
Optimal Seed Solver

Fig. 7. Frequency distribution of 10-bp seeds at runtime by selecting seed
consecutively under different number of required seeds.

Fig. 8. Frequency distribution of 11-bp seeds at runtime by selecting seed
consecutively under different number of required seeds.

1

Hongyi Xin et al

Fig. 9. Frequency distribution of 12-bp seeds at runtime by selecting seed
consecutively under different number of required seeds.

Fig. 10. Frequency distribution of 13-bp seeds at runtime by selecting seed
consecutively under different number of required seeds.

2

Optimal Seed Solver

Fig. 11. Frequency distribution of 14-bp seeds at runtime by selecting seed
consecutively under different number of required seeds.

3

Hongyi Xin et al

1 SUPPLEMENTARY MATERIALS
1.1 Runtime frequency distributions of seeds under

variant lengths
This section presents seed frequency distributions at runtime with
regard to different seed lengths. The results are obtained by naı̈vely
selecting different fixed-length seeds consecutively in the process of
mapping 4,031,354 101-bp reads from a real read set, ERR240726,
from the 1000 Genome Project.

Figure 7 to Figure 11 from page 1-3 show seed frequency
distributions of fixed-length seeds from 10-bp to 14-bp. From these
figures, we have three observations: (1) the average seed frequencies
of longer seeds are smaller, (2) frequent seeds beyond the seed
frequency of 104 are more frequently selected at runtime and (3)
compared to Figure 1, the average frequencies of selected seeds are
much larger than the average frequencies of seeds with equal length
in the seed database.

As shown in all five figures above, after the seed frequency of
104, the seed count increases with greater seed frequencies, which
implies that frequent seeds are often selected from reads, regardless
of the seed length.

1.2 Proof of optimal divider cascading
This section presents the detailed proof of the optimal divider
cascading phenomenon.

The optimal divider cascading phenomenon can be explained with
two lemmas:

LEMMA 1. For any two prefixes from the same iteration in OSS,
one prefix must include the other. Among the two prefixes, the
minimum seed frequency of the outer prefix must not be greater than
the minimum seed frequency of the inner prefix.

The proof of Lemma 1 is provided below:

PROOF. Since both are prefixes of the same read, one must
include another, as shown in Figure 4.

We prove the second part of the lemma by contradiction. Assume
the outer prefix has a greater optimal frequency (total seed frequency
of the optimal seeds) than the inner prefix. Because the inner prefix
is included by the outer prefix, the optimal seeds of the inner prefix
are also valid seeds for the outer prefix. Yet, the total frequency of
this particular set of seeds is smaller than the optimal frequency of
the outer prefix, which leads to a contradiction.

LEMMA 2. When extending two seeds of different lengths that
end at the same position in the read by equal numbers of base-pairs,
as one seed includes the other as shown in Figure 12, the frequency
reduction (∆f) of extending the outer seed (S2 → S′2) must not
be greater than the frequency reduction of extending the inner seed
(S1 → S′1).

Lemma 2 can be proven with the monotonic non-increasing
property of seed frequency with regard to a greater seed length. For
example, in Figure 13, there are two seeds taken from the same
read, S1 and S2, with S1 including S2 and both end at the same
position in the read. Now, we simultaneously extend both S1 and S2

longer in the read (by taking more base-pairs) by 3-bp, into S′1 and
S′2 respectively. With ∆f denoting the change of seed frequencies
before and after extension, we can claim that ∆fS1 ≤ ∆fS2 .

��

��������������

�����������������

�����������

��������������

����

����

��� ��� ��� ������ ���� ��� ����

Fig. 12. This figure shows two seeds S1 and S2, which are taken from the
same read and end at the same position, with S1 including S2. Both seeds
are extended by 3-bp into S′1 and S′2 respectively.

��������������

�����������������

�����������

��

��

������	��

��������	��	��

��

����������������������	��

Fig. 13. Two seeds, S1 and S2 are taken from the same read and end at the
same position in the read. Both S1 and S2 are extended by 3-bp into S′1 and
S′2 respectively. Considering S1 as a left-extension of S2 by E1 and S′1 as
a right-extension of S1 by E2, then we have S1 = E1 + S2 + E2.

