Supplementary material: Aligning dynamic networks with DynaWAVE

Vipin Vijayan and Tijana Milenković
Department of Computer Science and Engineering, ECK Institute for Global Health, Interdisciplinary Center for Network Science and Application (iCeNSA), University of Notre Dame, IN 46556. E-mail: tmilenko@nd.edu

S1 Methods

S1.1 WAVE

WAVE greedily maximizes $\beta S_{E}+(1-\beta) S_{N}$, where S_{E} is the WEC edge conservation measure, and $S_{N}=\frac{1}{\left|V_{1}\right|} \sum_{u \in V_{1}} s\left(u, u^{\prime}\right)$ is the node conservation measure with $s\left(u, u^{\prime}\right)$ being the node similarity between $u \in V_{1}$ and $u^{\prime} \in V_{2}$, and β is a parameter between 0 and 1 that balances between the two conservation types. Node similarities $s(\cdot, \cdot)$ can be based on network topology only (e.g., graphlet-based node similarities), information external to network topology such as protein sequence similarities, or a combination of the two. Two node similarities, $s_{1}(u, v)$ and $s_{2}(u, v)$, between nodes u and v can be combined, for example, using the convex combination $\alpha s_{1}(u, v)+(1-\alpha) s_{2}(u, v)$. Specifically in this paper, we use graphlet-based node similarities (Milenković and Pržulj, 2008) and set the β parameter to 0.5 . Graphlets, for static networks, are small, connected, induced sub-graphs of a larger static network. Graphlets can be used to describe the local topology of a node in a static network. We use the graphlet-based node similarity $s(\cdot, \cdot)$ for static networks as described in Vijayan et al. (2017).

S1.1.1 WEC

We continue our discussion of WEC from Section 2 of the main paper. Similar to MAGNA++'s S^{3}, WAVE's WEC also counts the number of conserved edges, but unlike S^{3} that treats each conserved edge the same, WEC favors conserved edges with similar end-nodes over conserved edges with dissimilar end-nodes. That is, for each edge $(u, v) \in E_{1}$ aligned to edge $\left(u^{\prime}, v^{\prime}\right) \in E_{2}$, the conserved edge is weighted by $s\left(u, u^{\prime}\right)$ and $s\left(v, v^{\prime}\right)$, the node similarity between nodes $\left(u, u^{\prime}\right) \in V_{1} \times V_{2}$ and nodes $\left(v, v^{\prime}\right) \in V_{1} \times V_{2}$, respectively.

Formally, given two static networks $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$, assuming without loss of generality that $\left|V_{1}\right| \leq\left|V_{2}\right|$, and a static NA $f: V_{1} \rightarrow V_{2}$ between them,

$$
\mathrm{WEC}=\sum_{(u, v) \in V_{1} \times V_{1}} \frac{s\left(v, v^{\prime}\right) \mathbb{1}\left[(u, v) \in E_{1} \wedge\left(u^{\prime}, v^{\prime}\right) \in E_{2}\right]}{2 \min \left(\left|E_{1}\right|,\left|E_{2}\right|\right)}
$$

where $U \times V$ is the Cartesian product of sets U and $V, u^{\prime}=f(u), v^{\prime}=f(v)$, and $c(u, v)=1$ if the edge $(u, v) \in E_{1}$ is conserved and $c(u, v)=0$ otherwise. That is, $c(u, v)=\mathbb{1}\left[(u, v) \in E_{1} \wedge\left(u^{\prime}, v^{\prime}\right) \in E_{2}\right]$, where $\mathbb{1}[p]=1$ if p is true and $\mathbb{1}[p]=0$ if p is false.

S1.1.2 WAVE alignment strategy

We continue our discussion of WAVE's alignment strategy from Section 2 of the main paper. Above, we described WEC when given two static networks $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$, and a static NA $f: V_{1} \rightarrow V_{2}$ between them. That is, f describes a mapping from V_{1} to V_{2} for all nodes $v \in V_{1}$. However, it is also possible to describe WEC when given a partial mapping from V_{1} to V_{2}, i.e., when given a partial mapping $f^{*}: V_{1}^{*} \rightarrow V_{2}$ where $V_{1}^{*} \subset V_{2}$. In order to motivate the WAVE alignment strategy, we will now describe WEC when given a partial mapping between two static networks. Given a partial mapping $f^{t}: V_{1}^{t} \rightarrow V_{2}$, where only the nodes in $V_{1}^{t} \subset V_{1}$ are aligned, we are able to calculate the partial WEC:

