CancerSubtypes: an R/Bioconductor package for molecular cancer subtype identification, validation, and visualization

Supplementary material

TAOSHENG XU¹, THUC LE²,³

CONTENTS

1 Introduction 4

2 Scenario 1: A general example: Using CancerSubtypes with TCGA data to discover cancer subtypes 5
 2.1 Retrieve GDC online TCGA GBM gene expression data and clinical information from using TCGAbiolinks 5
 2.2 Apply Consensus Clustering method for cancer subtypes identification 7
 2.3 The Validation and visualization for the identified cancer subtypes result
 2.3.1 Survival analysis and Silhouette width 7
 2.3.2 Statistical significance of clustering(Sigclust) 7
 2.3.3 Differently Expression Analysis for the identified cancer subtypes 9

3 Scenario 2: Investigating the impact of different feature selection methods in cancer subtype identification 10
 3.1 The original SNF method without feature selection 10
 3.2 Feature selection by most variance to select important features for cancer subtypes identification 11
 3.3 Feature selection by most Median Absolute Deviation (MAD) to select important features for cancer subtypes identification 12
 3.4 Feature selection by COX model to select important features for cancer subtypes identification 13
 3.5 Feature selection by PCA to select important features for cancer subtypes identification 14
 3.6 The comparison of different feature selection methods 15

4 Scenario 3: Comparing the performance of different cancer subtype identification methods 16
 4.1 Identify cancer subtypes by using Consensus Clustering(CC) 16
 4.2 Identify cancer subtypes by using Consensus Nonnegative matrix factorization(CNMF) 17

¹ Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
² School of Information Technology and Mathematical Sciences, University of South Australia, Australia
³ Centre for Cancer Biology, University of South Australia, Adelaide, Australia
4.3 Identify cancer subtypes by using Integrative clustering of multiple genomic data (iCluster) ... 18
4.4 Identify cancer subtypes by using Similarity Network Fusion (SNF) 19
4.5 Identify cancer subtypes by combining the SNF and CC 20
4.6 Identify cancer subtypes by Weighted Similarity Network Fusion 21
4.7 The comparison of different cancer subtypes identification methods 22

5 Scenario 4: Investigating the impact of different genomic data types alters the results with the selected feature selection and cancer subtype identification methods 23
LIST OF FIGURES

Figure S1 The workflow of CancerSubtypes package 4
Figure S2 The result of Consensus Clustering for cancer subtypes of GBM based on gene expression data 8
Figure S3 SigClust summary plot between different subtypes 8
Figure S4 The Venn Diagram for the top 1500 differentially expressed genes in the five identified BRCA subtypes 9
Figure S5 The Survival curves and Silhouette plots for the identified cancer subtypes of GBM (No Feature selection) 10
Figure S6 The variance distribution and the feature selection cutoff for different platform GBM data 11
Figure S7 The Survival curves and Silhouette plots for the identified cancer subtypes of GBM (Feature selection by the most variance) .. 11
Figure S8 The MAD distribution and the feature selection cutoff for different platform GBM data 12
Figure S9 The Survival curves and Silhouette plots for the identified cancer subtypes of GBM (Feature selection by the most MAD) .. 12
Figure S10 The Survival curves and Silhouette plots for the identified cancer subtypes of GBM (Feature selection by Cox model) 13
Figure S11 The Survival curves and Silhouette plots for the identified cancer subtypes of GBM (Feature selection by PCA) 14
Figure S12 The barplot for the Log-rank test p-values and Silhouette width of each feature selection method 15
Figure S13 The Survival curves and Silhouette plots for the identified cancer subtypes of GBM (Consensus clustering result) 16
Figure S14 The Survival curves and Silhouette plots for the identified cancer subtypes of GBM (CNMF result) 17
Figure S15 The Survival curves for the identified cancer subtypes of GBM (iCluster result) ... 18
Figure S16 The Survival curves and Silhouette plots for the identified cancer subtypes of GBM (SNF result) 19
Figure S17 The Survival curves and Silhouette plots for the identified cancer subtypes of GBM (SNF.CC result) 20
Figure S18 The Survival curves and Silhouette plots for the identified cancer subtypes of GBM (WSNF result) 21
Figure S19 The barplot for the Log-rank test p-values of each cancer subtypes identification method 22
Figure S20 The barplot for the Log-rank test p-values 24
1 INTRODUCTION

The CancerSubtypes package is designed to assist with the identification and validation of cancer subtypes based on cancer genomic datasets. The package is implemented in R and is available as a Bioconductor package at http://bioconductor.org/packages/CancerSubtypes/. We provide a unified framework for analyzing cancer subtypes from raw data to result visualization. The main functions include genomic data pre-processing, feature selection methods, cancer subtypes identification and results validation. The workflow and the components of the CancerSubtypes package are presented in Figure S1.

