
BIOINFORMATICS Vol. 00 no. 00 201X
Pages 1–8

Supplementary Document for:
K2 and K∗

2 : efficient alignment-free sequence similarity
measurements based on the Kendall statistics
Jie Lin 1, Donald A. Adjeroh 2, Bing-Hua Jiang 3 and Yue Jiang 1∗

1 College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350108, China.
2 Department of Computer Science & Elect. Engineering, West Virginia University, Morgantown,
WV 26506, USA.
3 Department of Pathology, Carver College of Medicine, the University of Iowa, Iowa city, IA 52242,
USA.
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXX

1 INTRODUCTION
This document is the supplementary data for the paper: K2 andK∗2 :
efficient alignment-free sequence similarity measurements based on
the Kendall statistics.

2 USAGE
2.1 Packages and data
The package is available: http://community.wvu.edu/
˜daadjeroh/projects/K2/K2_1.0.tar.gz.
The experiments codes are available: http://community.
wvu.edu/˜daadjeroh/projects/K2/K2Experiment.R.
The related data are available: http://community.wvu.edu/
˜daadjeroh/projects/K2/Data.tar.gz.
The entire supplementary material (including this document) is
available in one archive file at: http://community.wvu.
edu/˜daadjeroh/projects/K2/K2_1.0Files.tar.gz

2.2 Usage
1. Installation

R> install.packages("K2_1.0.tar.gz")

2. Functions
See the help file for the “K2” package.

3. Examples
The following shows an example on how to use the proposed
K2 and K∗2 algorithms to calculate similarity between two
sequences:

R>library(K2)
R>seq.fa= readFasta("./Data/CaoDNA.txt")

∗to whom correspondence should be addressed (yueljiang@163.com)

R>K2similarity(seq.fa$seq[1],
+ seq.fa$seq[2], k=7)
R>K2star(seq.fa$seq[1],
+ seq.fa$seq[2], SigmaSize=4)

The following are codes to calculate similarity among
sequences in the fasta format by using K2 method.

R> K2=matrix(0, nrow=seq.fa$total,
+ ncol=seq.fa$total)
R> for (i in 1:seq.fa$total)
+ {
+ for (j in 1:seq.fa$total)
+ {
+ K2[i,j]= K2similarity(
+ seq.fa$seq[i],
+ seq.fa$seq[j], k=7)
+ }
+ }

The following are codes to calculate similarity among
sequences in fasta format using the K∗2 method.

R> K2s=matrix(0, nrow=seq.fa$total,
+ ncol=seq.fa$total)
R> for (i in 1:seq.fa$total)
+ {
+ for (j in 1:seq.fa$total)
+ {
+ K2s[i,j]= K2star(
+ seq.fa$seq[i],
+ seq.fa$seq[j], 4)
+ }
+ }

c© Oxford University Press 201X. 1

Jie Lin, Donald A. Adjeroh, Bing-Hua Jiang and Yue Jiang

3 DETAILED METHOD
3.1 Optimized computation of Kendall statistics
The time cost to compute τ̂ , the approximation to the Kendall
correlation statistic is O(n2), including time to compare each pair
between (Xi, Xj) and (Yi, Yj), i 6= j, where n is the number
of pairs in X and Y . Christensen (Christensen, 2005) showed
an algorithm to calculate τ̂ in O(n logn) time complexity. It was
implemented in Pascal. We propose a new algorithm to compute τ̂
which also runs in O(n logn) time, but uses a different approach.
We then apply the algorithm to analyze similarity between a given
pair of sequences. A related problem of computing the weighted
Kendall correlation was addressed in (Lin et al., 2017).

3.1.1 Calculation of τ̂ Given a set of random variables X and
Y, their corresponding pair (X,Y) is preprocessed by ordering X
variable first and then by Y variable in increasing order. After
sorting, we have X1 ≤ X2 ≤ ...Xi... ≤ Xn. For some Xi’s which
have the same value: Xi = Xi+1 = ... = Xi+k, we must have
Yi ≤ Yi+1 ≤ ... ≤ Yi+k.

For all pairs that have the same values of {Xi, Yi}, we organize
them into a group. For each {X,Y } group, if the group starts at
s and ends at e, then we must have Xs = Xs+1... = Xe, and
Ys = Ys+1... = Ye. In the calculation step, a group is regarded as
an individual element. If all pairs inside {X,Y } have different Xi
or Yi values, this means that we will have n individual groups. The
group number is in the range of 1 to n.

The pairs are processed one by one from left to right, in increasing
order of their X values. For a given current position k, 1 ≤ k ≤ n,
if 1 < i < k < j < n, it means that {Xi, Yi} is a processed
element and {Xj , Yj} is a pending element.

Before we dig into the detailed steps for calculating τ̂ , we first
introduce four auxiliary array data structures that we will use in
the calculations. Each array is computed before hand in O(n) time
during preprocessing.

1. RX
RX[k]: Given a current position k and corresponding Xk,
RX[k] contains the number ofXt whose values are less than or
equal to Xk. That is, RX[k] = |{Xt|Xt ≤ Xk, 1 ≤ t ≤ k}|.
It can be precomputed in O(n) time, for all k.

2. RY
RY [k]: Given a current position k, RY [k] is the number of Yt
whose values are less than Yk. That is, RY [k] = |{Yt|Yt <
Yk, 1 ≤ t ≤ n}|. It is the number of pairs which has Yt
variable less than Yk. It can be precomputed in O(n) time, for
all k.

3. TY
TY [k]: Given a position k, TY [k] is the number of pairs of
(Xt, Yt) that has the same Yt value as Yk. That is, TY [k] =
|{(Xt, Yt)|Yt = Yk, 1 ≤ t ≤ n}|. It can be precomputed in
O(n) time.

