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Table 1. Overall data distribution

Images #TMA #patients #cores

Training 14 (H&E) 102 (H&E) 368 (H&E)
13 (IHC) 93 (IHC) 318 (IHC)

Testing 14 (H&E) 51 (H&E) 182 (H&E)
13 (IHC) 47 (IHC) 162 (IHC)

Due to limited length of paper, this supplementary document descri-
bes the data distributions in section 1, the information about the
computation time and hardware/software specifications of each
method in section 2, analysis and discussion of the automated meth-
ods in section 3 and the details of the automated methods in section
4.

1 DATA DISTRIBUTIONS
Table 1 show the data distributions in training and testing with
respect to the number of TMAS, patients and tissue cores, and the
data distributions w.r.t. the cancer type, sex and hashimoto status are
presented in Table 2, 3 and 4.

2 COMPUTER SPECIFICATION AND EFFICIENCY
1. Zhou and Zhu’s method: The method was implemented in

MATLAB for Step (I) of TMA-D2LM, whereas Steps (II)

∗to whom correspondence should be addressed

Table 2. Data distribution w.r.t. the cancer subtype

Training Testing
Cancer IHC H&E IHC H&E
subtype #patients #cores #patients #cores #patients #cores #patients #cores

11 65 222 73 263 36 120 38 136
12 10 36 10 36 4 16 5 16
13 1 3 1 3 0 0 0 0
25 6 18 7 26 2 8 3 12
26 5 16 5 17 2 7 2 7
30 5 19 5 19 2 8 2 8
40 1 4 1 4 1 3 1 3

Table 3. Data distribution w.r.t. sex

Training Testing
IHC H&E IHC H&E

Sex #patients #cores #patients #cores #patients #cores #patients #cores
Male 12 42 13 47 7 19 7 24
Female 75 253 83 298 37 132 41 147
Unknown 6 23 6 23 3 11 3 11

Unknown: the information is missing in the database.

Table 4. Data distribution w.r.t. the hashimoto status

Training Testing
IHC H&E IHC H&E

Hashimoto #patients #cores #patients #cores #patients #cores #patients #cores
0 84 287 89 321 41 139 44 157
1 3 8 7 24 3 12 4 14

Unknown* 6 23 6 23 3 11 3 11

*the information is missing in the database.

c© Oxford University Press 2005. 1
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Table 5. Suzuki et al.’s runtime (Wall time) for hyperparameter optimiza-
tion, training and testing of gradient boosting trees.

Extension N stage size
hyperparameter opti. (s) 974 1437 549 1007
training (ms) 0.068 0.023 0.02 0.023
test (ms) 18.3 21.3 18.9 35.3

and (III) are written in Python. Specifically, when training
the dictionary model, Zhou and Zhu use the Python module
’Deep-Semi-NMF’ (Trigeorgis et al., 2017) built on Theano.
Therefore, running the algorithm on GPU highly increases the
computation efficiency. The computational complexity for the
pre-training stage of Deep Semi-NMF is of orderO(mt(pnk+
nk2 + kp2 + kn2)), where m = 5 is the number of layers, t
is number of iterations, p = 5122, and k corresponds to the
maximum number of components out of all layers. The exe-
cution time of Algorithm 1 with 1,000 epochs takes less than
1 hour on GPU. Training the XGBoost model and doing the
predictions take less than 10 minutes for all the five outcomes.
Zhou and Zhu use the computer cluster Longleaf at University
of North Carolina at Chapel Hill to store the data and run all the
scripts. Longleaf is a brand new cluster explicitly designed to
address the computational, data-intensive, memory-intensive,
and big data needs of researchers and research programs that
require scalable information-processing capabilities that are
not of the MPI and/or OpenMP+MPI hybrid variety. Longleaf
includes 117 ’General-Purpose’ nodes (24-cores each; 256-
GB RAM; 2x10Gbps NIC) and 24 ’Big-Data’ nodes (12-cores
each; 256-GB RAM; 2x10Gbps; 2x40Gbps), 5 large memory
nodes (3-TB RAM each), 5 ’GPU’ nodes each with GeFo-
rce GTX1080 cards (102,400 CUDA cores in total) of 8-GB
memory. All running jobs are done on either ’General-Purpose’
nodes or ’GPU’ nodes.

2. Suzuki et al.’s method: For BRAF mutation predictor, A quad-
processor system with Intel Xeon E5-4617@2.9 GHz (6 cores),
512 GB RAM with a Tesla K20c GPU and 64-bit operating
system (CentOS release 6.7) was used for the data prepara-
tion and network training of the BRAF predictor. Suzuki et
al. trained the network with the training data (84,800 patch
sets, 254,400 images) for 15 epochs using a Tesla GPU, and
the runtime for the network training session was 25 hours 47
mins. It took 13 min 1 sec to calculate the prediction for all
the testing data (25,600 patch sets, 76,800 images) by forw-
ard propagation. For predictors of size, extension, N and stage,
the quad-processor system described above was used for the
nuclei segmentation and calculation of nuclear features. Run-
time using all the 24 cores for training data (2770 images) and
test data (1340 images) was 41 min 28 sec and 14 min 50 sec,
respectively. Next, MacBook Pro with Intel Core i7@2.2 GHz
(4 cores), 16 GB RAM and 64-bit operating system (OS X El
Capitan) was used for building classifier and the prediction.
The implementation of building classifier and the prediction
was in Python 2.7.12 (Anaconda 4.0.0). Runtime (wall time,
single threaded) for each model is shown in Table 5.