The CancerSubtypes package has the following features:

- A framework/work flow to identify cancer subtypes and result validation and visualization.
- Unified input and output interface to perform and compare different cancer subtype discovery methods.
- 4 built-in feature selection methods for genomic dataset.
- 6 built-in algorithms for cancer subtypes identification.
- 4 built-in methods for result validation and visualization.

In the following sections, we present some typical scenarios of using the CancerSubtypes package with different purposes.

![Figure S1: The workflow of CancerSubtypes package](image)
2 SCENARIO 1: A GENERAL EXAMPLE: USING CANCER SUBTYPES WITH TCGA DATA TO DISCOVER CANCER SUBTYPES

In this scenario, we present the usage of CancerSubtypes for discovering cancer subtypes with single genomic data type (gene expression data). Level 3 TCGA data can be downloaded and processed using TCGAbiolinks package (Colaprico et al., TCGAbiolinks: An R/Bioconductor Package for Integrative Analysis of TCGA Data, 2016) and the TCGA Workflow (Silva et al., TCGA Workflow: Analyze Cancer Genomics and Epigenomics Data Using Bioconductor Packages, 2016), or using the processed data in Bioconductor R package RTCGA.

2.1 Retrieve GDC online TCGA GBM gene expression data and clinical information from using TCGAbiolinks.

```r
rm(list = ls())
##Install the latest version of TCGAbiolinks (Version:2.5.2)
devtools::install_github(repo = "BioinformaticsFMRP/TCGAbiolinks")
library("TCGAbiolinks")
library("SummarizedExperiment")
library("CancerSubtypes")
cancerType <- "GBM"
directory <- "/GDC/
CancerProject <- paste0("TCGA-",cancerType)
DataDirectory <- paste0(directory,"GDC_",gsub("-","_",CancerProject))
FileNameData <- paste0(DataDirectory, ",","AgilentG4502A_07_1",".rda")

#####GBM Gene expression Data1: AgilentG4502A_07_1########
query1 <- GDCquery(project = CancerProject,
data.category = "Gene expression",
data.type = "Gene expression quantification",
platform = "AgilentG4502A_07_1",
legacy = TRUE)
query_case1 <- query1$results[[1]]$cases
queryDown1 <- GDCquery(project = CancerProject,
data.category = "Gene expression",
data.type = "Gene expression quantification",
platform = "AgilentG4502A_07_1",
barcode = query_case1,
legacy = TRUE)
GDCdownload(queryDown1,directory = DataDirectory)
dataPrep1 <- GDCprepare(query = queryDown1,
save = TRUE,
directory = DataDirectory,
save.filename = paste0(DataDirectory, ",","AgilentG4502A_07_1",".rda")

data1 <- assay(dataPrep1, 1)
##data imputation for missing measurements
data=data.imputation(data1, fun = "microarray")

#####GBM Gene expression Data2: AgilentG4502A_07_2########
query2 <- GDCquery(project = CancerProject,
data.category = "Gene expression",
data.type = "Gene expression quantification",
platform = "AgilentG4502A_07_2",
legacy = TRUE)
query_case2 <- query2$results[[1]]$cases
queryDown2 <- GDCquery(project = CancerProject,
data.category = "Gene expression",
data.type = "Gene expression quantification",
platform = "AgilentG4502A_07_2",
legacy = TRUE)
```
platform = "AgilentG4502A_07_2",
barcode = query_case2,
legacy = TRUE)

GDCdownload(queryDown2, directory = DataDirectory)
dataPrep2 <- GDCprepare(query = queryDown2,
save = TRUE,
directory = DataDirectory,
save.filename = paste0(DataDirectory, ":",
"AgilentG4502A_07_2",".rda"))

data2 <- assay(dataPrep2, 1)
data2=data.imputation(data2, fun = "microarray")

###combined two platform

GBM_mRNA=cbind(data1, data2)

###Extract the normal samples
index1=which(as.numeric(substr(colnames(GBM_mRNA),14,15))>9)

GBM_mRNA_Normal=GBM_mRNA[,index1]

###Extract the PRIMARY SOLID TUMOR("TP") samples

index2=which(substr(colnames(GBM_mRNA),14,15)=="01")

GBM_mRNA_Tumor=GBM_mRNA[,index2]

tableName=substr(colnames(GBM_mRNA_Tumor),1,12)

###Remove the duplicated samples
index3=which(duplicated(sampleName))

for(i in index3)
{
 index3_3=which(sampleName==sampleName[i])
 GBM_mRNA_Tumor[,index3_3]=rowMeans(GBM_mRNA_Tumor[,index3_3])
}