4. PY
PY [k]: Given a current position k, PY [k] is the number of
pairs within the already processed pairs that have Yt values as
the same as Yk. That is, PY [k] = |{(Xt, Yt)|Yt = Yk, 1 ≤
t ≤ k}|. In the computation process, PY [k] is initialized to
0 first. When scanning the list, it will be updated accordingly.

We note the difference between TY [k] and PY [k]: TY [k] is a
precomputed variable, whilePY [k] is a variable that is updated
while scanning the sequence. At the end of scanning, both will
have the same value.

To compute τ̂ , we use :

τ̂ =
nc − nd
n×(n−1)

2

(1)

From Eqn 1, we can see that the most important part is to
calculate nd (the number of discordant pairs), and nc (the number
of concordant pairs) within the {X,Y } pairs. In the calculation
process, the sorted {X,Y } pairs are processed one by one from left
to right – from the pairs with the smallest X values to those with
the largest. Given a position k and its corresponding group of pairs
{Xk, Yk}, for element k, the number of discordant pairs (Ndk) and
of concordant pairs (Nck) are each calculated one by one, from left
to right. The sum of these group-wise discordant and concordant
numbers will give nd and nc respectively: nd =

∑
kNdk; nc =∑

kNck.

1. Computing Ndk, the number of discordant pairs for an
element at position k.
For a current position k and {Xk, Yk}, the discordance occurs
when an element has Yk > Yj where k < j ≤ n and
Xk < Xj , denoted as |{Yj |Yj < Yk, 1 ≤ k < j ≤
n}|. The discordance number can be calculated from Ndk =
RY [k] − less, where RY [k] is the number of pairs inside
{X,Y } that have Y variable less than Yk, and less is the
number of elements in the left side of k that have variable Yi
less than Yk. RY [k] is preprocessed as introduced previously.
We can access RY [k] in constant time. The value of less can
be calculated by using the following steps.

• less = |{Yi|Yi < Yk, 1 < i < k}|, variable less
contains the number of processed elements (in the left
side of k) which has Yi less than the current Yk. It can
be calculated from less = |{Yi|Yi ≤ Yk}| − PY [k],
where PY [k] is the number of processed elements Yi in
the left side of Yk which have Yi = Yk. Calculating
|{Yi|Yi ≤ Yk}| uses the binary index tree (BIT) data
structure (Fenwick, 1994), which allows the value to be
retrieved in O(logn) time.

2. Computing Nck, the number of concordant pairs for an
element at position k.

This can be done using the relation: Nck = large0 −
large1 − large2. We now describe how we compute each of
the three variables involved.

• large0: This records the number of elements whose Yt is
greater than Yk. That is, large0 = |{Yt|Yt > Yk, 1 ≤
t ≤ n}|, It can be precomputed by using large0 = n −
RY [k]− TY [k]. RY [k] and TY [k] are computed during
preprocessing as mentioned earlier. RY [k] is the number
of all pairs whose Yk < Yi. Hence, n − RY [k] is the
number of all pairs whose Yk ≥ Yi. TY [k] contains the
number of ties to the current pair.

2

• large1: This records the number of pairs of Yi, where
|{Yi|Yi > Yk}|, 1 ≤ i < k. This is computed using the
following: large1 = k − leeq, where, leeq = |{Yi|Yi ≤
Yk}| is calculated using the BIT array. The variable leeq
denotes the number of processed elements that have Yi
less than and equal to Yk. It can be calculated by using the
BIT data structure in O(logn) time complexity.

• large2: This records the number of unprocessed elements
whose Xj are equal to the current Xk. That is, |{Xj |j >
k, & Xj = Xk, Yj > Yk}|. We compute, large2 using
the relation: large2 = RX[k]− k.

In the calculation step, we scan from left to right in O(n) times.
When calculating leeq, we use the BIT data structure (Fenwick,
1994), in O(logn) time. The other steps require constant time
access to the precomputed auxiliary arrays. Thus, the total time
complexity will be in O(n logn).

3.1.2 Algorithm analysis In the proposed algorithm, first, we
sort the pairs of input variablesX,Y in increasing order, to generate
the ranked pairs. Next, to compute the number of concordant pairs,
and number of discordant pairs, we check the ranked pairs one
by one in the same order. At the step of processing each pair, the
algorithm uses the Binary Interval Tree (BIT), also called a binary
indexed tree, which was first introduced in (Fenwick, 1994). This
is a key to improved efficiency in our approach. Briefly, the BIT
is an indexed data structure to compute prefix sums in a series of
numbers, and also to update the elements in the table. Traditionally,
for a table with n elements represented using an ordinary array, we
will need O(n) time to compute the prefix sum, and the same O(n)
time to update elements in the table. With the BIT, the numbers in
the table are represented in a tree, such that the value stored at a
given node in the tree corresponds to the sum of the values stored at
its child-nodes. Thus, this essentially stores the cumulative counts
from the subtree rooted at the node. The tree structure of the BIT
thus allows both the element update operation, and the computation
of the cumulative (prefix) sum to be performed in O(logn) time
for a given node. The BIT uses arrays to implement the tree data
structure. Here, the data structure uses an array to keep track of
the index of each element, where the index can be frequency of
occurrence, cumulative sum, etc. Using the BIT, we can quickly
compute the frequencies(/sums) of an interval from element i to
element j. The time for this operation is logarithmic, requiring
O(logn) time in the worst case. Thus, for n pairs, the algorithm
runs in O(n logn) time complexity. This can be compared with the
O(n2) time required by the original method for Kendall statistic.

3.2 Comparative complexity analysis of K2 and K∗
2

Some variants of the D2 statistic require time that is potentially
quadratic or cubic in terms of the length of the sequences, or in terms
of the size of the k-gram(/k-mer) (Song et al., 2014; Bonham-Carter
et al., 2014).