3. Wang et al.’s method: Wang et al. use ImageJ 1.50i, Java(TM)
SE runtime environment 1.8.0 77 (64 bit) as the compiler. All
training and testing were executed on a computer with Intel

Table 6. Total computing time by Wang et al.’s method for training
318 images and testing 162 images

Computing time BRAF Stage Extension N Size
Total Training (s) 0.08 0.59 0.13 0.23 0.01
Total Testing (s) 0.01 0.03 0.01 0.03 0.01

Fig. 1: ROC curves based on 10-times cross-validation of (a)BRAF
prediction, (b)Extension, (c,d)2-class stage prediction: (stage 1,2)
and (stage 3,4).

Core i5 processor at 3.20 GHz and 16.0 GB RAM under the
OS of Windows 10 Pro. The average runtime for one image
to extract quantification value was 55 seconds. Furthermore,
the computing time for training all 318 tissue core images
and testing all 162 tissue core images of each parameter are
presented at Table 6.

3 SUPPLEMENTARY METHOD ANALYSIS AND
DISCUSSION

3.1 Zhou and Zhu: TMA-D2LM
TMA-D2LM uses image features and demographic covariates to
predict ’BRAF’ and ’Extension’ first, and then predicts ’Size’ and
’N’ with the prediction of first two outcomes. Finally, it predicts
’Stage’ by using the predictions of all the other four responses. Next,
the patient-level prediction will be voted by the image-level predi-
ctions (images from same patient have same demographic covariates
and ’BRAF’, ’Extension’ status).

The training data were randomly split into train and test set for
calculate the prediction accuracy. The preliminary test for BRAF
results show that the highest prediction accuracy can reach 85%.
The accuracy of patient-level predictions, which is voted by the
image-level predictions, can be slightly better. Figure 1(a) shows
the ROC curves based on 10-fold cross-validation analysis.
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The prediction of ’Extension’ is similar to that of ’BRAF’ except
that the most discriminative patches are selected by projecting
H&E tissue microarrays onto the ’extension=0’ space. XGBoost is
still used to predict ’Extension’ and ’N’. To visualize the model per-
formance, we combine ’Extension=1’ and ’Extension=2’ and plot
the corresponding ROC curves (see Figure 1(b)). In this case, the
highest prediction accuracy can reach 0.82.

In ’Size’ prediction, we assign scores to the continuous ’Tumor
size’ according to five groups. The first group includes those with
tumor size smaller than 1.2, the second one between 1.2 and 2, the
third one between 2 and 3, the fourth one between 3 and 4 and the
fifth one with size bigger than 4. We use 1, 1.5, 2.5, 3.5 and 5 as the
’size’ value for observations fall into the corresponding group. Then,
we also use XGBoost to do projection. Due to the transformation
and large number of missing values, the highest accuracy for ’Size’
is 0.72.

Cancer stage is the last response for prediction. For comparison,
we will use the true values of ’N’, ’Extension’, and ’Size’ to test
the finite sample performance of our predictive model by splitting
the training data set. Based on the true values, the best accuracy
can be higher than 95%. However, based on the predicted values of
the other four responses, the highest accuracy can also reach 94%.
Moreover, we divide the four stages into two classes: (stage 1,2)
and (stage 3,4), and perform the 10-fold cross-validation and present
the ROC curves corresponding to both true and predicted values in
Figure 1(c) and (d).

For future works, there are many potential improvements in the
future. First, we will add convolutional layers before running the
deep dictionary learning model in order to avoid losing some impor-
tance shape features. Second, we will explore other methods to
find the center of the ’normal’ space, which may give more accu-
rate results. Third, for the continuous responses like ’size’, we will
develop better regression methods for predicting ’tumor size’.

3.2 Suzuki et al: Hybrid Prediction
3.2.1 BRAF predictor-Preliminary Test We trained the predi-
ction model using 148 tumor slides and validated it with 64 tumor
slides. The validation result is shown in Table 7 compared with
unmodified GoogLeNets that take an image of single magnification
level (224px, 448px, and 896px in the original slide images) as the
input. The model demonstrated 91.0% patch-wise prediction accu-
racy, 95.3% slide-wise prediction accuracy and 95.7% patient-wise
accuracy, respectively. It surpasses the unmodified GoogLeNets
of all magnification levels in both the accuracy and AUC values.
In Table 7, accuracies of e.g. 95.7% imply AUC < 1.0 and yet
AUC= 1.0, which is because that all of the negative data were cor-
rectly judged with high confidence (e.g. 99% negative) and some
positive data were judged as ”negative” with weak confidence (e.g.
70% negative) by the proposed CNN model. An illustration is given
in Figure 2.

3.2.2 Other clinical diagnoses – training data preparation
Nuclei segmentation and feature extraction from HE stained slides
of tumor were performed using CellProfiler version 2.2.0 (Carpen-
ter et al., 2006). Since we could not apply these analysis to whole
slide images directly due to memory and computational time pro-
blem, we performed the analysis to randomly sampled mini patches
and summarized the features for each nucleus into representative

Fig. 2: ROC cutoff in the preliminary test of Suzuki et al’s BRAF
predictor.

Fig. 3: Segmentation results of the given dataset (left:
HE02 016 T1, right: HE03 025 T1). Each nucleus is indicated by
a closed contour with light blue color.

features for each case. First, all the whole slide images labelled as
tumor were split into non-overlapping 256 × 256 px mini patches.
After removing patches containing large background regions, we
randomly picked 10 patches for each tumor slide.