To prove this inequality, it is essential to understand how is ∆f
calculated. As Figure 13 also shows, among the two seeds S1 and
S2, S1 can be considered as a “left-extension” of S2. Therefore,
S1 can be represented as S1 = E1 + S2, where E1 denotes the
left extension of S1 and the “+” sign denotes a concatenation of
strings. Similarly, S′1 can be represented as a “right-extension” of
S1, which can be also written as S′1 = E1 + S2 + E2, where E2

is the right m-bp extension of S1. By the same token, we also have
S′2 = S2 + E2. If freq(S) denotes the frequency of a seed S, then
∆fS1 = freq(S1) − freq(S′1) = freq(E1 + S2) − freq(E1 +
S2 + E2).

Below, we provide the proof of Lemma 2:

PROOF. If set E2 denotes all DNA sequences that are equal in
length with E2 but excludes E2 itself, which can be written as E2 =
{s | (s ∈ DNA sequence) ∧ (|s| = |E2|) ∧ (s 6= E2)}, then the
reduced frequency of S1 and S2 can also be written as:

∆fS1 =
∑
s∈E2

freq(E1 + S2 + s)

∆fS2 =
∑
s∈E2

freq(S2 + s)

The right hand side of both equations denote the sum of frequencies
of all seeds that share the same beginning sequence E1 +S2 (or just
S2) other than the sequence E1 + S2 + E2 itself (or S2 + E2 for
S′2), which is indeed freq(E1 + S2) − freq(E1 + S2 + E2) (or
freq(S2)− freq(S2 + E2) for S2).

From both equations, we can see that both ∆fS1 and ∆fS2

iterates through the same set of strings, E2. For each string i in set
E2, we have freq(E1 + S2 + i) ≤ freq(S2 + i), as the extended
longer seed can only be less or equally frequent as the original and
shorter seed. Therefore, we have ∆fS1 ≤ ∆fS2 .

From Lemma 2, we can deduce Corollary 2.1:

COROLLARY 2.1. When extending two substrings of different
lengths that ends at the same position in the read by equal number of

4

Optimal Seed Solver

seeds, as one substring includes the other, the frequency reduction
of the optimal seed (the optimal single seed) of extending the longer
substring, is strictly not greater than the frequency reduction of the
optimal seed of extending the shorter substring.

We prove Corollary 2.1 by cases:

PROOF. Considering the four substrings from Figure 13, S1, S2,
S′1 and S′2. Among the four substrings, we have the following
system of equations that describe these substring relationships:

S1 = E1 + S2;
S′1 = E1 + S2 + E2;
S′2 = S2 + E2

There are three possible cases of where the optimal seed is
selected in S′1: (1) from the region of S2 + E2, (2) from the region
E1 + S2 and the optimal seed overlaps with E1 and (3) from the
region of E1 +S2 +E2 and the seed overlaps with both E1 and E2.
Below we prove that the Corollary is correct in each case.

Case 1: The optimal seed is selected exclusively from S2 + E2.
This suggests that the optimal seed in S′1 is also the optimal seed

in S′2. Based on Lemma 1, we know the optimal frequency of S1 is
not greater than S2.

Combining the two deductions above, we can conclude that
extending S2 to S′2 provides a frequency reduction of the optimal
seed that is greater than or equal to extending S1 to S′1.

Case 2: The optimal seed is selected from the region E1 +S2 and
it overlaps with E1.

Since the optimal seed does not overlap with E2, the optimal seed
in both S1 and S′1 must be the same. Therefore extending S1 to S′1
provides 0 frequency reduction of the optimal seed. As Lemma 1
suggests, the optimal seed frequency of S2 must not be greater than
the optimal seed frequency of S′2. As the result, the Corollary holds
in this case.

Case 3: The optimal seed is selected across E1 + S2 + E2 and it
overlaps with both E1 and E2.

Assuming that the optimal seed, s′1, in S′1 starts at position p1 and
ends at position p2. Now assume a seed, s1, which starts at p1 but
ends where S1 ends, as shown in Figure 14. Also assume a seed,
s′2, which starts at where S′2 starts and ends at p2. From Lemma 2,
we know that the reduction of seed frequency of extending s1 to
s′1 is no greater than the seed frequency reduction of extending S2

to s′2. We also know that the optimal seed frequency of S1 is no
greater than the seed frequency of s1 and the optimal seed frequency
of S′2 is no greater than the seed frequency of s′2. As a result, the
frequency reduction of the optimal seed by extending S1 to S′1, is
strictly no greater than the frequency reduction of the optimal seed
by extending S2 to S′2.