Given S = TP and w, the time cost of the match function
match(S, i, k,w) to check if one k-mer w occurred at a given
position in S is O(k). To identify and count all the occurrences of
this single k-mer will require O(|S|k) time. There are potentially
O(|Σ|k) possible substrings of size k, given the alphabet Σ. Thus, a
naı̈ve computation of the statistics will require time inO(k|S||Σ|k).

A simple improvement can be made to avoid this exponential
complexity, for instance, by observing that only those k-grams that
actually occurred in the sequences (T or P) will impact the result
of the statistics. Thus, the actual number of k-grams that will be
matched should not exceed (|S|). This leads to an overall time
complexity of O(k|S|2). In theory, k can be in O(|S|), making this
a cubic time complexity, although in practice k is relatively small,
when compared with |S|.

Our approach relies on sophisticated data structures such as
suffix arrays, and the binary interval tree. The time required to
construct the suffix array structures, including suffix array (SA)
and Longest Common Prefix (LCP) array, is in O(|S|) time. Also,
with the suffix arrays, we can count all the occurrences of each
unique k-length substring w in S in a total time of O(|S|) with
the SA and LCP arrays (Manber and Myers, 1993; Gusfield,
1997; Adjeroh et al., 2008). The improved Kendall statistic uses
the counts independently, and is computed in O(|S| log |S|) time
via the binary interval tree (Fenwick, 1994). Thus, the overall
time for our algorithm is in O(|S| log |S|). This is a significant
improvement in complexity, when compared with the O(k|S||Σ|k)
required for computing the D2 and other related statistics, or even
with the observed improvement that reduces the time to O(k|S|2).
K∗2 requires just a one-time run of K2, using the automatically
computed k-parameter. This will be practially faster than using K2,
however, the time complexity still remains the same O(|S| log |S|)
as in K2.

4 RESULTS AND ANALYSIS
4.1 Correlation with the edit distance
The edit distance between two strings is defined as the minimum
number of operations required to transform one string into the
other. The edit distance is the basic standard used to compare
two strings (Gusfield, 1997; Adjeroh et al., 2008). However, it
has a quadratic time complexity with respect to the length of the
strings. Thus, finding alternative distance measures that have a good
correlation with the edit distance has become important in various
applications in genomics.

To compare the methods, we compute the Pearson correlation
coefficient between the results from each method and the standard
edit distance. With the Pearson correlation coefficient, a value of 0
indicates no correlation; a value of 1 indicates positive correlation,
while a value of−1 indicates negative correlation. For a comparison
method, a value close to 1 or −1 indicates its ability in measuring
the similarity (/dissimilarity) between sequences. A value close to 0
shows an inability to measure the similarity(/dissimilarity) between
the given sequences.

4.1.1 mtDNA20 data set
Table 1 shows the Pearson correlation coefficient between the

standard edit distance and the distance/similarity measure reported
by each of alignment-free methods using the mtDNA20 dataset.
Here, the k parameter was varied from 2 to 9. First, consider
the methods that use different values for k. In the table, the best
performance methods are indicated in bold for a given k. We
can observe that, in general, the correlation with the edit distance
increases with increasing values of k. This implies an improvement
in the detection power with increasing k. Here, detection power

3

Jie Lin, Donald A. Adjeroh, Bing-Hua Jiang and Yue Jiang

is measured by the absolute value of the correlation coefficient.
This result is in line with those reported in (Reinert et al., 2009)
where a similar increase in detection power was observed. For this
performance measure, Dsh

2 and K2 were the best methods, with the
highest correlation amongst the methods tested. This result is also
in agreement with those of (Song et al., 2014) who demonstrated
that Dsh

2 (denoted Ds
2 in their work) was the best D2 statistic in

their experiments. Table 1 demonstrates that K2 and Dsh
2 are better

than the other methods in estimating the similarity(/dissimilarity)
between sequences. The K2 method is quite competitive, and
comparable with Dsh

2 in performance under this measure (Each of
them outperformed the others in four or five cases respectively).

Now, consider the K∗2 method. It has a correlation coefficient of
0.94, and it outperformed the other methods in all 8 cases except
K2 with k = 9. Comparing K∗2 to K2, K∗2 performed better than
K2 when k is varied from 2 to 8 (7 cases). K2 did slightly better at
k = 9 (ρ = 0.95). A key advantage of the K∗2 method is that it is
able to select parameter k automatically and quickly. However, if we
consider that K2 will need to try all possible k values to determine
the best k (9 in this case), the slight performance disadvantage (ρ =
0.94 vs. ρ = 0.95) of K∗2 becomes less significant, especially with
increasing data volumes.

Table 1. Pearson correlation coefficient between the similarity/distance
measure from different alignment-free statistical methods and the edit
distance. Reports are for the mtDNA20 dataset. K∗2 with automatically
determined k value, DV and Shi without varied k parameter, are all
reported in the last row for brevity. Dz

2 generated an error at k = 9.

k D2 D∗2 Dsh
2 Dz

2 K2 DMk CPF WFV

2 -0.45 -0.51 -0.55 0.02 -0.56 0.67 0.62 0.57
3 -0.48 -0.60 -0.74 0.10 -0.73 0.68 0.66 0.62
4 -0.53 -0.71 -0.86 -0.74 -0.82 0.70 0.71 0.63
5 -0.61 -0.79 -0.91 -0.81 -0.89 0.78 0.77 0.72
6 -0.77 -0.87 -0.92 -0.83 -0.92 0.84 0.86 0.68
7 -0.87 -0.91 -0.92 -0.84 -0.92 0.87 0.89 0.68
8 -0.90 -0.92 -0.91 -0.84 -0.93 0.85 0.89 0.66
9 -0.91 -0.91 -0.91 — -0.95 0.85 0.87 0.67

K∗2 -0.94 DV 0.70 Shi 0.68

4.1.2 Fish23 dataset
Table 2 shows the Pearson correlation coefficients between the

similarity measurements from the different alignment-free methods
and the edit distance, using the Fish23 dataset. From the table, we
see similar trends with the observations from the mtDNA20 dataset:
(1) In general, the correlation with the edit distance increases with
increasing values of k, which indicates an improvement in the
detection power with increasing k. (2) The K2 method is quite
competitive when compared with the other methods. Especially
when k ≥ 4, K2 demonstrates overwhelming superiority. (3) K∗2 is
the best method, with respect to correlation of the distance measure
with the edit distance.