GBM_mRNA_Tumor=GBM_mRNA_Tumor[-index3]

downloading and preparing clinical / survival data
query_clin <- GDCquery(project = CancerProject,
data.category = "Clinical")

clinical_case <- query_clin$results[[1]]$cases

clinical:Tumor <- query_clin(queryDown_clin,
data.category = "Clinical",
barcode = clinical$cases)

GDCdownload(queryDown_clin)

clinical <- GDCprepare_clinic(queryDown_clin,
clinical.info = "patient")

rownames(clinical) <- clinical$bcr_patient_barcode

GBM_clinical=clinical[,c("days_to_death",
"days_to_last_followup",
"vital_status")]

index4=which(is.na(GBM_clinical,"days_to_death"))

GBM_clinical[index4,"days_to_death"]=GBM_clinical[index4,
"days_to_last_followup"]

status=as.vector(GBM_clinical,"vital_status")

status[status=="Alive"]=0

status[status=="Dead"]=1

GBM_clinical=cbind(GBM_clinical,"status"=as.numeric(status))

rownames(GBM_clinical)[1]="time"

###Exract the matched samples

intersect_samples=intersect(substr(colnames(GBM_mRNA_Tumor),1,12),
rownames(GBM_clinical))

index5=match(intersect_samples,substr(colnames(GBM_mRNA_Tumor),1,12))

index6=match(intersect_samples,rownames(GBM_clinical))

GBM_mRNA_Tumor=GBM_mRNA_Tumor[,index5]

GBM_clinical=GBM_clinical[index6]

###Test the samples in gene expression dataset are matched

###with the samples in survival dataset

all(substr(colnames(GBM_mRNA_Tumor),1,12)==rownames(GBM_clinical))

save(GBM_mRNA_Normal,GBM_mRNA_Tumor,GBM_clinical,file="GBM_data.rda")
2.2 Apply Consensus Clustering method for cancer subtypes identification

```r
###check distribution
data.checkDistribution(GBM_mRNA_Tumor)
###Feature selection by most variance
GBM_mRNA_Tumor1=FSbyVar(GBM_mRNA_Tumor, cut.type = "topk", 4000)
index7=match(rownames(GBM_mRNA_Tumor1), rownames(GBM_mRNA_Normal))
GBM_mRNA_Normal1=GBM_mRNA_Normal[index7,]
###data normalization
GBM_mRNA_Tumor_norm=data.normalization(GBM_mRNA_Tumor1)
###Concensus clustering
result1=ExecuteCC(clusterNum=3, d=GBM_mRNA_Tumor_norm, maxK=5, 
                 clusterAlg="hc", distance="pearson", title="GBM")
group=result1$group
table(group)
```

2.3 The Validation and visualization for the identified cancer subtypes result

2.3.1 Survival analysis and Silhouette width

```r
###result validation and visualization
distanceMatrix=result1$distanceMatrix
p_value=survAnalysis(mainTitle="GBM", GBM_clinical$time, 
                      GBM_clinical$status, group, 
                      distanceMatrix=distanceMatrix, similarity=TRUE)
saveFigure(foldername="GBM", filename="GBM", image_width=10, 
            image_height=10, image_res=300)
```

The result of survival analysis is shown in Figure S2 on the following page. It is NOT significant (p-value = 0.196) of the identified cancer subtypes. So the Consensus Clustering method is not competent to identify cancer subtypes in this case. In order to take an analysis example, we continue to conduct further analysis for this result by ignoring the non-significant performance.

2.3.2 Statistical significance of clustering(Sigclust)

```r
### Statistical significance of clustering Test
sigclustTest(GBM_mRNA_Tumor_norm, group, nsim=500, nrep=1, icovest=3)
```
Figure S2: The result of Consensus Clustering for cancer subtypes of GBM based on gene expression data

The statistical significance test result is shown in below. It is a summary of the statistical significance of clustering p-value between the identified cancer subtypes. The sigClust summary plot between different subtypes are shown in the Figure S3.