Using Lemma 1, Lemma 2 and Corollary 2.1, we are ready to
prove that the optimal divider cascading phenomenon is always true.

THEOREM 1. For two prefixes from the same iteration in OSS, as
one prefix includes the other, the first optimal divider of the outer
prefix must not be at the same or a prior position than the first
optimal divider of the inner prefix.

We can prove Theorem 1 by contradiction. The proof is provided
below:

��������������

�����������������

�����������

��

��

������	��

��������	��	��

��

����������������������	��

������ ������� �������

�� ��

Fig. 14. Among the four substrings, S1, S2, S′1 and S′2 from Figure 13,
assume s′1 is the optimal seed of substring S′1. Also assume two new seeds,
s1 and s′2. Between the two seeds, s1 starts at where s′1 starts but ends at
where S1 ends while s′2 starts at where S′2 starts and ends at where s′1 ends.

PROOF. Assume T1 and T2 are two prefixes from the same
iteration in “Optimal Seed Solver”, with T1 including T2. Also
assume T1’s first optimal divider, D1, is closer to the beginning of
the read than T2’s first optimal divider, D2, as shown in Figure 15
(D1 < D2).

��

�����������������������

���������������������������

�����������������������

���������������������������

��� ���
��
�� ��� ���

����

����

����

����

Fig. 15. Two prefix T1 and T2 taken from the same iteration. We assume
T1’s first optimal divider is at D1 and T2’s first optimal divider is at D2.

Suppose we apply both divisions D1 and D2 to both prefixes T1

and T2, which renders four divisions: T1-D1, T1-D2, T2-D1 and
T2-D2, as Figure 15 shows. We can prove that T2-D2 is a strictly
less frequent solution than T2-D1. Since D2 is the first optimal
divider of T2 and D1 < D2, the minimum frequency of dividing
T2 at D1 must be greater than dividing T2 at D2. Let freq(T,D)
denotes the optimal frequency of dividing prefix T at position D,
then based on our assumptions and Lemma 2, we have the following
relationships: 

freq(T1, D1) ≤ freq(T1, D2)
freq(T2, D2) < freq(T2, D1)
freq(T1, D1) ≥ freq(T2, D1)
freq(T1, D2) ≥ freq(T2, D2)

Based on Corollary 2.1, we know that the frequency reduction of
extending T2-D1 to T1-D1 is strictly not greater than the frequency
reduction of extending T2-D2 to T1-D2. From Figure 15, we can
observe that only the second parts of both T2-D1 and T2-D2 are
extended into T1-D1 and T1-D2 respectively. Between T2-D1 and
T2-D2, we can see that D1 produces a longer second part than D2.
Based on the Corollary 2.1, the frequency reduction of extending
T2-D2 to T1-D2 is no less than the frequency reduction of extending
T2-D1 to T1-D1. Given that freq(T2, D2) < freq(T2, D1) from
above, we prove that freq(T1, D2) < freq(T1, D1), which
contradicts our assumption that freq(T1, D2) ≥ freq(T2, D2).

5

Hongyi Xin et al

Therefore, the first optimal divider of T1 must not be at a prior
position than the first optimal divider of T2.

1.3 Proof of optimal solution forwarding
From our experiment, we observe that many prefixes within the
same iteration share the same optimal divider with the previous
prefixes (please look at the example in the next section). Among
them, most also share the same 2nd-part frequency. For such
prefixes, we propose the theorem below:

THEOREM 2. A prefix that shares the same 2nd-part frequency
with the previous prefix while being divided by the previous prefix’s
first optimal divider must have the same first optimal divider as well
as the same optimal total seed frequency.

PROOF. We prove the above theorem by contradiction. Assume
there exists another optimal divider, divnew, which is prior to the
inherited optimal divider from the previous prefix, divprev . Also
assume divnew provides a solution that has either smaller or equal
total seed frequency. Since the previous prefix is 1-bp longer than
the current prefix, divnew could also be applied to the previous
prefix, which generates a first part that is the same as the current
prefix’s first part, and a second part that is 1-bp longer than the
current prefix’s second part (both under divnew). Given that a
substring always provides less or equally frequent optimal seed(s)
than any of its included shorter substrings (the proof of this fact is
similar to Lemma 1), we know that the second part of the previous
prefix provides less or equally frequent optimal seed than the second
part of the current prefix. This suggest that, under divnew, the
previous prefix generates a total seed frequency that is smaller than
or equal to the optimal total seed frequency provided by divprev .
As the result, divprev must not be the first optimal divider of the
previous prefix, which leads to a contradiction.