4.2 Practical running time using Fish23 dataset
Table 3 and Supplementary Figure S3 show the execution times for
all methods, using the second dataset (Fish23 dataset) from (Fischer

Table 2. Pearson correlation coefficient between the similarity/distance
measure from different alignment-free statistical methods and the edit
distance, using Fish23 dataset. Results for K∗2 with automatically
determined k values, DV and Shi with fixed k values, are reported in the
last row. Dz

2 generated an error at k = 9.

k D2 D∗2 Dsh
2 Dz

2 K2 DMk CPF WFV

2 -0.43 -0.56 -0.47 0.11 -0.47 0.69 0.66 0.49
3 -0.48 -0.66 -0.56 0.06 -0.55 0.70 0.67 0.67
4 -0.56 -0.69 -0.66 -0.28 -0.81 0.70 0.70 0.79
5 -0.68 -0.82 -0.78 -0.52 -0.92 0.84 0.83 0.80
6 -0.83 -0.88 -0.87 -0.63 -0.94 0.93 0.91 0.62
7 -0.92 -0.93 -0.92 -0.65 -0.95 0.93 0.94 0.60
8 -0.94 -0.94 -0.94 -0.68 -0.95 0.92 0.90 0.61
9 -0.94 -0.93 -0.93 — -0.95 0.92 0.91 0.60

K∗2 -0.96 DV 0.66 Shi 0.60

et al., 2013). K∗2 = 6.64s, DV = 2.57s and Shi = 1.80s are
shown in the last row of the table. Although DV and Shi are faster
than K∗2 , they, however, have relatively low accuracy. From the
table, we can make several observations, similar to the case with
mtDNA20 dataset. (1) The respective running times forDsh

2 ,DMk,
WFV andDz

2 increase exponentially with increasing k. (2) WFV
is the fastest when k ≤ 6; (3)K2 is faster thanDsh

2 ,D∗2 ,Dz
2 ,DMk

and WFV , when k ≥ 7, showing a high correlation with the edit
distance; (4) Combining accuracy and running time, K∗2 is the best
choice, especially with huge data volumes.

Table 3. Practical running time (in seconds) for different methods using
Fish23 dataset. Results for K∗2 with automatically determined k values, DV
and Shi with fixed k values, are reported in the last row. Dz

2 generated an
error at k = 9.

k D2 D∗2 Dsh
2 Dz

2 K2 DMk CPF WFV

2 0.01 0.01 0.05 2.16 1.51 4.17 16.67 0.004
3 0.02 0.02 0.05 3.77 1.52 4.96 17.05 0.008
4 0.04 0.04 0.05 3.96 1.66 5.95 18.96 0.020
5 0.24 0.65 0.96 4.28 2.08 8.06 19.57 0.080
6 1.08 2.02 3.67 5.61 3.73 11.20 19.88 0.722
7 2.81 7.37 14.53 11.85 6.16 20.74 20.10 6.800
8 7.08 18.31 53.14 40.2 6.43 42.57 21.85 35.1
9 15.02 30.76 92.54 - 7.85 90.98 21.64 323.6

K∗2 6.64 DV 2.57 Shi 1.80

4.3 Number of Hops
Another way to evaluate the phylogenetic trees generated by
different methods is to compare the number of hops betweem two
identified nodes using a given tree, againts those observed using a
reference tree. Table 4 shows the number of hops between two pairs
of species.

The table suggests that the proposed methods K2 and K∗2 are
quite competitive, with the number of hops generally similar to, or
bertter than, the other methods on the mtDNA20 dataset.

Similar to the analysis for the trees generated on mtDNA20
dataset, we can observe that, once again, the methods did generally

4

Table 4. Number of hops needed to move from one species (leaf node) to
another using the different phylogenetic trees. Results shown are for two
sample pairs of species, using the trees in the Supplementary Figure S1. Dz

2 ,
WFV , Shi, and DV are omitted, given space constraint, since they did not
perform as well as the other methods.

Descr- Ref. D2 D∗2 Dsh
2 K2 K∗2 DMk CPF

iption Tree
horse 4 5 5 5 6 5 5 5
to cat
horse 5 7 6 4 4 4 4 6
to cow

well with respect to pairwise similarity between species (i.e, the
lowest level of nodes, nodes 1 to 10 in the reference tree, see
the Supplementary Figure S2 (a)). But higher levels become more
challenging for the methods. For instance, check the positions for
T.polylepis and P.flagellifer for each tree. Again, we
can use the number of hops for a quick appraisal of the performance
of the methods. Similar to the Table 4, Table 5 shows the
corresponding number of hops between two pairs of species, using
the phylogenetic trees for the Fish23 dataset. These results suggest
that K2 and K∗2 are superior to the D2 family of alignment-free
methods on the Fish23 dataset.

Table 5. Number of hops needed to move from one species (leaf node) to
another using the different phylogenetic trees. Results shown are for two
sample pairs of species, using the trees in the Supplementary Figure S2. Dz

2 ,
WFV , Shi, and DV are omitted since they did not perform as well as the
other methods.