$$
\mathrm{WEC}^{t}=\sum_{(u, v) \in V_{1}^{t} \times V_{1}^{t}} \frac{s\left(v, v^{\prime}\right) \mathbb{1}\left[(u, v) \in E_{1} \wedge\left(u^{\prime}, v^{\prime}\right) \in E_{2}\right]}{2 \min \left(\left|E_{1}\right|,\left|E_{2}\right|\right)} .
$$

Now, what happens to WEC^{t} when we align a new node $w \in V_{1}$ to the partial mapping? What is the marginal improvement in WEC^{t} when we add a new node $w \in V_{1}$ that is mapped to node $w^{\prime} \in V_{2}$? Formally, let $f^{t+1}: V_{1}^{t+1} \rightarrow V_{2}$ be the partial
mapping when we add to V_{1}^{t} a new node $w \in V_{1}$ that maps to node $w^{\prime} \in V_{2}$; that is, $V_{1}^{t+1}=\{w\} \cup V_{1}^{t}$ and $f^{t+1}\left(V^{t}\right)=\left\{w^{\prime}\right\} \cup f^{t}\left(V^{t}\right)$ where $w^{\prime}=f^{t+1}(w)$. Then, the marginal improvement of WEC^{t} when adding the aligned node pair $\left(w, w^{\prime}\right)$ to f^{t} is:

$$
\begin{aligned}
\mathrm{WEC}^{t+1}-\mathrm{WEC}^{t} & =\sum_{(u, v) \in V_{1}^{t+1} \times V_{1}^{t+1}} \frac{s\left(v, v^{\prime}\right) \mathbb{1}\left[(u, v) \in E_{1} \wedge\left(u^{\prime}, v^{\prime}\right) \in E_{2}\right]}{2 \min \left(\left|E_{1}\right|,\left|E_{2}\right|\right)}-\sum_{(u, v) \in V_{1}^{t} \times V_{1}^{t}} \frac{s\left(v, v^{\prime}\right) \mathbb{1}\left[(u, v) \in E_{1} \wedge\left(u^{\prime}, v^{\prime}\right) \in E_{2}\right]}{2 \min \left(\left|E_{1}\right|,\left|E_{2}\right|\right)} \\
& =\sum_{u \in V_{1}^{t}} \frac{s\left(w, w^{\prime}\right) \mathbb{1}\left[(u, w) \in E_{1} \wedge\left(u^{\prime}, w^{\prime}\right) \in E_{2}\right]}{2 \min \left(\left|E_{1}\right|,\left|E_{2}\right|\right)}+\sum_{v \in V_{1}^{t}} \frac{s\left(v, v^{\prime}\right) \mathbb{1}\left[(w, v) \in E_{1} \wedge\left(w^{\prime}, v^{\prime}\right) \in E_{2}\right]}{2 \min \left(\left|E_{1}\right|,\left|E_{2}\right|\right)} \\
& =\sum_{u \in V_{1}^{t}} \frac{\left(s\left(w, w^{\prime}\right)+s\left(u, u^{\prime}\right)\right) \mathbb{1}\left[(u, w) \in E_{1} \wedge\left(u^{\prime}, w^{\prime}\right) \in E_{2}\right]}{2 \min \left(\left|E_{1}\right|,\left|E_{2}\right|\right)} \quad \text { (since we have undirected edges) } \\
& =\sum_{u \in V_{1}^{t} \wedge\left(u, u^{\prime}\right) \in N_{w} \times N_{w^{\prime}}} \frac{s\left(w, w^{\prime}\right)+s\left(u, u^{\prime}\right)}{2 \min \left(\left|E_{1}\right|,\left|E_{2}\right|\right)},
\end{aligned}
$$

where N_{u} contains the neighbors of node u. So, the marginal improvement of WEC ${ }^{t}$ weigh each conserved edge using the node similarities of w and its neighbors N_{w}, as well as the node similarities of w^{\prime} and its neighbors $N_{w^{\prime}}$.