Then hematoxylin stain image for each HE stain patch was
obtained using the ‘UnmixColors’ module, and ‘IdentifyPrimar-
yObjects’ module with adaptive Otsu thresholds was applied to
identify the cell nuclei. Next, 60 element features were calculated
using ‘Measure Object Intensity’ and ‘Measure Object Size Shape’.
The quantitative features covered the size, shapes including Zernike
shape features, pixel intensity distributions. These features were
aggregated across the case by calculating median and median abso-
lute deviations (MAD) of the values. We did not use mean and
standard deviations, which are less robust to outliers compared to
median and MAD, for aggregation because we observed intersecting
nuclei was often segmented as a single nucleus as shown in Figure
11.

3.2.3 Other clinical diagnoses – prediction model We applied
extreme gradient boosting trees (Chen and Guestrin, 2016) using
xgboost package version 0.6 1 called from Python for the classi-
fication or regression tasks. Linear regression model was used for
the prediction of size, while classification models were used for

1 https://pypi.python.org/pypi/xgboost/0.6
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Table 7. Preliminary test of Suzuki et al’s BRAF-mutation prediction model compared with unmodified GoogLeNets with various patch magnification levels.

patch-wise slide-wise patient-wise
model accuracy (%) AUC accuracy (%) AUC accuracy (%) AUC

GoogLeNet (224 px) 84.5 0.91 85.9 0.97 87.0 1.0
GoogLeNet (448 px) 86.9 0.94 89.1 0.98 95.7 1.0
GoogLeNet (896 px) 87.9 0.95 85.9 0.98 95.7 0.99

our model 91.0 0.97 95.3 0.99 95.7 1.0

the other discrete ordinal variables such as extrathyroidal exten-
sion and lymph node metastasis instead of regression because noise
distribution does not follow Gaussian distribution (Van den Oord et
al., 2016). Multiclass classification using the softmax objective was
used for the classification tasks. Estimated BRAF status, sex, age,
hashimoto, BMI, BW, BH, the cancer type and 120 nuclei features
from tumor HE stained slides described above were used as features.

We optimized hyperparameters of XGBoost using Bayesian opti-
mization (over a validation set different from the final test set).
BayesianOptimization package2, a python implementation of glo-
bal optimization with gaussian processes, was used for the purpose.
These parameters included the number of trees to train, the maxi-
mum depth of each decision tree, and the minimum weight allowed
on each decision leaf, the data subsampling ratio, and the minimum
gain required to create a new decision branch.

3.2.4 5 fold Cross Validation Test We performed 5-fold cross
validation for the training data. The predictive accuracy for tumor
size measured by the mean absolute error and those for extrathyroi-
dal extension, lymph node metastasis and TNM stage measured by
prediction accuracy were listed in Table 8. We also calculated pre-
dictive accuracy simply using mean for size or majority class for the
others among the training samples as baseline. Surprisingly, only
accuracy of stage was significantly better than that of the baseline,
which indicated that our features were useless for the prediction of
extrathyroidal extension, lymph node metastasis and TNM stage.

Gradient boosting trees measure feature importance by F-score,
which is the number of times a feature appears in a tree. For TNM
stage, which was the only parameter successfully predicted, only
age was used for the prediction. The results indicate that the model
could learn this rule automatically, but it failed to find nuclear
features useful for the prediction of TNM stage.

Table 8. 5-fold cross validation for the training data on Suzuki et al’s model.

Predicted variable Suzuki et al mean or majority class
size (MAE) 1.37 ± 0.84 (cm) 0.89 (cm)
extension 43.7 ± 15.2 (%) 56.3 (%)
metastasis 56.3 ± 6.2 (%) 53.1 (%)
stage 78.2 ± 9.0 (%) 59.4 (%)

Advantages of Suzuki et al.’s approach using gradient boosting
trees with Bayesian Optimization are three folds: 1) handle hete-
rogeneous features including categorical, discrete and continuous
variable in a unified manner, 2) calculate feature importance, 3)
fully automatic tuning of hyperparameters. However, Suzuki et

2 https://github.com/fmfn/BayesianOptimization

al.’s approach failed to predict the values using image features.
There are two possibilities for the failure. One is that HE images
of thyroid cancer is intrinsically useless for the prediction. It is
possible because even human pathologists may not be able to pre-
dict these parameters using only HE images of tissue microarray
in thyroid cancer. The other is nuclear image features that Suzuki
et al.’s method to extract was incomplete or image features other
than nucleus such as cytoplasm are useful. Nuclear segmentation is
a challenging task since such as color variations in tissue appeara-
nce, occulusions, inclusion of nuclei of non-tumor cells would affect
the performance of the segmentation. More sophisticated algorithms
for stain normalization (Khan et al., 2014), nuclear segmentation
(Irshad et al., 2014), or feature representations using deep learning
could lead to more accurate results.

3.3 Wang et al: Ensemble
Wang et al.’s method is demonstrated to be promising in prediction
of BRAF mutation and provide acceptable prediction accuracy in
stage and relative high correlation score in estimating tumor size.
However, as the method does not utilize the morphological patterns
in H&E, the method has limitations in prediction of the clinical
outcomes, which relate to tissue morphology, such as the Extension,
N and size. For future improvements, it is expected that the model
may produce better and more reliable predictions outcomes for all
five parameters by integration of morphological features extracted
from H&E images.

4 SUPPLEMENTARY METHODS
This section describes the three automated methods in thyroid
cancer diagnosis using tissue microarrays and patient background
information.

• Zhou and Zhu, TMA-D2LM: Tissue Microarray Analysis via
A Deep Dictionary Learning Method (USA).