Description Ref. D2 D∗
2 Dsh

2 K2 K∗
2 DMk CPF

Tree

P. poll. to 7 9 8 8 8 8 10 8
C. aggr.
P. poll. to 5 6 7 6 6 6 6 6

T. poly.

5 DATA SET AND EXPERIMENTAL CODE
5.1 Data set
The first data set, called “mtDNA20”, used in this study is the
complete mtDNA sequences from (Cao et al. (1998)) with 20
eutherian species of 12 proteins encoded in the H strand of mtDNA.
The gene database accession numbers are listed for reference:

Bos taurus (cow; database accession number V00654)
Balaenoptera physalus (fin whale; X61145),
Balaenoptera musculus (blue whale; X72204),
Phoca vitulina (harbor seal; X63726),
Halichoerus grypus (gray seal; X72004),
Felis catus (cat; U20753),
Equus caballus (horse; X79547),
Rhinoceros unicornis (Indian rhinoceros; X97336),
Mus musculus (mouse; V00711),
Rattus norvegicus (rat; X14848),
Homo sapiens (human; D38112),
Pan troglodytes (chimpanzee; D38113),

Pan paniscus (bonobo; D38116),
Gorilla gorilla (gorilla; D38114),
Pongo pygmaeus p. (Bornean orangutan; D38115),
Pongo pygmaeus abelii (Sumatran orangutan; X97707),
Hylobates lar (common gibbon; X99256),
Didelphis virginiana (Virginia opossum; Z29573),
Macropus robustus (wallaroo; Y10524),
Ornithorhynchus anatinus (platypus; X83427)

The second dataset contains 23 whole mitochondrial DNA
genomes from different Eukaryotic fish species of the suborder
Labroidei which come from (Fischer et al., 2013). We could not
find sequences of two species, namely, P. trewavasae and T.
moorii in NCBI gene database. Thus, though the original work in
(Fischer et al., 2013) used 25 species, our dataset contained only 23
of the 25 species. We call this dataset the “Fish23” dataset.

The “CRM185” dataset contains (cis-regulatory modules)
(CRMs), which are the same data used in (Kantorovitz et al.
(2007)). The data can be downloaded from http://veda.cs.
uiuc.edu/d2z/publicdata.tar.gz. The CRM185 dataset
contains seven data sets. For completeness, below, we provide
a brief description of this dataset, adapted from that provided in
(Kantorovitz et al. (2007)).

• FLY BLASTODERM : 82 non-overlapping CRMs that have
expression in the blastoderm-stage embryo of fruitfly, D.
melanogaster.

• FLY PNS : 23 experimentally validated CRMs (average length
998 bp) with expression in the peripheral nervous system of
fruitfly.

• FLY TRACHEAL : 9 CRMs (average length 1220 bp) involved
in regulation of fruitfly tracheal system.

• FLY EYE : 17 CRMs (average length 894 bp) that express in
the eye of fruitfly.

• HUMAN MUSCLE : 28 human CRMs (average length 450
bp) involved in regulating muscle-specific gene expression.

• HUMAN LIVER : 9 human CRMs (average length 201
bp)involved in expressions specific to the human liver.

• HUMAN HBB : 17 CRMs (mean length 453 bp) involved
in regulating the HBB complex (a set of developmentally
regulated, erythroid-specific genes encoding β-globin in
human).

5

Jie Lin, Donald A. Adjeroh, Bing-Hua Jiang and Yue Jiang

5.2 Experimental code
Here, we explain the usage of experimental codes in this study.
The file named “K2Experiment.R” contains the algorithms and the
corresponding functions. First, the algorithms need to be loaded in
R environment using the R command “source” as follows.

R> source("K2Experiment.R")

The following is an example code used to generate Phylogenetic
trees (result is stored in a file named DNA.pdf at the current
directory) and RF distances with parameter k from 2 to 9. A
Phylogenetic tree generated by the K∗2 algorithm is also inside the
file named DNA.pdf.

R> DNA.data= readFasta("./Data/CaoDNA.txt")
R> DNAexperiment(DNA.data)

The following codes use Fish Data set and generate Phylogenetic
trees (named Fish.pdf file at current directory) and RF distances with
parameter k from 2 to 9. A Phylogenetic tree generated by using the
K∗2 algorithm is also inside the Fish.pdf file.

R> dat=readFas("./Data/FishData.fas")
R> FishExperiment(dat)

The evaluation of functionally related regulatory sequences using
the same parameters with the original paper (Kantorovitz et al.
(2007)) can be conducted as follows.

R> seq=read.table("./Data/CRMs.lst"
+ ,stringsAsFactors = F)
R> CRMexperiment(seq)

6 BACKGROUND AND RELATED WORK
Various approaches have been proposed for sequence similarity
evaluation (see (Gusfield, 1997; Adjeroh et al., 2008)). Most
methods are based on some form of sequence alignment (Gusfield,
1997; Wallace et al., 2005; Notredame, 2007; Altschul et al.,
1990), or dynamic programming (Gregor and Thomason, 1993).
The high computational complexity for sequence alignment is,
however, still a major problem (Wallace et al., 2005; Notredame,
2007). Alignment-based methods therefore are faced with serious
challenges, as the problem is significantly compounded by the
rapid growth in the number, diversity, and size of available
biological sequence data, for instance, complete genomes of
various organisms, and data from next generation sequencing
experiments needed to compile such complete genomes. Alignment-
free methods with reduced computational cost have thus been
proposed.

Alignment-free sequence comparison methods can be classified
into four general types, namely, D2 statistic family of
methods (Song et al., 2014; Bonham-Carter et al., 2014), base-base
correlations (BBC) (Liu et al., 2008), feature frequency profiles
(FFPs) (Dai et al., 2011), and compositional vectors (CVs) (Wu
et al., 2006). One approach here is computing the longest common
subsequence (LCS) between two strings (Gusfield, 1997; Adjeroh
et al., 2008). However, this is still generally time consuming,
requiring time that is quadratic in the sequence lengths. Another
approach is in computing the complexity profile for the sequences

(Troyanskaya et al., 2002; Nan and Adjeroh, 2004), and then
comparing the sequences based on their complexity profiles.