Figure S3: SigClust summary plot of simulated null distribution showing the statistical significance of clustering with respect to the simulated null distribution. The blue points, representing the simulated cluster index(CIs), are plotted with random vertical jitter for better visualization. The solid and dotted lines correspond to the estimated nonparametric density and Gaussian density fit to the simulated CIs.[According to the description of Sigclust in the manuscript].
2.3.3 Differently Expression Analysis for the identified cancer subtypes

```r
result2 = DiffExp.limma(Tumor_Data = GBM_mRNA_Tumor1, Normal_Data = GBM_mRNA_Normal1, group = group, topk = NULL, RNAseq = FALSE)

## Top 6 differentially expressed genes in Subtype 1
head(result2[[1]])

## ID logFC AveExpr t P.Value
## KLK7 -4.526703 0.1773186 -41.51811 1.013013e-105
## C1QL3 -4.107054 0.3597323 -27.74592 1.338856e-73
## KIAA1239 -5.792297 0.8571020 -27.63534 2.644676e-73
## KCNV1 -4.626338 0.5141012 -27.14727 5.433236e-72
## LRTM2 -3.515683 0.5212729 -24.75350 2.296553e-65
## ATP2B3 -3.279332 0.5779107 -24.22061 7.563377e-64

## adj.P.Val B
## 4.052053e-102 228.9823
## 2.677713e-70 156.7746
## 3.526235e-70 156.1047
## 5.433236e-69 153.1297
## 1.837242e-62 138.0925
## 5.42251e-61 134.6439

## Extract top 1500 differentially expressed genes in each subtypes
Subtype1_gene = as.vector(na.omit(result2[[1]]$ID[1:1500]))
Subtype2_gene = as.vector(na.omit(result2[[2]]$ID[1:1500]))
Subtype3_gene = as.vector(na.omit(result2[[3]]$ID[1:1500]))

library(VennDiagram)
venn.diagram(filename = "GBM_limma.png", height = 3000, width = 3300, list(Subtype1 = Subtype1_gene, Subtype2 = Subtype2_gene, Subtype3 = Subtype3_gene), fill = c("red", "green", "blue"), alpha = c(0.5, 0.5, 0.5), cex = 1, cat.col = c("dodgerblue", "goldenrod1", "seagreen3"), cat.cex = 1, margin = 0.1, fontfamily = 2)
```

Figure S4: The Venn Diagram for the top 1500 differentially expressed genes in the three identified GBM subtypes
3 SCENARIO 2: INVESTIGATING THE IMPACT OF DIFFERENT FEATURE SELECTION METHODS IN CANCER SUBTYPE IDENTIFICATION

In this scenario, we investigate the impact of different feature selection methods in cancer subtype identification. We choose similarity fusion network (SNF) method for the cancer subtypes identification. We have processed a glioblastoma multiforme (GBM) multi-omics dataset from TCGA which includes the matched samples with gene expression, DNA methylation, miRNA expression data and survival data. These experiment datasets can be downloaded in https://github.com/xtsvm/ExperimentData/tree/master/GBM. Meanwhile, these experiment datasets are also used for next scenarios (Scenario 3 and Scenario 4).

3.1 The original SNF method without feature selection

```r
library("CancerSubtypes")
load("GBM_GeneEXp.rda")
load("GBM_Methylation27.rda")
load("GBM_miRNA_8x15k.rda")
load("GBM_clinical.rda")

#original
GBM=list(GeneExp=GBM_GeneEXp,
          DNAmethy=GBM_Methylation27,
          miRNAExp=GBM_miRNA_8x15k)
result3 =ExecuteSNF(GBM, clusterNum=3, K=20, alpha=0.5, t=20)
group=result3$group
distanceMatrix=result3$distanceMatrix
p_value=survAnalysis(mainTitle="GBM Original",GBM_clinical$time,
                      GBM_clinical$status,group,
                      distanceMatrix=distanceMatrix,similarity=TRUE)

#*****************************************************************************
#GBM Original Cluster= 3 Call:
#survdiff(formula = Surv(time, status) ~ group)
# N Observed Expected (O-E)^2/E (O-E)^2/V
#group=1 200 165 138.8 4.9629 14.611
#group=2 4 3 2.5 0.0996 0.101
#group=3 72 52 78.7 9.0814 15.427
#Chisq= 15.4 on 2 degrees of freedom, p= 0.000447
```

Figure S5: The Survival curves and Silhouette plots for the identified cancer subtypes of GBM
3.2 Feature selection by most variance to select important features for cancer subtypes identification

```r
par(mfrow=c(1,3))
GBM_GeneExp_HsbyVar=FSbyVar(GBM_GeneExp[, cut.type = "cutoff", value=1])
GBM_Methylation27_FsbyVar=FSbyVar(GBM_Methylation27[, cut.type = "cutoff", value=0.01])
GBM_miRNA_8x15k_FsbyVar=FSbyVar(GBM_miRNA_8x15k[, cut.type = "cutoff", value=0.2])
```

Figure S6: The variance distribution and the feature selection cutoff for different platform GBM data [The cutoff values are based on the distribution characteristic of each data]

```r
GBM=list(GeneExp=GBM_GeneExp_FsbyVar,DNAmethy=GBM_Methylation27_FsbyVar,
         miRNAExp=GBM_miRNA_8x15k_FsbyVar)
result4 =ExecuteSNF(GBM, clusterNum=3, K=20, alpha=0.5, t=20)
group=result4$group
distanceMatrix=result4$distanceMatrix
p_value=survAnalysis(mainTitle="GBM_GeneExp",GBM_clinical$time,GBM_clinical$status,
group,distanceMatrix=distanceMatrix,similarity=TRUE)
```