1.4 Example
This section presents an example of OSS in action. In this example,
we are mapping a 100-bp read to the human reference genome
under the error threshold of 3, as shown in Figure 16. Based on
the pigeonhole principle, to tolerate 3 errors, we need a total of
4 seeds. According to the pseudo-code described in the Method
section, there will be 3 iterations of finding partial optimal solutions
in all prefixes of the read (1 seed, 2 seeds and 3 seeds respectively),
followed by a final optimal divider search of 4 seeds in the entire
read.

In the first iteration, OSS searches for optimal 1-seed solution of
all prefixes. Since the frequency of a seed monotonically decreases
with longer seed lengths, for a prefix, the least frequent seed in it
would be itself. In the second iteration, OSS searches for optimal
2-seed solutions for all prefixes. In this iteration, OSS starts with
the longest prefix and gradually progresses to shorter prefixes 2.

Figure 16 shows how to derive the 2-seed optimal divider of a
prefix. First, OSS inherits the optimal divider (marked in red) from

2 In our implementation, we do not start with the entire read but only start
with the prefix that ends at L− (x− i)×Smin, where x is the total number
of required seeds and i is the current iteration. Any longer prefixes will not
contribute to the final result. In this example, we have Smin = 10.

the previous prefix (in gray), based on optimal divider cascading.
Then, OSS divides the current prefix using the same divider and
checks if its second part (in pink) has the same frequency as the
second part of the previous prefix’s division. In this example, the
second part of the previous prefix has an optimal frequency of 11
while the second part of the current prefix has an optimal frequency
of 19. Based on optimal solution forwarding, the two second parts
from the two prefixes are not equal, therefore we cannot forward the
optimal solution from the previous prefix. Next, OSS starts moving
the divider towards the beginning of the prefix and queries the
optimal 1-seed frequencies of the two parts (numbers with green and
pink backgrounds, respectively) as well as the frequency differences
of the first part (green background with numbers highlighted in red)
between two moves. When the frequency increase of the first part
is greater than the optimal frequency of the second part, according
to early divider termination, OSS stops moving the divider and
selects the divider with the minimum total seed frequency and
goes to the next prefix. In this example, the least frequent division
is the first division, with the total seed frequency of 30. Hence,
opt data[2][59] is filled with 30. For the next prefix, after inheriting
the optimal divider from the current prefix, we observe that the
optimal frequency of its second part (in brown) is equal to the
optimal frequency of the second part of the current prefix. In this
case, OSS forwards the optimal divider of the current prefix as the
optimal divider of the next prefix; it inherits the optimal frequency
and moves on the next prefix.

This process is repeated until all prefixes are processed in the
second iteration. Figure 16 shows the opt data[2][] array after the
second iteration is finished. In this array, all prefixes that inherit the
optimal solution from the previous prefix are marked with a blue
background.

The third iteration is similar to the second iteration, except that the
first part of the division now provides two seeds. This information
is provided by opt data[2][]. Figure 17 shows an example prefix in
the third iteration.

Finally, OSS searches for the optimal divider of the entire read:
the divider that divides the read into a 3-seed prefix and an 1-seed
suffix that produces the least total seed frequency. This process
is the same as searching for optimal prefix dividers in previous
iterations, which starts from the rightmost position and gradually
moves towards the beginning of the read. This process is also
obliged by early divider termination.

Figure 18 shows the process of the final optimal divider search.
This figure also showcases divider sprinting. In Figure 18, we
can see that from opt data[2][90] to opt data[2][86], the optimal
frequency is always 36; from opt data[2][85] to opt data[2][74],
the optimal frequency is always 42; from opt data[2][73] to
opt data[2][66], the optimal divider is always 43. This suggests
that OSS only needs to evaluates the dividers at the beginning and
end of each interval (90, 86, 85, 74, 73, 66 and 65) while skipping
computations within the intervals. For the read provided in the
example, the least total seed frequency is 47.