Perhaps, the most popular approach to alignment-free sequence
comparison is by using the k-grams (also called k-mers, short
patterns of length k) contained in the two or more sequences. The
basis of this approach is the assumption that, if two sequences are
closely related, they should also share a significant proportion of
k-grams between them. In this work, we propose the K2 statistic,
a novel approach for analyzing such k-gram substrings for use
in efficient similarity measurement. Based on the K2 statistic,
we propose an improved version, called K∗2 , which is able to
determine the suitable k value automatically, without degrading the
performance.

With the emergence of massive genomic and proteomic data
sets, especially from next-generation sequencing, comparison
among a huge number of biological sequences has become a
critical procedure in bioinformatics. Alignment-based methods,
for example, BLAST (Altschul et al., 1990) and dynamic
programming (Gregor and Thomason, 1993), are not feasible with
very large number of sequences, or very long sequences, due to
their time-consuming nature. Given the huge computational cost
of alignment-based sequence similarity measurement, alignment-
free methods with reduced time and space complexity have been
studied, and applied to many sequence analysis problems (Bonham-
Carter et al., 2014; Song et al., 2014; Vinga and Almeida, 2003;
Vinga, 2007). Compared to traditional alignment-based methods,
alignment-free sequence comparison methods often use statistical
approaches which are typically faster, with reduced resource
requirements (Bonham-Carter et al., 2014). This makes them very
popular in sequence comparison for various applications.

6.1 D2 family
Our approach is more closely related to the D2 family of statistics.
Thus, we describe these in some more detail below, to provide
a context for our contribution. To formalize the description, we
first introduce some notations needed for general string/sequence
analysis, which will be used to describe some popular algorithms
for alignment-free sequence analysis. Let T = T [1 . . . n] be a given
string of length n, over an alphabet Σ. Let T = αβγ, for some
strings α, β, and γ (α and γ could be empty). The string β is called
a substring of T , α is called a prefix of T , while γ is called a suffix of
T . We will use T [i] to denote the i-th symbol in T , and T [i . . . j] to
denote a substring that starts at position i in T and ends at position
j (inclusive). We let P = P [1 . . .m] be another string of length m
over Σ that needs to be compared with T for similarity. A k-mer
in T (also called a k-gram (Gusfield, 1997; Adjeroh et al., 2008),
k-tuple (Reinert et al., 2009), or k-word (Lippert et al., 2002)) is
simply a substring T [i . . . j] of T with length k = j − i+ 1.

To describe the members of the D2 family, we will follow the
notations in (Reinert et al., 2009). Let n̄ = n−k+1, m̄ = m−k+1.
Let w = w1w2 . . . wk ∈ Σk be any possible k-mer that can be
formed from the sequence alphabet Σ. Let Xw record the number
of times the k-mer w occurred in T . Define the match function
match(T, i, k,w) as follows:

match(T, i, k,w) =

{
1 : T [i . . . i+ k − 1] = w
0 : otherwise

(2)

Then, Xw is defined as follows:

6

Xw =

n̄∑
i=1

match(T, i, k,w), (3)

Similarly, we use Yw to count the number of times w occurred in
P , the second sequence:

Yw =

m̄∑
i=1

match(P, i, k,w), (4)

The D2 word count statistic (Lippert et al., 2002; Reinert et al.,
2009) is then defined as follows:

D2 =
∑

w∈Σk

XwYw. (5)

The asymptotic properties of the D2 distribution are studied in
(Lippert et al., 2002; Reinert et al., 2009), where they established
conditions for normal approximations for D2. The D2 statistic is
known to suffer from the potential problem of being dominated
by single-sequence background noise, for the case of non-uniform
symbol distributions (Lippert et al., 2002; Reinert et al., 2009).
Reinert et al. further argued that the D2 is not a desirable static for
measuring sequence similarity, especially given that its capability
(or power) to detect similarity or relatedness between sequences
decreases with increasing length of the sequences, or as the
sequences become more similar.

To improve the performance of D2, Kantorovitz et al.
(Kantorovitz et al., 2007) modified the static by using the z-scores
of the D2 values, rather than the direct value, viz:

Dz
2 =

D2 − E(D2)

sd(D2)
, (6)

where, E(x) is the expected value of x, and sd(x) is the standard
deviation. Dz

2 was shown to improve the performance of D2

statistic on the problem of clustering biologically-related sequences
(Kantorovitz et al., 2007). But as pointed out in (Reinert et al.,
2009), the problem of dominance of single-sequence background
noise for the case of non-uniform symbol distributions is still an
issue for this method. Reinert et al. (Reinert et al., 2009) thus
proposed and analyzed two other modifications to the D2 statistic.
The first was a self-standardized version, defined as follows: Given
w, let pw = Πk

i=1pwi be the probability of occurrence of the k-mer
w, where pwi is the probability of symbol wi, (wi ∈ Σ), the i-th
symbol in the k-mer w. Define, the respective centralized counts for
T and P as follows: X̃w = Xw − n̄pw; Ỹw = Yw − m̄pw; Then,
using these centralized frequencies, the new statistic is given as:

Dsh
2 =

∑
w∈Σk

X̃wỸw√
X̃2

w + Ỹ 2
w

, (7)

It was shown that, under certain standard assumptions, the Dsh
2 -

statistic (also called Ds
2-statistic) is generally normally distributed.

The statistic is related to the earlier observations by Shepp (Shepp,
1964) on the normality of the ratio of the product and square root of
the sum of squares of independent zero-mean normally distributed
variables.