This suggests a greedy alignment strategy: given a partial alignment f^{t}, we may choose a new aligned pair (w, w^{\prime}) such that $\mathrm{WEC}^{t+1}-\mathrm{WEC}^{t}$ is maximized; furthermore, due to the above equation, we can see that this maximization procedure will depend only on the nodes that are already aligned and their neighbors. We then repeat this maximization process until all nodes in V_{1} are aligned. We describe this alignment strategy below.

Note that as explained in Section 2 of the main paper, WAVE maximizes $\beta S_{E}+(1-\beta) S_{N}$, where S_{E} is the WEC edge conservation measure, and $S_{N}=\frac{1}{\left|V_{1}\right|} \sum_{u \in V_{1}} s\left(u, u^{\prime}\right)$ is the node conservation measure with $s\left(u, u^{\prime}\right)$ being the node similarity between $u \in V_{1}$ and $u^{\prime} \in V_{2}$. Thus, the goal of WAVE is to maximize the alignment quality measure $A Q=\beta W E C+(1-\beta) S_{N}$. We now describe WAVE's alignment strategy.

Given an initial empty mapping $f^{0}: V_{1}^{0} \rightarrow V_{2}$, where $V_{1}^{0}=\varnothing$, the associated alignment quality score $\mathrm{AQ}^{0}=0$. Then, the aligned node pair with the highest marginal increase in AQ is the node pair (u, u^{\prime}) with the highest node similarity score $s\left(u, u^{\prime}\right)$. This fulfills the base case of our induction. Now, we move to our inductive step. Given a partial mapping $f^{t}: V_{1}^{t} \rightarrow V_{2}$ and associated alignment quality score AQ^{t}, we find the node pair $\left(u, u^{\prime}\right)$ that gives the highest marginal increase in AQ. This is done as follows.

First, WAVE creates a vote matrix $\hat{s}\left(u, u^{\prime}\right)$, initialized to $\hat{s}\left(u, u^{\prime}\right)=\frac{s\left(u, u^{\prime}\right)}{\left|V_{1}\right|}$ for all $u \in V_{1}, u^{\prime} \in V_{2} . \hat{s}\left(u, u^{\prime}\right)$ represents the marginal increase in $A Q$ if we align node u to node u^{\prime}. Second, WAVE selects the node pair (w, w^{\prime}) with the highest $\hat{s}\left(w, w^{\prime}\right)$, and aligns w to w^{\prime}. Third, the aligned node pair $\left(w, w^{\prime}\right)$ increments the weight of their neighbors with the marginal increase in AQ if that neighbor were to be aligned (this can be seen as a "voting" mechanism). That is, each node pair ($\left.u, u^{\prime}\right) \in N_{w} \times N_{w^{\prime}}$ receive a weighted vote $\frac{\beta\left(s\left(w, w^{\prime}\right)+s\left(u, u^{\prime}\right)\right)}{2 \min \left(\left|E_{1}\right|,\left|E_{2}\right|\right)}$, normalized locally to $\frac{\beta\left(s\left(w, w^{\prime}\right)+s\left(u, u^{\prime}\right)\right)}{\left|V_{1}\right|}$, that updates its marginal increase in WEC, and 0 for the marginal increase in S_{N}. Finally, WAVE goes to the second step, repeating the process of selecting the node pair (w, w^{\prime}) with the highest $\hat{s}\left(w, w^{\prime}\right)$, until all nodes in V_{1} are aligned. This alignment strategy greedily maximizes AQ. Supplementary Algorithm S1 describes our WAVE implementation that has $O\left(\left|V_{1}\right|\left|V_{2}\right| \log \left(\left|V_{1}\right|\left|V_{2}\right|\right)+\left|V_{1}\right| d_{1} d_{2}\right)$ time complexity, where d_{1} and d_{2} are the average degrees of G_{1} and G_{2}, respectively.

```
Algorithm S1 WAVE algorithm.
    procedure \(\operatorname{WAVE}\left(G_{1}\left(V_{1}, E_{1}\right), G_{2}\left(V_{1}, E_{1}\right), s:\left|V_{1}\right| \times\left|V_{2}\right|, \beta\right)\)
        Let \(A=\varnothing\) be an empty set of aligned node pairs.
        Let \(Q=\varnothing\) be an empty priority queue.
        Let \(L_{1}=\varnothing\) be an empty set of nodes.
        Let \(L_{2}=\varnothing\) be an empty set of nodes.
        Let \(\hat{s}:\left|V_{1}\right| \times\left|V_{2}\right|\) be a matrix of zeros
        for \(\left(u, u^{\prime}\right) \in V_{1} \times V_{2}\) do \(\quad \triangleright\) Initialize priority queue
            \(\hat{s}\left[u, u^{\prime}\right] \leftarrow \frac{s\left[u, u^{\prime}\right]}{\left|V_{1}\right|}\)
            \(Q\left[\left(u, u^{\prime}\right)\right] \leftarrow \hat{s}\left[u, u^{\prime}\right]\)
        while \(Q \neq \varnothing\) do \(\quad \triangleright\) Main loop
            \(\left(w, w^{\prime}\right) \leftarrow\) get_maximum_element \((Q)\)
            \(A \leftarrow A \cup\left\{\left(w, w^{\prime}\right)\right\}\)
            \(L_{1} \leftarrow L_{1} \cup\{w\}\)
            \(L_{2} \leftarrow L_{2} \cup\left\{w^{\prime}\right\}\)
            for \(\left(u, u^{\prime}\right) \in N_{w} \times N_{w^{\prime}}\) do \(\quad \triangleright\) Voting. \(N_{w}\) is the set of neighboring nodes of \(w\), and similarly for \(N_{w^{\prime}}\)
                \(\hat{s}\left[v, v^{\prime}\right] \leftarrow \frac{\beta\left(s\left(w, w^{\prime}\right)+s\left(u, u^{\prime}\right)\right)}{\left|V_{1}\right|}\)
            for \(\left(u, u^{\prime}\right) \in\left(N_{w} \backslash L_{1}\right) \times\left(N_{w^{\prime}} \backslash L_{2}\right)\) do \(\quad \triangleright\) Update priority queue
                \(Q\left[\left(u, u^{\prime}\right)\right] \leftarrow \hat{s}\left[u, u^{\prime}\right]\)
            for \(u \in V_{1} \backslash L_{1}\) do \(\quad \triangleright\) Remove node pairs that cannot be aligned anymore
                remove_element \(\left(Q,\left(u, w^{\prime}\right)\right)\)
            for \(u^{\prime} \in V_{2} \backslash L_{2}\) do
                remove_element \(\left(Q,\left(w, u^{\prime}\right)\right)\)
```