1.5 Backtracking in Optimal Seed Solver
This section presents the pseudo-code of the backtracking process
in OSS.

The pseudo-code of the backtracking process is provided in
Algorithm 3. The key idea behind the backtracking algorithm is

6

Optimal Seed Solver

Fig. 16. This figure shows an example of applying OSS to a 100-bp read. In this figure, OSS is in the second iteration and is searching for the first optimal
divider of a prefix. First, OSS tests if the optimal solution of this prefix could be forwarded from the previous prefix (which it cannot). Then, OSS gradually
moves the divider towards the beginning of the prefix until the early divider termination is triggered. Finally OSS selects the least frequent division among all
divisions as the optimal divider and stores the optimal frequency in opt data[2][59].

Fig. 17. This figure shows the same example as Figure 16 but it illustrates a prefix in the third iteration. Similar to Figure 16, the prefix is also subjected
to optimal solution forwarding, optimal divider cascading and early divider termination. The only difference would be that the first part of a division now
provides 2 seeds, whose optimal frequency is obtained from opt data[2][].

simple: the element of the ith row and the jth column of opt data
stores the optimal divider, div, of the substring R[1...j]. This div
suggests that by optimally selecting i− 1 seeds from R[1...div− 1]
and one seed from R[div...j], we can obtain the least frequent i
seeds from R[1...j]. From div we can learn that substring R[div...j]
provides the ith optimal seeds. Similarly, by repeating this process
for the element of opt data[i−1][div−1], we can learn the position
and length of the (i-1)th optimal seeds. We can repeat this process
until we have learnt all optimal dividers of the read.

1.6 Lock-step BWT
One major drawback of OSS is that it requires prior knowledge of
frequencies of all possible seeds of the read. This can be a rather
time consuming process since there can be a total of O(L2) seeds.

Naı̈vely, given large enough memory space, we can store seeds
and their frequencies in a hash table. However, in this manner, the
memory space grows exponentially with regard to the length of the
seed. At 50 base-pairs, it requires at least 450 computer words to
store all seeds in order to support O(1) lookup.

Algorithm 3: Backtracking
Input: the final optimal divider of the read, opt div
Output: an array of optimal dividers of the read, div array
Global data structure: the 2-D data array opt data[][]
Pseudocode:
// Push in the last divider
div array.push(opt div);
prev div = opt div;
for iter = x− 1 to 2 do

div = opt data[iter][prev div − 1].div;
div array.push(opt div);
prev div = div;

return div array;

Alternatively, we can use more memory efficient data structures
and algorithms such as the Burrows-Wheeler Transform, or simply
BWT. In BWT, all cyclic suffixes of the reference are sorted

7

Hongyi Xin et al

Fig. 18. This figure shows the same example as the previous two figures. It shows the final search of the optimal 4-seed divider for the entire read (dividing
the read into a 3-seed prefix and an 1-seed suffix). This search is also governed by early divider termination, as with previous iterations. In addition, this figure
also shows how divider sprinting operates. Among dividers, when their first part frequencies remain the same, we can omit querying the frequency of the
second part and skip to the end of the interval.

lexicographically, with the occurrence counts of letters in the last
column of this suffix array stored in a separate occ matrix, as
Figure 19 shows. The occ matrix counts how many times a letter
has been seen in the last column of the sorted suffix array at each
suffix row. Upon query, based on FM-indexing (Ferragina and
Manzini, 2000), BWT traverses the query seed backward one base-
pair at a time, starting from the last base-pair. In each traversal,
BWT moves a head and a tail pointer in the occ matrix, based on
the base-pair being traversed and the occ counters of the base-pairs
in the seed. Specifically, it moves to the region where in the suffix
array, all suffixes starts with this base-pair. Then it retrieves the two
counts of the base-pairs in the occ matrix of the previous head and
tail, as illustrated in Figure 19. Finally it applies both counts to the
region as the new head and tail. Within the range between the head
and the tail pointer, lie cyclic suffixes whose prefix share the same
suffix with the seed from the current base-pair to the end.

A main problem with BWT is that it generates numerous memory
accesses. For a seed of length |s|, it needs to move the head and
tail pointer |s| times. Even worse, as each jump can be across very
distant ranges in the sorted suffix array, it has a high probability of
being a CPU cache miss. Cache misses are costly since an access
to the main memory takes much longer time than an access to the
CPU cache. Given that there are in totalO(L2) seeds in a read, there
could be as many as O(L3) memory accesses to obtain frequencies
of all seeds for OSS.

