S9.

Table S9. Classification accuracies achieved by ECOC and tree-based methods (Lin et al. 2011) according to the tree structure T1 as shown in Figure S1 in Supplementary Section S.1
	
	db1
	db2
	db3
	db4
	db5
	db6
	db7
	db8
	db9
	db10

	Lin et al.
	0.733
	0.726
	0.735
	0.730
	0.737
	0.721
	0.718
	0.719
	0.698
	0.709

	ECOC
	0.810
	0.814
	0.838
	0.840
	0.835
	0.839
	0.833
	0.830
	0.834
	0.814



  As can be seen from Table S9, the classification accuracies achieved by the tree-based classifier (i.e., Lin et al. 2011) are consistently inferior to those of our proposed ECOC-based method for all of the 10 db wavelets according to the hierarchical structure shown in Figure S1. This result not only validates the superiority of the ECOC-based method if it follows the hierarchical structure in Figure S1, but also implies that the classification accuracies of these two methods (i.e., tree-based and S-PSorter method) are different if the hierarchical structure shown in Figure 2 is changed. It seems that the hierarchical structure shown in Figure 2 is a special case, by which we can get the same classification accuracies for both of these two methods (i.e., tree-based and S-PSorter method). So, in what follows, we need to answer why these two methods achieve the same classification results according to the hierarchical structure shown in Figure 2.
  To answer this question, we further analyze the hierarchical structure in Figure 2 and the corresponding codeword matrix of the S-PSorter method in Table 2. Then, we find that, on one hand, if protein P is correctly predicted by Lin’s method (Lin et al. 2011), all its involved binary classifiers should make correct decisions when walking down the tree structure shown in Figure 2. Meanwhile, if all the binary classifiers make correct decisions, our proposed S-PSorter method can also correctly predict protein P after the decoding procedure. On the other hand, it is easy to infer that, even if one binary classifier makes the wrong decision in the tree-based classification system (Lin et al. 2011), we will misclassify the subcellular location of protein P. Also, as we have proved in Section S.4, the codeword matrix of S-PSorter method cannot tolerate any errors induced by its basic classifiers either. In other words, just like the tree-based method (Lin et al. 2011), our proposed S-PSorter method can correctly predict the subcellular location of protein P if all its involved binary classifiers make correct predictions, but cannot tolerate any errors because the corresponding codeword matrix (shown in Table 2) has no error-correcting ability. This explains why both methods achieve the same classification accuracies.      
  Moreover, as discussed in Section S.4, our S-PSorter method is under ECOC framework, which is flexible and convenient to add some checking bits to strengthen its error-correcting ability. Experimental results in Table S8 have validated that SC-PSorter method, whose codeword matrix is derived by adding 8 checking bits to the S-PSorter based codeword matrix, has better error-correcting capability than S-PSorter method (as well as Lin et al.’s method).

S.6 Comparison between Individual and Ensemble Classification
We apply the voting strategy described in Section 2.8 to ensemble different filter-based individual classifier together, and the classification results are shown in Table S10.








Table S10. Comparisons between individual and ensemble classification for combining different types of features together
	
	Best Independent
Classifier
	Ensemble Prediction

	Local
	0.433
	0.435

	Global
	0.604
	0.611

	Direct Combine
	0.467
	0.472

	Kernel Combine
	0.675 
	0.679







 


As can be seen from Table S10, on one hand, we can always obtain better classification accuracies when performing the classifier ensemble via majority voting. On the other hand, using kernel combination method to fuse different types of features is a much more effective way, by which we can get the highest classification accuracy of 0.679 when performing the classifier ensemble via majority voting. 