S1.2 DynaWAVE

DynaWAVE maximizes $\beta S_{E}+(1-\beta) S_{N}$, where S_{E} is the DWEC dynamic edge conservation measure, and $S_{N}=\frac{1}{\left|V_{1}\right|} \sum_{u \in V_{1}} s\left(u, u^{\prime}\right)$ is the node conservation measure with $s\left(u, u^{\prime}\right)$ being the node similarity between $u \in V_{1}$ and $u^{\prime} \in V_{2}$, and β is a parameter between 0 and 1 that balances between the two conservation types. Node similarities $s(\cdot, \cdot)$ can be based on network topology only (e.g., dynamic graphlet-based node similarities), information external to network topology such as protein sequence similarities, or a combination of the two. Two node similarities, $s_{1}(u, v)$ and $s_{2}(u, v)$, between nodes u and v can be combined, for example, using the convex combination $\alpha s_{1}(u, v)+(1-\alpha) s_{2}(u, v)$. Specifically in this paper, we use dynamic graphlet-based node similarities (Hulovatyy et al., 2015) and set the β parameter to 0.5 . Dynamic graphlets are an extension of static graphlets to the dynamic setting. While static graphlets capture the local topology of a node, dynamic graphlets capture how the local topology changes over time. We use the dynamic graphlet-based node similarity $s(\cdot, \cdot)$ for dynamic networks as described in Vijayan et al. (2017).