• Suzuki et al., Hybrid Prediction Model for Thyroid Cancer
Diagnosis (Japan).

• Wang et al. Ensemble Machine Learning Based Approaches
for Thyroid Cancer Diagnosis (Taiwan).

4.1 TMA-D2LM: Tissue Microarray Analysis via A
Deep Dictionary Learning Method

Zhou and Zhu developed an TMA analysis model using deep dicti-
onary learning method (TMA-D2LM). Zhou and Zhu’s algorithm
consists of three steps: 1) pre-processing and segmentation, 2)
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feature extraction and 3) predictive model building. The path dia-
gram of TMA-D2LM is shown at Figure 4. The pre-processing step
is used for remove outlying tissues with staining ingredient, dust
or cracked glass. In this step, Otsu’s thresholding, downsampling
and segmenting are performed. Zhou and Zhu downsample the tis-
sue parts of all images from the original dimension 104 × 104 to
2500 × 2500 and then segment them into many small 512 × 512
squared patches (Xu et al., 2016). Patches with more than 40%
non-tissue pixels are dropped.

Fig. 4: The path diagram of TMA-D2LM consists of : 1) pre-
processing and segmentation, 2) feature extraction and 3) predictive
model building

For feature extraction, a deep dictionary learning method (Tri-
georgis et al., 2017) is used to find the most discriminative patch
from each image and build a low dimensional representation of the
selected patch to denote the features of the ’mother’ images. For
example, for the BRAF tissue microarray images, all the patches
extracted from the images with BRAF= 0 are chosen, producing a
low dimensional representation for each patch by applying a five-
layer dictionary learning model. It allows to build a ’BRAF = 0’
(’normal’) space. Specifically, the ’normal’ space is then constru-
cted by all the patches which are classified into the bigger class
by running a 2-class K-Means on all subjects in the low-dimension
space. Subsequently, the method projects all the patches correspon-
ding to all BRAF = 0 and = 1 images onto the ’normal’ space
and finds the most discriminative patch of each image, which has
the longest distance from the center of the ’normal’ space. Since
all patches are already mapped onto a low-dimensional space, the
method will use the low-dimensional representation of the ’discrimi-
native’ patches, which is a k×1 vector where k is much smaller than
the original patch dimension, in order to represent the key features
of their ’mother’ images.

To run the deep dictionary learning algorithm (Trigeorgis et al.,
2017), the method firstly transforms each individual patch from the
RGB color space into the grayscale space and then reorders the ori-
ginal 512 × 512 pixels into a single vector x of length p = 5122.
The RGB-to-grayscale conversion is performed by computing a
weighted sum of the R, G and B components of the color image
according to 0.2989 × R + 0.5870 × G + 0.1140 × B (Linder et
al., 2012). These are applied to all ni patches extracted from the
i−th image labelled with BRAF = 0 in the training data set. Let
xij denote the vector corresponding to the j−th patch of the i−th
image for j = 1, . . . , ni and i = 1, . . . , N0. There are in total∑N0

i=1 ni = N patches. Finally, we can obtain a p×N input matrix
X = [x11, . . . ,x1n1 , . . . ,xN01, . . . ,xN0nN0

].

Secondly, it constructs a non-negative low dimensional represen-
tationH+ of the input matrixX with a projection matrixZ between
X and H+. We use Z = (Z1, Z2, Z3, Z4, Z5) consisting of five
projection layers, which will deeply train the dictionary learning
model and learn internal factorization compared to the single-layer
model. Specifically, it factorizes the input X into five factors as
follows:

X ≈ Z1Z2Z3Z4Z5H
+
5 , (1)

where H+
j = Zj+1 · · ·ZmH

+
5 for j ∈ {1, 2, 3, 4}. The Z is

estimated by minimizing the objective function given by

Cdeep =
1

2

∥∥X − Z1Z2Z3Z4Z5H
+
5

∥∥2

F
. (2)

Estimating Z is by solving the gradient equation ∂Cdeep/∂zi = 0
for i = {1, 2, 3, 4, 5}. It leads to updating Zi according to

Zi = Φ†iXH̃
†
i , (3)

where † denotes the Moore-Penrose pseudo-inverse and H̃i is the
update of Hi during each layer based on the weight matrix learned
from the last iteration. Afterwards, the following operation will be
applied on Hi to make it to be non-negative:

Hi = Hi �

√
[ΦT

i X]pos + [ΦT
i Φi]negHi

[ΦT
i X]neg + [ΦT

i Φi]posHi
, (4)

where [·]pos and [·]neg represents operations that replace negative
or positive elements in the target matrix by 0. In our real data
analysis, we set the dimension of Zi to be Z1 ∈ Rp×400, Z2 ∈
R400×300, Z3 ∈ R300×200, Z4 ∈ R200×100, and Z5 ∈ R100×50,
respectively. This dimension setting comes from the experiment and
the final low-dimensional representation H+

5 ∈ R50×N is in an
acceptable feature dimension. After convergence, we get the final
output H+

5 = [h11, . . . , h1n1 , . . . , hN01, . . . , hN0nN0
] ∈ R50×N ,

where hij denotes the low-dimensional representation of patch j
from image i.

