CAME: Identification of Chromatin Accessibility from Nucleosome Occupancy and Methylome Sequencing

Yongjun Piao3,5, Seong Keon Lee6, Eun-Joon Lee3, Keith D. Robertson4, Huidong Shi2,3, Keun Ho Ryu5,* and Jeong-Hyeon Choi1,2,*

Supplementary Algorithm 1. Seed detection

Input: δ, d

1. for $i \leftarrow 1$ to N
2. if ($\beta_i \leq \delta$) then
3. startPosition $\leftarrow GCH_i$
4. while ($\beta_i > \delta$ or distance(GCH_i, GCH_{i+1}) $> d$)
5. $i \leftarrow i + 1$
6. endwhile
7. endPosition $\leftarrow GCH_i$
8. average \leftarrow calculate(startPosition, endPosition)
9. insert(startPosition, endPosition, average) to S'
10. endif
11. endfor
12. return S'

Supplementary Algorithm 2. Seed extension

Input: $S', \mu, \epsilon, d, \Delta$

1. while ($\forall S$ is considered, $S \in S'$)
2. $S_i \leftarrow$ selectStartingPoint(S')
3. while (!stopCondition)
4. (peak, valley) \leftarrow searchNextPeakValley(S_i)
5. tempAverage1 \leftarrow calculate(S_i, valley)
6. tempAverage2 \leftarrow calculate(S_{i+1}, valley)
7. if ($\beta_{\text{peak}} < \Delta$ and tempAverage1 $\leq \mu$ and tempAverage2 $\leq \epsilon$)
8. $S_i \leftarrow$ extendSeed(S_i, valley)
9. else
10. (ave, std) \leftarrow npMixture()
11. for $j \leftarrow S_i$ to valley do
12. if ($\beta_{j+i} > \text{ave} + \text{std}$) then stop
13. endfor
14. $S_i \leftarrow$ extendSeed(S_i, j)
15. stopCondition \leftarrow true
16. endif
17. endwhile
18. insert(S_j) to R'
19. endwhile
20. return R'
Supplementary Table. 1. Performance change of CAME by CCR and OCR detection methods. For the OCR detection method, parameters $d=150$, $\Delta=0.6$, and $(\delta, \varepsilon) = (0.9, 0.6), (0.8, 0.5), (0.7, 0.5), \text{and} (0.6, 0.5)$ were used.

<table>
<thead>
<tr>
<th></th>
<th>CCR detection</th>
<th>OCR detection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensitivity</td>
<td>Specificity</td>
</tr>
<tr>
<td>D1</td>
<td>0.9954</td>
<td>0.9999</td>
</tr>
<tr>
<td>D2</td>
<td>0.9964</td>
<td>0.9997</td>
</tr>
<tr>
<td>D3</td>
<td>0.9941</td>
<td>0.9228</td>
</tr>
<tr>
<td>D4</td>
<td>0.9470</td>
<td>0.9271</td>
</tr>
</tbody>
</table>

Supplementary Fig. 1. Bar charts of performance change of CAME by CCR and OCR detection methods.
Supplementary Fig. 2. ROC curve with 10 threshold values for the average methylation score δ: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.

Supplementary Fig. 3. ROC curve with 10 threshold values for the jump score Δ: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.
Supplementary Fig. 4. The left plot shows a scatter plot between chromatin accessibility and DNA methylation where each x-pixel indicates average GCH methylation score and each y-pixel represents average HCG methylation score of a CCR (OCR), and each point has different degree of the color (light to dark) based on its density. The top and bottom left (right) quadrants represent hyper- and hypo-methylated CCRs (OCRs), respectively. The right plot shows histograms for the number of detected regions for each of the categories (hypo- and hyper-methylated CCRs and OCRs). CCRs (OCRs) with HCG methylation score that are > 0.7 were considered as hyper-methylated and those with HCG methylation score that are < 0.3 were defined as hypo-methylated. The histogram shows the number of detected regions for each of the categories.

Supplementary Fig. 5. DAVID analysis for hyper-methylated CCRs (A) and OCRs (B), and hypo-methylated CCRs (C) and OCRs (D).