The second modification is a variation of the Dsh
2 -statistic to

accommodate the fact that, in most cases, only estimates of

the symbol probabilities will be available, rather than the exact
probabilities. Thus, the exact symbol probability pσ, σ ∈ Σ is
replaced with its estimate p̂σ, σ ∈ Σ. The new statistic is then
defined by changing the denominator of the previous equation:

D∗2 =
∑

w∈Σk

X̃wỸw√
n̄m̄p̂w

(8)

In (Reinert et al., 2009), it was shown that D∗2 provided a
better measure for sequence similarity, exhibiting superior power
for detection of relatedness between sequences, when compared
with D2, or DS

2 . They also performed detailed simulations to
study the distributions of the different k-mer-based statistics for
sequence similarity measurement, using both the common motif
model and the pattern transfer model between sequences, under
the null hypothesis that the two sequences are independent and
identically distributed. Overall, the observation is that the power
of the different statistics generally increases with increasing k, and
increasing sequence lengths n and m, except for D2. It was also
noted that this increase in power comes at a greater computational
requirement.

6.2 Robinson-Foulds distance
To compare the similarity/dissimilarity between two trees, we use
the Robinson-Foulds(RF) distance (Robinson and Foulds, 1981).
The Robinson-Foulds distance (also called the symmetric difference
metric) is a well-known approach for measuring the similarity
between two trees. (See for example, (Bansal et al., 2010; Lu et al.,
2017). The Robinson-Foulds distance measures the topological
distance between two labeled trees essentially by counting the
minimum number of elementary operations needed to transform one
tree to the other. Given two trees and their node labels (some node
labels could be empty), the Robinson-Foulds distance between them
is computed by using two elementary operations: the contraction
operation that merges multiple nodes into one, and the decontraction
(split) operation that splits a node into multiple nodes, as needed
to transform one tree into another. The distance is given by the
total number of contraction and decontraction operations needed
for the transformation. This is akin to the traditional edit distance
between two strings, which computes the minimum number of edit
operations needed to transform one string to another. Under the
Robinson-Foulds model, two trees are said to be the same if the
trees are isomorphic, and the labels in the trees are preserved by the
isormorphism. In general, a smaller value of the Robinson-Foulds
distance implies more similarity between the trees.

Thus, to compare the phylogenetic trees generated by various
alignment-free sequence comparison techniques, we compute
the Robinson-Foulds distance between the golden reference
phylogenetic tree and the phylogenetic tree generated by a given
alignment-free algorithm. The computed distances can thus be
used to rank the performance of the algorithms, with the one that
generated the minimum Robinson-Foulds distance taken as the best
performing algorithm. Various algorithms for efficient computation
of the Robinson-Foulds distance have been proposed (Day, 1985;
Pattengale et al., 2007). For this work, we use the Analyses of
Phylogenetics and Evolution (APE) package (Paradis et al., 2004)
to calculate the Robinson-Foulds distance. This package imports
the trees in the Newick format. It also can read the distance matrix
to construct the phylogenetic tree. The APE package computes the

7

Jie Lin, Donald A. Adjeroh, Bing-Hua Jiang and Yue Jiang

topological distance between two trees and returns the Robinson-
Foulds distance between them.

REFERENCES
Adjeroh, D., Bell, T., and Mukherjee, A. (2008). The Burrows-Wheeler Transform:

Data Compression, Suffix Arrays, and Pattern Matching. Springer Publishing
Company, Berlin, German, 1 edition.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic
local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

Bansal, M. S., Burleigh, J. G., Eulenstein, O., and Fernndezbaca, D. (2010). Robinson
Foulds Supertrees. Algorithms for Molecular Biology, 5(1), 1–12.

Bonham-Carter, O., Steele, J., and Bastola, D. (2014). Alignment-free genetic
sequence comparisons: a review of recent approaches by word analysis. Briefings
in Bioinformatics, 15(6), 890–905.

Cao, Y., Janke, A., Waddell, P. J., and Westerman, M. e. a. (1998). Conflict among
individual mitochondrial proteins in resolving the phylogeny of eutherian orders.
Journal of Molecular Evolution, 47(3), 307–322.

Christensen, D. (2005). Fast algorithms for the calculation of Kendall’s tau.
Computational Statistics, 20(1), 51–62.

Dai, Q., Li, L., Liu, X., Yao, Y., Zhao, F., and Zhang, M. (2011). Integrating
overlapping structures and background information of words significantly improves
biological sequence comparison. PLoS One, 6(11), e26779.

Day, W. H. E. (1985). Optimal algorithms for comparing trees with labeled leaves.
Journal of Classification, 2(1), 7–28.

Fenwick, P. M. (1994). A new data structure for cumulative frequency tables.
Software-Practice and Experience, 24(3), 327–336.

Fischer, C., Koblmller, S., Glly, C., Schltterer, C., Sturmbauer, C., and Thallinger,
G. G. (2013). Complete mitochondrial DNA sequences of the threadfin cichlid
(petrochromis trewavasae) and the blunthead cichlid (tropheus moorii) and patterns
of mitochondrial genome evolution in cichlid fishes. PLoS One, 8(6), e67048.

Gregor, J. and Thomason, M. G. (1993). Dynamic programming alignment of
sequences representing cyclic patterns. IEEE Trans. Pattern Anal. Mach. Intell.,
15(2), 129–135.

Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences: Computer Science
and Computational Biology. Cambridge University Press, Cambridge, England.

Kantorovitz, M., Robinson, G., and Sinha, S. (2007). A statistical method for
alignment-free comparison of regulatory sequences. Bioinformatics, 23, i249–i255.

Lin, J., Adjeroh, D. A., Jiang, B.-H., and Jiang, Y. (2017). fastwkendall: an efficient
algorithm for weighted Kendall correlation. accepted by Computational Statistics.

Lippert, R. A., Huang, H., and Waterman, M. S. (2002). Distributional regimes for
the number of k-word matches between two random sequences. PNAS, 99(22),

13980–13989.
Liu, Z., Meng, J., and Sun, X. (2008). A novel feature-based method for whole

genome phylogenetic analysis without alignment: Application to HEV genotyping
and subtyping. Biochemical and Biophysical Research Communications, 368(2),
223 – 230.

Lu, B., Zhang, L., and Leong, H. W. (2017). A program to compute the soft Robinson-
Foulds distance between phylogenetic networks. BMC Genomics, 18(2), 111.