Thirdly, it run the 2-class K-Means clustering to cluster all N
patches into two sets S = (S1, S2) by using the following objective
function:

arg min
S

2∑
l=1

∑
h∈Sl

‖h− µl‖2 (5)

where µl is the center of class l for l = 1, 2. The idea of using
the 2-class K-Means is that it may be reasonably assumed that most
patches obtained from the images labeled with BRAF = 0 cannot
detect BRAF mutation and share the similar features. Ideally, most
of these patches will fall into a larger class, which is confirmed by
our experiment, since only 10 − 20% of patches go to the small
class. So it uses all the ’normal’ patches in the large class to build
the BRAF = 0 space and then calculate its center, denoted as µ∗.

Fourthly, it projects X∗ ∈ Rp×N∗ with all the patches extra-
cted from the training data set including those extracted from the
images labelled with BRAF = 1 to the ’normal’ space by using
the same weight matrix Z∗, which gives us the low-dimensional
representation of the j−th patch for the i−th image, denoted as
h∗ij , for j = 1, · · · , ni and i = 1, . . . , N1, where N1 is the total
number of patches corresponding to both BRAF = 1 and BRAF
= 0, and

∑N1
i=1 ni = N∗. For the i−th subject, it then chooses the
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patch with the longest distance from the ’normal’ center as the most
discriminative patch h∗i by

h∗i = {h∗ij : min
j∈{1,...,ni}

∥∥h∗ij − µ∗∥∥2}. (6)

Finally, it obtains h∗ = (h∗1, . . . , h
∗
N1

) ∈ R50×N1 as the fea-
ture matrix corresponding to all images. Figure 5 presents the
path-diagram of these four steps.

Fig. 5: The Deep Dictionary Learning framework for the patches
corresponding to BRAF= 0.

The reason that we only select the most discriminative patch for
each image is that we do not have any prior knowledge of these
patches that are related to the BRAF mutation. A possible extreme
case is that fewer than 10% of patches from a BRAF = 1 image
have this kind of mutation, whereas all the others are ’normal’. If we
use the whole image to extract features or randomly select a patch
to represent the image, the prediction results may be biased. Thus,
we assume that the most discriminative patch for each BRAF = 1
image should be far from the center µ∗ compared with those from
images corresponding to BRAF= 0. For the testing data set, alth-
ough we do not have the patch-level BRAF annotation, we project
all the patches onto the BRAF = 0 space and pick out the discri-
minative patch to represent each image. The complete process is
summarized in Algorithm 1.

Algorithm 1 train a deep dictionary model and extract image featu-
res. LetD(· · · ) be the deep dictionary learning function andK(· · · )
be the K-Means clustering algorithm, respectively.

1: Algorithm 1.1
2: Input: X ∈ Rp×N ; set S including all layer dimensions
3: Output: Z∗ and Hi for i ∈ {1, 2, 3, 4, 5}
4: Initialization:
5: for all layers do
6: Zi, Hi ← D(Hi−1, S)

7: repeat
8: for all layers do
9: H̃i = Zi+1H̃i+1 for i ∈ {1, 2, 3, 4}

10: Zi = Φ†iXH̃
†
i

11: Hi = Hi �
√

[ΦT
i
X]pos+[ΦT

i
Φi]negHi

[ΦT
i
X]neg+[ΦT

i
Φi]posHi

.

12: until Convergence
13:
14: Algorithm 1.2
15: Input: X∗ ∈ Rp×N∗ ; trained weight matrix Z∗

16: Output: h∗ and µ∗

17: (S1, S2, µ1, µ2) = K(H5)
18: µ∗ = µi : |Si| > |Sj |
19: h∗ij ← D(X∗, Z∗) for j = 1, · · · , ni and i = 1, . . . , N1

20: for each i do
21: h∗i = {h∗ij : minj∈{1,2,...,ni}

∥∥h∗ij − µ∗∥∥2}.

For the last step, TMA-D2LM uses XGBoost (Chen and Guestrin,
2016) as the classification algorithm. XGBoost is short for ’Extreme
Gradient Boosting’, in which the Gradient Boosting stands for the
algorithm to produce a prediction model in the form of an ensemble
of weak prediction models, typically decision trees. These extra-
cted image features along with the seven demographic covariates
are used as predictors to predict the five clinical parameters of inte-
rest. The prediction framework is built with four layers shown in
Figure 6. Specifically, the bottom layer contains the image fea-
tures extracted from BRAF and H&E TMA, and then they are
combined with the demographic covariates to predict BRAF and
Extension, respectively. Then, they use the demographic covaria-
tes, BRAF and extension to predict size and N, respectively. Finally,
size, N, BRAF and extension are combined to predict the cancer
stage. Before training the XGBoost prediction model, TMA-D2LM
sorts all the features according to their marginal correlation with
the outcome and sequentially add predictors until the overall AUC
value does not increase within a certain number of steps to prevent
over-fitting when learning the XGBoost structure. Then it iteratively
drops out the features considered with ’importance = 0’ by XGBo-
ost until convergence and uses the predictive model with remaining
covariates to do the final prediction.
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Fig. 6: the prediction structure of TMA-D2LM on how to predict
the five clinical parameters

4.2 Hybrid Prediction Model for Thyroid Cancer
Diagnosis

Suzuki et al. built a hybrid prediction model for thyroid cancer dia-
gnosis. They separate the prediction model into two sub-modules.
The first module is dedicated to predict BRAF mutation status using
only IHC slide as input, and the second module predicts all the other
clinical diagnoses using the rest of input data, namely H&E slide
image, clinical features such as age and sex, as well as the BRAF
mutation prediction from the first module. The two modules employ
different machine learning approaches for building the individual
prediction models reflecting the nature of tasks. Suzuki et al. use a
deep convolutional network (convnet)-based approach for building
the mini patch-level discriminative model, respecting the promising
performance of convnets in the recent literature in image recognition
and competitions in the field of medical imaging (Szegedy et al.,
2015; Ronneberger et al., 2015; Wang et al., 2016). A novel network
architecture is built to take a set of overlapping image patches with
different magnification levels as the input for capturing the image
features of cancer slides in diverse biological scales from individual
cells to tissue structures. In addition, they employ additional ad-
hoc techniques reflecting pathologists’ observations for preparing
training datasets and deriving the final decision.