Figure S7: The Survival curves and Silhouette plots for the identified cancer subtypes of GBM
3.3 Feature selection by most Median Absolute Deviation (MAD) to select important features for cancer subtypes identification

```r
par(mfrow=c(1,3))
GBM_GeneExp_FsbyMAD=FSbyMAD(GBM_GeneExp,cut.type = "cutoff", value=0.6)
GBM_Methylation27_FsbyMAD=FSbyMAD(GBM_Methylation27,cut.type = "cutoff", value=0.05)
GBM_miRNA_8x15k_FsbyMAD=FSbyMAD(GBM_miRNA_8x15k,cut.type = "cutoff", value=0.2)
```

![Image showing the MAD distribution and the feature selection cutoff for different platform GBM data](image)

Figure S8: The MAD distribution and the feature selection cutoff for different platform GBM data [The cutoff values are based on the distribution characteristic of each data]

```r
GBM=list(GeneExp=GBM_GeneExp_FsbyMAD,DNAmethy=GBM_Methylation27_FsbyMAD,
miRNAExp=GBM_miRNA_8x15k_FsbyMAD)
result5 =ExecuteSNF(GBM, clusterNum=3, K=20, alpha=0.5, t=20)
group=result5$group
distanceMatrix=result5$distanceMatrix
p_value=survAnalysis(mainTitle="GBM FSbyMAD",GBM_clinical$time,GBM_clinical$status,
group,distanceMatrix=distanceMatrix,similarity=TRUE)
```

```r
##****************************************************
##GBM FSbyMAD Cluster= 3  Call:
##survdiff(formula = Surv(time, status) ~ group)
##      N Observed Expected (O-E)^2/E (O-E)^2/V
##group=1 196 161 134.67 5.146 14.326
##group=2 75 55 82.68 9.265 16.083
##group=3 5 4 2.65 0.689 0.701
##Chisq= 16.3 on 2 degrees of freedom, p= 0.000283
```

![Image showing the Survival curves and Silhouette plots for the identified cancer subtypes of GBM](image)

Figure S9: The Survival curves and Silhouette plots for the identified cancer subtypes of GBM
3.4 Feature selection by COX model to select important features for cancer subtypes identification

```r
library("CancerSubtypes")
load("GBM_GeneExp.rda")
load("GBM_Methylation27.rda")
load("GBM_miRNA_8x15k.rda")
load("GBM_clinical.rda")

GBM_GeneExp_FsbyCox=FSbyCox(GBM_GeneExp, GBM_clinical$time,
                               GBM_clinical$status, cutoff = 0.05)
GBM_Methylation27_FsbyCox=FSbyCox(GBM_Methylation27, GBM_clinical$time,
                                  GBM_clinical$status, cutoff = 0.05)
GBM_miRNA_8x15k_FsbyCox=FSbyCox(GBM_miRNA_8x15k, GBM_clinical$time,
                                   GBM_clinical$status, cutoff = 0.05)

GBM=list(GeneExp=GBM_GeneExp_FsbyCox,
          DNAmethy=GBM_Methylation27_FsbyCox,
          miRNAExp=GBM_miRNA_8x15k_FsbyCox)
result6 =ExecuteSNF(GBM, clusterNum=3, K=20, alpha=0.5, t=20)
group=result6$group
distanceMatrix=result6$distanceMatrix
p_value=survAnalysis(mainTitle="GBM FSbyCox",GBM_clinical$time,
                      GBM_clinical$status,group,
                      distanceMatrix=distanceMatrix,similarity=TRUE)

##****************************************************
##GBM FSbyCox Cluster= 3 Call:
##  survdiff(formula = Surv(time, status) ~ group)
##          N Observed Expected  (O-E)^2/E (O-E)^2/V
##group=1 207 170 138.15  7.34489 21.95949
##group=2  3  2  2.11  0.00611  0.00621
##group=3 66  48  79.74 12.63403 22.07171
##Chisq= 22.3 on 2 degrees of freedom,  p= 1.46e-05
```