Manber, U. and Myers, G. (1993). Suffix arrays: A new method for on-line string
searches. SIAM Journal of Computing, 22, 935–938.

Nan, F. and Adjeroh, D. A. (2004). On complexity measures for biological sequences.
In 3rd IEEE CSB’04, Stanford, CA, USA, Aug. 16-19, 2004, pages 522–526.

Notredame, C. (2007). Recent evolutions of multiple sequence alignment algorithms.
PLoS Comput Biol, 3(8), 1–4.

Paradis, E., Claude, J., and Strimmer, K. (2004). APE: Analyses of phylogenetics and
evolution in R language. Bioinformatics, 20(2), 289–290.

Pattengale, N. D., Gottlieb, E. J., and Moret, B. M. (2007). Efficiently computing
the robinson-foulds metric. Journal of Computational Biology A Journal of
Computational Molecular Cell Biology, 14(6), 724–735.

Reinert, G., Chew, D., Sun, F., and Ms., W. (2009). Alignment-free sequence
comparison (I): statistics and power. Journal of Computational Biology, 16(12),
1615–1634.

Robinson, D. F. and Foulds, L. R. (1981). Comparison of phylogenetic trees.
Mathematical Biosciences, 53(1), 131–147.

Shepp, L. (1964). Normal functions of normal random variables. SIAM Review, 6(4),
459–460.

Song, K., Ren, J., Reinert, G., Deng, M., Waterman, M. S., and Sun, F. (2014). New
developments of alignment-free sequence comparison: measures, statistics and next-
generation sequencing. Briefings in Bioinformatics, 15(3), 343 – 353.

Troyanskaya, O. G., Arbell, O., Koren, Y., Landau, G. M., and Bolshoy, A. (2002).
Sequence complexity profiles of prokaryotic genomic sequences: A fast algorithm
for calculating linguistic complexity. Bioinformatics, 18(5), 679–688.

Vinga, S. (2007). Biological sequence analysis by vector-valued functions: revisiting
alignment-free methodologies for DNA and protein classification. Iranian Journal
of Medical Physics, pages 71–107.

Vinga, S. and Almeida, J. (2003). Alignment-free sequence comparison: a review.
Bioinformatics, 19(4), 513–523.

Wallace, I. M., Blackshields, G., and Higgins, D. G. (2005). Multiple sequence
alignments. Current Opinion in Structural Biology, 15(3), 261 – 266.

Wu, X., Wan, X.-F., Wu, G., Xu, D., and Lin, G. (2006). Phylogenetic analysis using
complete signature information of whole genomes and clustered neighbour-joining
method. International Journal of Bioinformatics Research and Applications, 2(3),
219–248.

8

(a) The reference phylogenetic tree. (b) The phylogenetic tree of D2 with k = 9.

(c) The phylogenetic tree of D∗2 with k = 7. (d) The phylogenetic tree of Dsh
2 with k = 7.

(e) The phylogenetic tree of K2 with k = 7. (f) The phylogenetic tree of K∗2 .

(g) The phylogenetic tree of DMk with k = 7. (h) The phylogenetic tree of CPF with k = 7 .

Supplementary Figure S1: Phylogenetic trees generated by different
alignment-free sequence comparison methods, using the mtDNA20
dataset. 9

Jie Lin, Donald A. Adjeroh, Bing-Hua Jiang and Yue Jiang

(a) The reference phylogenetic tree. (b) The phylogenetic tree of D2 with k = 8.

(c) The phylogenetic tree of D∗2 with k = 8. (d) The phylogenetic tree of Dsh
2 with k = 8.

(e) The phylogenetic tree of K2 with k = 8. (f) The phylogenetic tree of K∗2 .

Oreochromis sp. KM−2006

Astronotus ocellatus

Cymatogaster aggregata
Ditrema temminckii

Neolamprologus brichardi
Tropheus duboisi

Abudefduf vaigiensis
Amphiprion ocellaris

Halichoeres melanurus

Pseudolabrus sieboldi

Parajulis poecilepterus

Pteragogus flagellifer

Hypselecara temporalis

Ptychochromoides katria
Paratilapia polleni

Tylochromis polylepis

Paretroplus maculatus
Etroplus maculatus

Pseudolabrus eoethinus

Alepocephalus agassizii
Bajacalifornia megalops

Oreochromis niloticus
Oreochromis aureus

Oreochromis sp. KM−2006

Astronotus ocellatus

Cymatogaster aggregata
Ditrema temminckii

Neolamprologus brichardi
Tropheus duboisi

Abudefduf vaigiensis
Amphiprion ocellaris

Halichoeres melanurus

Pseudolabrus sieboldi

Parajulis poecilepterus

Pteragogus flagellifer

Hypselecara temporalis
Ptychochromoides katria

Paratilapia polleni

Tylochromis polylepis

Paretroplus maculatus
Etroplus maculatus

Pseudolabrus eoethinus

Alepocephalus agassizii
Bajacalifornia megalops

Oreochromis niloticus
Oreochromis aureus

(g) The phylogenetic tree of DMk with k = 6. (h) The phylogenetic tree of CPF with k = 7 .

Supplementary Figure S2: Phylogenetic trees generated by different
alignment-free sequence comparison methods, using the Fish23
dataset.

10

2 3 4 5 6 7 8 9

0
2

0
4

0
6

0
8

0
1

0
0

k

R
u

n
n

in
g

 T
im

e
 (

s
)

D2

D
2

*

D
2

sh

D
2

z

K2

DMk

CPF

WFV

Supplementary Figure S3: Time cost comparison for D2, D∗2 , Dsh
2 ,

Dz
2 , DMk, CPF , WFV and K2 with parameter k varying from

2 to 9 on on the Fish32 dataset. Results for K∗2 =6.64s, DV =2.57s
and Shi=1.80s are not shown in the figure for clarity.

11