Moreover, Suzuki et al. hypothesized that the nuclear features
including size, shape and texture of HE stained slides of thy-
roid cancer could be useful for the prediction, as some studies
demonstrated that aneuploidy correlates to aggressiveness in papil-
lary thyroid carcinoma (Sturgis et al., 1999) and aneuploidy could
affect size and texture of nuclei where abnormal quantities of DNA
are contained. In order to build predictive models for other cli-
nical diagnoses, Suzuki et al. use image features of nucleus in
HE tissue microarray image as well as clinical features and BRAF
mutation. Since these features include categorical, discrete and con-
tinuous variables, Suzuki et al. use gradient boosting trees (Chen
and Guestrin, 2016) for the prediction, which are known to be effe-
ctive and powerful in such situation. Hyperparameter optimization
of the prediction model was efficiently performed using Bayesian
optimization technique.

Fig. 7: The workflow for extracting positively stained tissue region
from a whole slide.
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Fig. 8: The multi-resolution convnet architecture.

4.2.1 BRAF predictor - data preparation First step in this
method is convert IHC slide images from RGB to HED
(Hematoxylin-Eosin-DAB) color space using rgb2hed routine of
scikit-image (Van der Walt et al., 2014; Ruifrok and Johnston,
2001), followed by extracting only the DAB channel as a grayscale
image. Then the method of (Otsu, 1979) is applied to the gray-
scale image to find the threshold of DAB intensity to extract only
the positively stained tissue region from the whole slide (Figure 7
upper).

Since the provided IHC slides for training and testing contained
considerable amount of unusable regions, mask images is manu-
ally created to exclude such regions for each slide (Figure 7 lower).
Suzuki et al.’s method excluded regions where the tissue is obvi-
ously out of focus, the tissue is folded, or the stain is spilled. Suzuki
et al. also excluded 22 slides whose appearance and the label obvi-
ously seem not to match from the viewpoint of a trained pathologist,
which are possibly because of uncommon biological processes or
mere labeling errors. For each slides, multiple positions within the
tissue regions where the exclusion mask do not cover are randomly
selected, and finally a set of mini patches is extracted from the DAB
image around each selected position. Furthermore, 400 mini patch
sets are prepared for each IHC slide, and use them after applying
random rotation in the training session. Suzuki et al.’s method only
use the patches from tumor slides in both training and validation
session.
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A mini patch set consists of three mini patches with different
magnification levels sharing the center position in a slide. Their ori-
ginal resolutions are 896 × 896 px, 448 × 448 px, and 224 × 224
px in the original IHC slide, respectively, and they are resized to 224
× 224 px. 224 px is about 10 times as large as the diameter of a indi-
vidual cell in the given IHC slide, therefore this magnification level
is suitable for capturing the staining appearance of individual cells.
On the other hand, lower-power (448 px and 896 px) mini patches
contain several hundreds of cells, so they convey the essential infor-
mation for identifying the morphology of tissues composed of many
V600E-positive cells.

4.2.2 Network architecture and training method of BRAF predi-
ctor
Suzuki et al. designed a novel network that takes a triplet of mini
patches as the input and outputs a binary classification result (Figure
8). The network is simply composed of three parallel convolutio-
nal networks, each of them are nearly equivalent to the GoogLeNet
(Szegedy et al., 2015). Then, the final fully-connected layers of
the sub-networks is replaced by a single fully-connected layer
(fc3’) that integrates the convolution results from all the three sub-
networks. Suzuki et al. also modify the number of output units to
two to support binary classification. Furthermore, the following loss
function is empirically chosen. loss1n and loss2n are equivalent to
the loss1 and loss2 functions defined in the original network, respe-
ctively, and loss3 is the softmax cross entropy of the output layer
(fc3’).

0.3×
3∑

n=1

(loss1n + loss2n) + loss3 (7)

The training of the network is conducted by an ordinary manner of
supervised training. Suzuki et al.’s method put “positive” (1) label
for all the mini patch sets from a slide whose patient has V600E-
positive label, and put “negative” (0) label for the other mini patch
sets. For conducting self-testing, provided training slides are divi-
ded into two groups, then the network is trained with the patches
from the first group of the slides, and validated with the second
group. Suzuki et al.’s method combine the two groups to train the
final network for predicting the testing dataset. Network training is
carried out with standard back-propagation and Adam (Kingma and
Ba, 2014) optimization algorithm with three Tesla K20 GPUs for
about a day. Suzuki et al. employed Chainer (Tokui et al., 2015)
as the framework for neural network implementation and training.
BVLC GoogLeNet caffemodel 3 was used as the pretrained model
for sub-networks.

3 http://dl.caffe.berkeleyvision.org/bvlc_
googlenet.caffemodel

Fig. 10: Dot-like potentially V600E non-specific staining pattern in
the given dataset (BRAF03 027 T3).

Fig. 9: An example output of minipatch-wise prediction results for
a validation slide (BRAF12 124 T1). Red/blue regions were pre-
dicted as V600E-positive/negative by the trained model. Opacity
means the confidence for each patch.