Figure S10: The Survival curves and Silhouette plots for the identified cancer subtypes of GBM
3.5 Feature selection by PCA to select important features for cancer subtypes identification

```r
library("CancerSubtypes")
load("GBM_GeneEXP.rda")
load("GBM_Methylation27.rda")
load("GBM_miRNA_8x15k.rda")
load("GBM_clinical.rda")
GBM_GeneEXP_FsbyPCA=FSbyPCA(GBM_GeneEXP,
                         PC_percent = 0.85, scale = TRUE)
GBM_Methylation27_FsbyPCA=FSbyPCA(GBM_Methylation27,
                         PC_percent = 0.85, scale = TRUE)
GBM_miRNA_8x15k_FsbyPCA=FSbyPCA(GBM_miRNA_8x15k,
                         PC_percent = 0.85, scale = TRUE)
GBM=list(GeneExp=GBM_GeneEXP_FsbyPCA,
          DNAmethy=GBM_Methylation27_FsbyPCA,
          miRNAExp=GBM_miRNA_8x15k_FsbyPCA)
result7 =ExecuteSNF(GBM, clusterNum=3, K=20, alpha=0.5, t=20)
group=result6$group
distanceMatrix=result7$distanceMatrix
p_value=survAnalysis(mainTitle="GBM FSbyPCA",GBM_clinical$time,
                       GBM_clinical$status,group,
                       distanceMatrix=distanceMatrix,similarity=TRUE)
```

Figure S11: The Survival curves and Silhouette plots for the identified cancer subtypes of GBM
3.6 The comparison of different feature selection methods

According to the survival analysis and Silhouette width, the feature selection by Cox model outperforms than other methods.

Figure S12: The barplot for the Log-rank test p-values and Silhouette width of each feature selection method
4 SCENARIO 3: COMPARING THE PERFORMANCE OF DIFFERENT CANCER SUBTYPE IDENTIFICATION METHODS

In this scenario, we present the experiments samples for cancer subtypes identification by using different clustering methods. The CC and CNMF are designed for single-genomic datasets (e.g. gene expression datasets), while iCluster, SNF and SNF-CC focus on multi-omics data analysis. To make a fair comparison, we try to use the same input dataset for the different clustering methods comparison. The GBM gene expression and miRNA expression datasets are chosen for the experiment analysis. We concatenated the gene expression data and miRNA expression data for each patient as the input data for CC and CNMF.

4.1 Identify cancer subtypes by using Consensus Clustering(CC)

```r
load("GBM_GeneExp.rda")
load("GBM_miRNA_8x15k.rda")
load("GBM_clinical.rda")
##The input dataset is multi-genomics data as a list
GBM=list(GeneExp=GBM_GeneExp,miRNAExp=GBM_miRNA_8x15k)
result8 =ExecuteCC(clusterNum=3,d=GBM,maxK=3,clusterAlg="hc",
distance="pearson",title="GBM")
group=result8$group
distanceMatrix=result8$distanceMatrix
p_value=survAnalysis(mainTitle="GBM_Consensus_Clustering-Cluster=3",
GBM_clinical$time,GBM_clinical$status,group,
distanceMatrix=distanceMatrix,similarity=TRUE)
```

```
#*****************************************************
#GBM Consensus Clustering-Cluster=3 Cluster= 3 Call:
#survdiff(formula = Surv(time, status) ~ group)
# N Observed Expected (O-E)^2/E (O-E)^2/V
#group=1 58 56 65.5 1.3755 2.112
#group=2 214 161 152.0 0.5320 1.848
#group=3 4 3 2.5 0.0996 0.101
#Chisq= 2.2 on 2 degrees of freedom, p= 0.339
```

Figure S13: The Survival curves and Silhouette plots for the identified cancer subtypes of GBM (Consensus clustering result)
4.2 Identify cancer subtypes by using Consensus Nonnegative matrix factorization (CNMF)

```r
load("GBM_GeneEXp.rda")
load("GBM_miRNA_8x15k.rda")
load("GBM_clinical.rda")
GBM_GeneEXp_FsbyVar=FSbyVar(GBM_GeneEXp, cut.type = "cutoff", value=1)
GBM_miRNA_8x15k_FsbyVar=FSbyVar(GBM_miRNA_8x15k, cut.type = "cutoff", value=0.2)
##The input dataset is multi-genomics data as a list
GBM=list(GeneExp=GBM_GeneEXp_FsbyVar,miRNAExp=GBM_miRNA_8x15k_FsbyVar)
result9 =ExecuteCNMF(GBM,clusterNum=3,nrun=30)
group=result9$group
distanceMatrix=result9$distanceMatrix
p_value=survAnalysis(mainTitle="GBM-CNMF-Cluster=3", GBM_clinical$time,GBM_clinical$status,group,
distanceMatrix=distanceMatrix,similarity=TRUE)
```

```r
#****************************************************
#GBM CNMF-Cluster=3 Cluster= 3 Call:
#survdiff(formula = Surv(time, status) ~ group)
#  N Observed Expected (O-E)^2/E (O-E)^2/V
#group=1 137 108 88.7 4.22 7.60
#group=2 81 56 65.9 1.47 2.14
#group=3 58 56 65.5 1.38 2.11
#Chisq= 7.6 on 2 degrees of freedom, p= 0.0224
```