In this section, we describe a mechanism, lock-step BWT, which
reduces the per-read average case cache misses to O(L). Since this
mechanism is beyond the scope of finding seeds optimally, in this
paper we only provide a high level description of the mechanism.

Lock-step BWT is based on the observation that when one
substring is a prefix of another substring, as Figure 20 shows, then
for the last base-pair in both BWT traversals, which is the first letter
of both substrings, the head and tail pointers of the shorter (inner)
substring must include the head and tail pointers of the longer
(outer) substring, as shown in Figure 20. This is because all cyclic
suffixes in the suffix array between the head and tail pointers of a
BWT traversal must share the same substring that is being traversed
as their own prefix, as Figure 19 shows. For cyclic suffixes in the
suffix array between pointers of the longer substring, they must also
be between the pointers of the included shorter substring. However,
this statement is not true vice versa.

Fig. 19. This figure shows the outcome of applying BWT to a 17-bp
reference. In this figure, the reference is first concatenated with an ending
mark, “$”, and then rotated in a cyclic fashion, which generates a set of cyclic
suffixes of the reference. Afterwards, we sort all suffixes lexicographically
and use the last column (marked in blue) to generate the occ matrix. Upon
query, we backtrack the query sequence base-pair by base-pair and moves a
set of head and tail pointers according to the occurrence counts in the occ
matrix. In this figure, we show the traversals of the first three base-pairs with
each traversal marked in a unique color (green, yellow and red).

We further observe that for a set of long substrings that have the
same inclusive relationship as above, like the one that is shown
in Figure 21, the head and tail pointers of nearby prefixes (after
sorted by length, prefixes that are close together) are usually nearby,
especially for substrings that are not frequent. Even for frequent
substrings, after certain lengths, we observe that their head and tail
pointers can be grouped into a few nearby ranges. This suggests
that one memory access to the occ matrix could potentially bring

8

Optimal Seed Solver

Fig. 20. This figure shows the end result of traversing two strings in BWT,
where one string is a prefix of the other string. We can see that the pointers
of the longer string are included by the pointers of the shorter string. We
can also observe that the head pointers and tail pointers of the two strings
are nearby, suggesting that the occ data of both strings could collide in the
same cacheline.

in data for nearby prefixes as well, since they could be stored in the
same cacheline. We call this the spacial locality property of BWT
traversals.

With above observations, we propose lock-step BWT, a
mechanism that exploits the spacial locality property of BWT

traversals and reduces the number of cache misses by coordinating
BWT traversals of all prefixes in the read, starting from the longest
prefix (the read itself). When traversing prefixes, lock-step BWT
only traverses one base-pair at a time and at each time traverses the
same base-pair for all prefixes before moving on to the next base-
pair, as Figure 21 shows. As a result, all prefixes share the same
progress in lock-step. This helps grouping prefixes that have occ
data in the same cacheline together and reduces the number of cache
misses. After each single base-pair traversal, lock-step BWT records
the size of the gap between the head and tail pointers of each prefix
as the frequency of a seed.

To further reduce the number of cache misses, we impose a
minimum seed length requirement of k-bp (e.g. 10-bp) and pre-
process the BWT traversals of all k-bp string (all possible k-bp
permutations). After pre-processing, we store the head and tail
pointers in a hash table such that for a prefix query, we can
directly skip over the first k-bp traversals (which are the last k-
bp in the prefix) and start from the k + 1th base-pair traversal. By
skipping the first few hops in a BWT-traversal, we have avoided
the most cache-miss-prone regions in a prefix where the head and
tail pointers changes drastically and are usually significantly distant
from neighboring prefixes (therefore are less likely to be in the same
cacheline).

Overall, with lock-step BWT, to obtain frequencies of all seeds,
we need at most L2

2
cache misses in the worst case scenario where

no two prefixes share pointers in the same cacheline. On average, we
can reduce the number of cache misses to O(L). Given that cache
hits are not time-consuming, obtaining frequencies of seeds will not
be a major bottleneck of OSS.

Further exploration and quantitative comparisons of lock-step
BWT against other related works will be studied in our future work.

9

Hongyi Xin et al

Fig. 21. This figure illustrates how lock-step BWT operates. In lock-step BWT, all prefixes are processed together, one base-pair at a time. The red base-pairs
(T) shows the current progress. Many head and tail pointers in this figure are close by to each other, suggesting that their data in the occ matrix could fold
into the same cachelines.

10