4.2.3 Patient - wise prediction of BRAF mutation
To decide the BRAF mutation status for each patient, the first step
is calculate the probability of mutation for each tumor slide of the
patient (Figure 9), then average the probabilities for all the slides
from the patient. Mutation probability of a slide is basically calcu-
lated as the average of the positive probability (i.e. softmax output
of the positive unit of fc3’) for all the mini patch sets from the slide.

According to the previous reports (Jones et al., 2015), anti-V600E
antibodies sometimes generate non-specific staining. They are usu-
ally granular, dot-like, or nuclear pattern, which are different from
true-positive homogeneous cytoplasmic staining pattern. Indeed,
Suzuki et al. found some slides with such dot-like stain patterns
in the given dataset (Figure 10). Hence, Suzuki et al. added a hand-
crafted additional routine to the prediction model to exclude such
false-negative cases. This routine counts dots with high DAB inten-
sity employing histogram-based thresholding and a standard blob
detection algorithm of OpenCV, then judges a slide to be dot-like
false positive if it has more than 1 × 10−5dots per px2. Cur-
rent implementation calculates the threshold of stain intensity for
discriminating dots as the 4-SD value of the rightmost peak of the
histogram, approximating the peak as a gaussian distribution. The
V600E mutation probability of a slide calculated by the network
above is reduced by half if it is judged as dot-like positive.

4.2.4 Other clinical diagnoses - training data preparation
Nuclei segmentation and feature extraction from HE stained slides
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of tumor were performed using CellProfiler version 2.2.0 (Carpen-
ter et al., 2006). Since these analysis could not apply to whole slide
images directly due to memory and computational time problem,
Suzuki et al. performed the analysis to randomly sampled mini
patches and summarized the features for each nucleus into repre-
sentative features for each case. First, all the whole slide images
labeled as tumor were split into non-overlapping 256 × 256 px
mini patches. After removing patches containing large background
regions, 10 patches for each tumor slide are randomly picked .

Then hematoxylin stain image for each HE stain patch was
obtained using the ‘UnmixColors’ module, and ‘IdentifyPrimar-
yObjects’ module with adaptive Otsu thresholds was applied to
identify the cell nuclei. Next, 60 element features were calculated
using ‘Measure Object Intensity’ and ‘Measure Object Size Shape’.
The quantitative features covered the size, shapes including Zernike
shape features, pixel intensity distributions. These features were
aggregated across the case by calculating median and median abso-
lute deviations (MAD) of the values. Suzuki et al. did not use mean
and standard deviations, which are less robust to outliers compared
to median and MAD, for aggregation because they observed inter-
secting nuclei was often segmented as a single nucleus as shown in
Figure 11. Finally, 120 quantitative nuclear features are obtained for
each case.

Fig. 11: Segmentation results of the given dataset. Each nucleus is
indicated by a closed contour with light blue color.

4.2.5 Other clinical diagnoses - prediction model
Suzuki et al. applied extreme gradient boosting trees (Chen and
Guestrin, 2016) using xgboost package version 0.6 4 called from
Python for the classification or regression tasks. Linear regres-
sion model was used for the prediction of size, while classification
models were used for the other discrete ordinal variables such
as extrathyroidal extension and lymph node metastasis instead of
regression because noise distribution does not follow Gaussian
distriution (Van den Oord et al., 2016). Multiclass classification
using the softmax objective was used for the classification tasks.
Estimated BRAF status, sex, age, hashimoto, BMI, BW, BH, the
cancer type and 120 nuclei features from tumor HE stained slides
described above were used as features.

Suzuki et al. optimized hyperparameters of XGBoost using Baye-
sian optimization (over a validation set different from the final test
set). Bayesian Optimization package5, a python implementation of
global optimization with gaussian processes, was used for the pur-
pose. These parameters included the number of trees to train, the

4 https://pypi.python.org/pypi/xgboost/0.6
5 https://github.com/fmfn/BayesianOptimization

maximum depth of each decision tree, and the minimum weight
allowed on each decision leaf, the data subsampling ratio, and the
minimum gain required to create a new decision branch.

4.3 Ensemble Machine Learning Based Approaches for
Thyroid Cancer Diagnosis

The ability of immunohistochemistry to quantify a potential biomar-
ker provides the opportunity to study the relationship between the
biomarker and chemosensitivity in tumour sub-groups and thereby
enables hypothesis generation for additional translational research
(Wang, 2013). Using IHC, proteins can be directly visualized by
antibodies in their natural cellular localization. In Wang et al’s
method, an automated quantification method is firstly applied to
the IHC images not only for measuring the BRAF expression levels
but also for localization of tissues of interests. Next, machine lear-
ning models are trained based on the IHC quantification scores
and patient’s background information. For quantification of BRAF
expression and segmentation of tissue of interests, color deconvolu-
tion (Ruifrok and Johnston, 2001) is applied to extract independent
haematoxylin and DAB/BRAF stain contributions from individual
IHC images using orthonormal transformation of RGB. Color deco-
nvolution has been demonstrated to be effective in tissue image
analysis in various studies (Wang and Chen, 2013; Wang, 2013;
Wang et al., 2014a). In this study, the normalised OD matrix, E,
to describe the color system for orthonormal transformation:

E =


R G B

0.65 0.704 0.286 Haematoxylin
0.268 0.570 0.776 DAB/BRAF
0.0 0.0 0.0

 (8)

Given C is the 3 × 1 vector for amounts of the stains at a parti-
cular pixel, the vector of OD levels detected at that pixel is equal
to L = CE. Therefore, multiplication of the OD image with the
inverse of OD matrix results in orthogonal representation of the
stains forming the image (C = E−1L). The color de-convolution
matrix is defined as

K = E−1 =


R G B
k11 k12 k13 Haematoxylin
k21 k22 k23 DAB/BRAF
k31 k32 k33

 (9)

Given a particular pixel with intensity level (r,g,b) the BRAF OD
(IBRAF ) is formalized as follows.