Figure S14: The Survival curves and Silhouette plots for the identified cancer subtypes of GBM (CNMF result)
4.3 Identify cancer subtypes by using Integrative clustering of multiple genomic data (iCluster)

```r
load("GBM_GeneExp.rda")
load("GBM_miRNA_8x15k.rda")
load("GBM_clinical.rda")
##For iCluster algorithm, it cannot process high-dimensional data, otherwise it is very very time-consuming or reports a mistake. We choose top 2000 most variance genes and top 500 most variance miRNAs for analysis
GBM_GeneExp_FsbyVar=FSbyVar(GBM_GeneExp, cut.type = "topk", value = 2000)
GBM_miRNA_8x15k_FsbyVar=FSbyVar(GBM_miRNA_8x15k, cut.type = "topk", value = 300)
GBM=list(GeneExp=GBM_GeneExp_FsbyVar, miRNAExp=GBM_miRNA_8x15k_FsbyVar)
result10 = ExecuteiCluster(datasets=GBM, k=3, lambda=list(0.44,0.33))
group=result10$group
p_value=survAnalysis(mainTitle="GBM iCluster-Cluster=3", GBM_clinical$time, GBM_clinical$status, group)
```

Figure S15: The Survival curves for the identified cancer subtypes of GBM (iCluster result)
4.4 Identify cancer subtypes by using Similarity Network Fusion (SNF)

```r
load("GBM_GeneEXP.rda")
load("GBM_miRNA_8x15k.rda")
load("GBM_clinical.rda")
GBM=list(GeneExp=GBM_GeneEXP,miRNAExp=GBM_miRNA_8x15k)
result11=ExecuteSNF(GBM, clusterNum=3, K=20, alpha=0.5, t=20)
  group=result11$group
distanceMatrix=result11$distanceMatrix
p_value=survAnalysis(mainTitle="GBM SNF-Cluster=3",
                         GBM_clinical$time,GBM_clinical$status,group,
                         distanceMatrix=distanceMatrix,similarity=TRUE)

#**************************************************************************
#GBM SNF-Cluster=3 Cluster= 3 Call:
#survdiff(formula = Surv(time, status) ~ group)
#  N Observed Expected (O-E)^2/E (O-E)^2/V
#group=1 199 163 143.8 2.5514 7.679
#group=2 73 54 73.7 5.2456 8.226
#group=3 4 3 2.5 0.0996 0.101
#Chisq= 8.2 on 2 degrees of freedom, p= 0.0163
```

Figure S16: The Survival curves and Silhouette plots for the identified cancer subtypes of GBM (SNF result)
4.5 Identify cancer subtypes by combining the SNF and CC

```r
load("GBM_GeneExp.rda")
load("GBM_miRNA_8x15k.rda")
load("GBM_clinical.rda")
GBM=list(GeneExp=GBM_GeneExp,miRNAExp=GBM_miRNA_8x15k)
result12=ExecuteSNF.CC(GBM, clusterNum=3, K=20, alpha=0.5, t=20,
maxK = 5, pItem = 0.8,reps=500,
title = "GBM", plot = "png",
finalLinkage = "average")

group=result12$group
distanceMatrix=result12$distanceMatrix
p_value=survAnalysis(mainTitle="GBM
SNF.CC-Cluster=3",
GBM_clinical$time,GBM_clinical$status,group,
distanceMatrix=distanceMatrix,similarity=TRUE)
```

Figure S17: The Survival curves and Silhouette plots for the identified cancer subtypes of GBM (SNF.CC result)
4.6 Identify cancer subtypes by Weighted Similarity Network Fusion

```r
load("GBM_GeneExp.rda")
load("GBM_miRNA_8x15k.rda")
load("GBM_clinical.rda")
GBM=list(GeneExp=GBM_GeneExp, miRNAExp=GBM_miRNA_8x15k)
###1. Use the default ranking in the package.
data(Ranking)
####Retrieve there feature ranking for genes
gene_Name=rownames(GBM_GeneExp)
library(HGNChelper)
gene_Name_1=checkGeneSymbols(gene_Name)
[,3]
gene_ranking=data.frame(gene_Name, Ranking[index1, ], stringsAsFactors=FALSE)
index2=which(is.na(gene_ranking$ranking_default))
gene_ranking$ranking_default[index2]=min(gene_ranking$ranking_default, na.rm =TRUE)
####Retrieve there feature ranking for genes
miRNA_ID=rownames(GBM_miRNA_8x15k)
index3=match(miRNA_ID, Ranking$mRNA_TF_miRNA_ID)
miRNA_ranking=data.frame(miRNA_ID, Ranking[index3, ],
stringsAsFactors=FALSE)
index4=which(is.na(miRNA_ranking$ranking_default))
miRNA_ranking$ranking_default[index4]=min(miRNA_ranking$ranking_default, na.rm =TRUE)
###Clustering
ranking1=list(gene_ranking$ranking_default, miRNA_ranking$ranking_default)
result13=ExecuteWSNF(datasets=GBM, feature_ranking=ranking1, beta=0.8, clusterNum=3,
K = 20, alpha = 0.5, t = 20, plot = TRUE)
group=result13$group
distanceMatrix=result13$distanceMatrix
p_value=survAnalysis(mainTitle="GBM
WSNF-Cluster=3",
GBM_clinical$time, GBM_clinical$status, group,
distanceMatrix=distanceMatrix, similarity=TRUE)
```