S.7 Comparison Between Direct and Kernel Combination Methods
  We compare four ECOC coding strategies (i.e.,OVA-PSorter,F-PSorter, S-PSorter and SC-PSorter based coding strategies) between direct and kernel combination methods in Figure S3. As can be seen from it, the kernel combination method consistently achieves higher classification accuracies than the direct combination method. Specifically, for OVA-PSorter, F-PSorter, S-PSorter and SC-PSorter based coding strategies, the average improvement for all of the 10 db wavelets can attain to 23.5%, 16.6%, 6.61 % and 7.7% respectively. These results again validate the advantage of kernel combination method over the direct combination strategy. That is, it provides more flexibility by using different weights to combine different types of features. Thus, it offers a better way to integrate different types of features for classification.
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Fig. S3. Classification accuracies achieved by direct and kernel combination methods with (a) OVA-PSorter, (b) F-Sorter (c) S-PSorter and (d) SC-PSorter based coding strategies.

S.8 Computational Efficiency of Different Coding Strategies
We report the average time cost of different coding strategies over the 5-fold cross validations in Figure S4. Here, all the methods are conducted with Matlab2013 on a desktop with an i5 3330 CPU and 8G RAM. As can be seen from Figure S4, firstly, the SC-PSorter method achieves lower time consuming than OVA-PSorter method. This is because according to the codeword matrix of OVA-PSorter method, all the instances are required to train each binary classifier, while we only need parts of instances to train each binary classifier for our proposed SC-PSorter method. Secondly, the F-PSorter method requires extra time to generate a codeword matrix in favor of class discrimination before the learning stage, while the codeword matrix of SC-PSorter method is pre-defined according to the biological structure of cellular compartments, and hence the SC-PSorter method also achieves lower time consuming than the F-PSorter method. Thirdly, compared with S-PSorter method, our proposed SC-PSorter method needs to train another 8 binary classifiers incurred by the added 8 checking bits. However, these 8 binary classifiers just need parts of the instances for training, and thus the SC-PSorter method just achieves a little higher time consuming than the S-PSorter method. In summary, it seems that our proposed SC-PSorter method can achieve a better trade-off between classification accuracy and computational efficiency than the compared methods. 
[image: ]
Fig. S4.  Average time costs (in seconds) over 5-fold cross validations for different coding strategies.

S.9 Detailed Classification Results
[bookmark: _GoBack]  We will show the detailed classification results of Figure 3, Figure 4 and Figure 6 in Table S11, Table S12 and Table S13, respectively (detailed discussion can be found in Section 3 in the main text) .  

Table S11.  Classification accuracies by using single type of features and combining different types of features together
	
	db1
	db2
	db3
	db4
	db5
	db6
	db7
	db8
	db9
	db10

	Global
	0.525
	0.413
	0.570
	0.593
	0.556
	0.596
	0.564
	0.570
	0.604
	0.551

	Local
	0.415
	0.412
	0.425
	0.417
	0.428
	0.433
	0.428
	0.430
	0.430
	0.428

	Direct combine
	0.399
	0.278
	0.443
	0.464
	0.440
	0.445
	0.438
	0.453
	0.467
	0.422

	Kernel combine
	0.646
	0.638
	0.664
	0.673
	0.662
	0.675
	0.673
	0.662
	0.667
	0.640



Table S12. Performance comparisons among different coding strategies
	
	db1
	db2
	db3
	db4
	db5
	db6
	db7
	db8
	db9
	db10

	OVA-PSorter
	0.646
	0.638
	0.664
	0.673
	0.662
	0.675
	0.673
	0.662
	0.667
	0.640

	F-PSorter
	0.799
	0.793
	0.819
	0.807
	0.814
	0.804
	0.813
	0.808
	0.815
	0.795

	S-PSorter
	0.822
	0.820
	0.846
	0.846
	0.843
	0.848
	0.835
	0.834
	0.842
	0.821




Table S13. Classification accuracies achieved by SC-PSorter and the other two methods
	
	db1
	db2
	db3
	db4
	db5
	db6
	db7
	db8
	db9
	db10

	Xu et al. 
	0.769
	0.746
	0.806
	0.811
	0.801
	0.809
	0.809
	0.813
	0.817
	0.808

	Yang et al. 
	0.707
	0.634
	0.746
	0.768
	0.741
	0.757
	0.744
	0.755
	0.753
	0.744

	SC-PSorter 
	0.833
	0.833
	0.856
	0.854
	0.860
	0.853
	0.853
	0.845   
	0.858
	0.840
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