IBRAF = exp

(
(−(rs + gs + bs)− (2c − 1))× log(2c − 1)

(2c − 1)

)
(10)

rs = rlog × k21

gs = glog × k22

bs = blog × k23

(11)
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rlog = −
( (2c − 1)× log

( r + 1

2c − 1

)
(2c − 1)× log(2c − 1)

)

glog = −
( (2c − 1)× log

( g + 1

2c − 1

)
(2c − 1)× log(2c − 1)

)

blog = −
( (2c − 1)× log

( b+ 1

2c − 1

)
(2c − 1)× log(2c − 1)

)
(12)

where c represents the number of bits used to represent each pixel
in each channel.

For segmentation of region/tissue of interests (ROI), a cluste-
ring process is performed using Otsu’s thresholding method (Otsu,
1979), and the background cluster and foreground stain cluster are
automatically separated by selecting an optimal local threshold t
with the overlap of the background distribution and foreground stain
distribution minimized. The histogram distribution of image inten-
sities is regarded as a probability distribution, p(g) = ng/n, where
ng is the number of the pixels having greyscale intensity g and n
is the number of pixels, the within-class variance is defined as the
weighted sum of the variances.

σ2
within(t) = nB(t)σ2

B(t) + nF (t)σ2
F (t) (13)

where [0,N-1] is the range of intensity level, nB(t) =
∑t−1

i=0 p(i),
nF (t) =

∑i=t
N−1 p(i), σ2

B(t) is the variance of the pixels in the
background cluster (below t) and σ2

F (t) is the variance of the pixels
in the foreground cluster (above t).

Then, the between-class variance is the total variance of the
combined distribution minus within-class variance.

σ2
between(t) = σ2 − σ2

within(t) = nB(t)nF (t)[µB(t)− µF (t)]2

(14)
where µB(t) and µF (t) are the cluster means.

The optimal separation threshold t is the one that maximizes the
between-class variance, and a foreground map J for segmented cells
is produced.

(a) IHC image (b) Zoom-in View (c) ROI

Fig. 12: Segmentation of tissue of interests (ROI) marked in green.

t = arg max(σ2
between(t)), Jx,y =

{
0 ,IBRAF

x,y < t
1 ,IBRAF

x,y ≥ t (15)

A map of ROI Ω can be obtained by applying automated cluste-
ring to BRAF image. Figure 12 shows the segmentation results of
region of interests for further quantification and diagnosis purpo-
ses. Next, five quantification scores of the BRAF expression are
computed from the segmented ROI using the five equations below.
Q1BRAF is the quantification result of the mean BRAF expres-

sion in tissues sampling from the segmented ROI, which can be
defined as

Q1BRAF =
ΣIBRAF

#Ω
(16)

where IBRAF is the intensity level of BRAF image; Ω is the total
pixels of ROI.

Q2BRAF
(α) =

∑
(x,y) IBRAF (x,y)

#Ω


(x,y)∈Ω,IBRAF (x,y)>α×(2c−1)

(17)
where c represents the number of bits used to represent each pixel
in each channel and α = 1/3 .

Q3BRAF (α) =

∑
(x,y) S(x,y)

#Ω

∣∣∣∣
(x,y)∈Ω

(18)

where

S(x,y) =


5 ,IBRAF > 80%× (2c − 1)
4 ,IBRAF > 60%× (2c − 1)
3 ,IBRAF > 40%× (2c − 1)
2 ,IBRAF > 20%× (2c − 1)

(19)

Q4BRAF is the mode expression of ROI. This quantification is to
find the intensity level of ROI that appears most often.

Q4BRAF = arg max
i

(#IiBRAF ) (20)

Q5BRAF is the total of mean and standard deviation. The standard
deviation can be defined as follows.

Q5BRAF = µ(IBRAF ) + σ(IBRAF ) (21)

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (22)

where xi is the intensity level of BRAF image and µ is the mean
value.

Next, various machine learning models are utilized to generate
the prediction models, which is based on the quantification scores
and the background information (see Table 9).

As multiple cores are collected for each patient, for patient-based
prediction, a voting model is developed to generate the final pre-
diction result from the core-based prediction outcomes. Given a
testing set S : (xn, xt1, ..., x

t
M ) with one normal tissue core and

M tumor tissue cores, a pre-trained machine learning model U and
a set of possible prediction outcomesO : {o1, ..., oN}, a core-based
prediction can be generated as follows.
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Table 9. Machine Learning Approaches for building Core-based Prediction
Models

Parameter Method
BRAF AdaBoostM1 (50) Decision Stump F-measure = 0.93
Stage AdaBoostM1 (80) J48 F-Measure = 0.75
Extension Bagging with Decision Stump F-Measure = 0.444
N Random Forest F-Measure = 0.55
Size Simple Linear Regression Correlation = 0.58 using Type

oj = U(xti)|i=1..M (23)

The patient based prediction is formulated as the most frequently
predicted class using the tumor tissue cores. If there is no tumour
samples, then the prediction will be based on the normal tissue core
xn.

o∗ =

{
U(xn) ,xt ∈ ∅

arg maxoj (U(xti)) ,x /∈ ∅ (24)
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