Figure S18: The Survival curves and Silhouette plots for the identified cancer subtypes of GBM (WSNF result)

21
4.7 The comparison of different cancer subtypes identification methods

The summary of the Log-rank test p-value for each cancer subtypes identification methods is shown in the Figure S19. We don’t list the Silhouette width for comparison because the similarity matrix for each cancer subtypes identification method is in different numerical level. So the Silhouette width does not have a comparative meaning but can provide the important information for the insight investigation of the identified cancer subtypes. Figure S19 shows that SNF and its variants (SNF.CC and WSNF) perform the best in this dataset.

Figure S19: The barplot for the Log-rank test p-values of each cancer subtypes identification method
5 Scenario 4: Investigating the Impact of Different Genomic Data Types Alters the Results with the Selected Feature Selection and Cancer Subtype Identification Methods

For the experiments of cancer subtypes identification with different genomic data types and feature selection methods, we choose the Consensus Clustering (CC) and the Similarity Network Fusion for single dataset input and multiple datasets input clustering, respectively. To have a comprehensive comparison, we intend to conduct the six groups of experiments which are listed below.

1. mRNA-Var-CC
2. mRNA+miRNA-Var-CC
3. mRNA+miRNA-Var-SNF
4. mRNA+DM+miRNA-Var-SNF
5. mRNA+miRNA-COX-SNF
6. mRNA+DM+miRNA-COX-SNF

```r
load("GBM_GeneExp.rda")
load("GBM_Methylation27.rda")
load("GBM_miRNA_8x15k.rda")
load("GBM_clinical.rda")
GBM_GeneExp_FsbyVar=FSbyVar(GBM_GeneExp, cut.type = "topk", value=4000)
GBM_Methylation27_FsbyVar=FSbyVar(GBM_Methylation27, cut.type = "topk", value=4000)
GBM_miRNA_8x15k_FsbyVar=FSbyVar(GBM_miRNA_8x15k, cut.type = "topk", value=250)
GBM_GeneExp_FsbyCox=FSbyCox(GBM_GeneExp, GBM_clinical$time, GBM_clinical$status, cutoff = 0.05)
GBM_Methylation27_FsbyCox=FSbyCox(GBM_Methylation27, GBM_clinical$time, GBM_clinical$status, cutoff = 0.05)
GBM_miRNA_8x15k_FsbyCox=FSbyCox(GBM_miRNA_8x15k, GBM_clinical$time, GBM_clinical$status, cutoff = 0.05)

####1. mRNA-Var-CC
result5_1=ExecuteCC(clusterNum=3,d=GBM_GeneExp_FsbyVar,maxK=5, clusterAlg="hc",distance="pearson",title="GBM")
group=result5_1$group
distanceMatrix=result5_1$distanceMatrix
p_value5_1=survAnalysis(mainTitle="GBM_mRNA-Var-CC",GBM_clinical$time, GBM_clinical$status,group,
distanceMatrix=distanceMatrix,similarity=TRUE)

####2. mRNA+miRNA-Var-CC
GBM=list(GeneExp=GBM_GeneExp_FsbyVar,miRNAExp=GBM_miRNA_8x15k_FsbyVar)
result5_2=ExecuteCC(clusterNum=3,d=GBM,maxK=5, clusterAlg="hc",distance="pearson",title="GBM")
group=result5_2$group
distanceMatrix=result5_2$distanceMatrix
p_value5_2=survAnalysis(mainTitle="GBM_mRNA+miRNA-Var-CC",GBM_clinical$status,group,
distanceMatrix=distanceMatrix,similarity=TRUE)

####3. mRNA+miRNA-Var-SNF
GBM=list(GeneExp=GBM_GeneExp_FsbyVar,miRNAExp=GBM_miRNA_8x15k_FsbyVar)
result5_3=ExecuteSNF(GBM, clusterNum=3, K=20, alpha=0.5, t=20)
group=result5_3$group
distanceMatrix=result5_3$distanceMatrix
```
The comparison of the six groups of Log-rank test p-values is shown in Figure S20. The multi-omics with COX model for SNF could discovery cancer subtypes with the significant different survival patterns.