S1.2.1 DWEC

We continue our discussion of DWEC from Section 2 of the main paper.
DWEC is an extension of WEC from static NA to dynamic NA. Similar to DynaMAGNA++'s DS ${ }^{3}$, DynaWAVE's DWEC also computes the conserved event time (CET) of the alignment (where the CET of the mapping of node pair (u, v) to node pair $\left(u^{\prime}, v^{\prime}\right)$ is the amount of time during which both (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ are active, and the total alignment CET is the sum of CETs across all mapped node pairs (explained in detail below). However, unlike DS ${ }^{3}$, DWEC favors a conserved event with similar end-nodes over an equally conserved event with dissimilar end-nodes. That is, when calculating DWEC, for each node pair $(u, v) \in V_{1} \times V_{1}$ that is mapped to node pair $\left(u^{\prime}, v^{\prime}\right) \in V_{2} \times V_{2}$, the CET of the node pair mapping is weighted by $s\left(u, u^{\prime}\right)$ and $s\left(v, v^{\prime}\right)$, the node similarity between nodes $\left(u, u^{\prime}\right) \in V_{1} \times V_{2}$ and nodes $\left(v, v^{\prime}\right) \in V_{1} \times V_{2}$, respectively.

To describe the above formally, first, we define a dynamic network and dynamic NA, then define CET, and then we define DWEC. Let a dynamic network $H(V, T)$ consist of a node set V and an event set T. An event is an interaction between nodes u and v from time t_{s} to t_{e}, and is represented as a 4-tuple $\left(u, v, t_{s}, t_{e}\right)$. Let a dynamic $N A$ be a one-to-one node mapping $f: V_{1} \rightarrow V_{2}$ between dynamic networks $H_{1}\left(V_{1}, T_{1}\right)$ and $H_{2}\left(V_{2}, T_{2}\right)$, which produces the set of aligned node pairs $\left\{(v, f(v)) \mid v \in V_{1}\right\}$.

CET is an extension of the notion of a conserved edge from static NA to dynamic NA. Similar to how an edge $(u, v) \in E_{1}$ in static network $G_{1}\left(V_{1}, E_{1}\right)$ that is aligned to an edge $\left(u^{\prime}, v^{\prime}\right) \in E_{2}$ in static network $G_{2}\left(V_{2}, E_{2}\right)$ is conserved, we measure the CET of a the mapping of a node pair $(u, v) \in T_{1}$ in dynamic network $H_{1}\left(V_{1}, T_{1}\right)$ to a node pair $\left(u^{\prime}, v^{\prime}\right) \in T_{2}$ in dynamic network
$H_{2}\left(V_{2}, T_{2}\right)$. The CET of this node pair mapping measures the entire amount of time during which both node pairs are active at the same time. That is, the CET between (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ is

$$
\operatorname{CET}\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right)=\sum_{e \in T_{u v}} \sum_{e^{\prime} \in T_{u^{\prime}} v^{\prime}} c t\left(e, e^{\prime}\right),
$$

where the conserved time $\operatorname{ct}\left(e, e^{\prime}\right)=\max \left(0, \min \left(t_{e}, t_{e}^{\prime}\right)-\max \left(t_{s}, t_{s}^{\prime}\right)\right)$ is the amount of time during which events $e=\left(u, v, t_{s}, t_{e}\right)$ and $e^{\prime}=\left(u^{\prime}, v^{\prime}, t_{s}^{\prime}, t_{e}^{\prime}\right)$ are active at the same time, i.e., $c t\left(e, e^{\prime}\right)$ is the length of the overlap of the intervals $\left[t_{s}, t_{e}\right]$ and $\left[t_{s}^{\prime}, t_{e}^{\prime}\right]$. Vijayan et al. (2017) contains a more detailed explanation and justification for this extension of the notion of a conserved edge from static NA to dynamic NA.

Then, given two dynamic networks $H_{1}\left(V_{1}, T_{1}\right)$ and $H_{2}\left(V_{2}, T_{2}\right)$, assuming without loss of generality that $\left|V_{1}\right| \leq\left|V_{2}\right|$, and a dynamic NA $f: V_{1} \rightarrow V_{2}$ between them,

$$
\mathrm{DWEC}=\sum_{(u, v) \in V_{1} \times V_{1}} \frac{s\left(v, v^{\prime}\right) \operatorname{CET}\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right)}{2 \min \left(\operatorname{ta}\left(H_{1}\right), t a\left(H_{2}\right)\right)},
$$

where $u^{\prime}=f(u), v^{\prime}=f(v), \operatorname{CET}\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right)$ is the CET of the mapping of node pair (u, v) to node pair $\left(u^{\prime}, v^{\prime}\right)$ and is defined in (Vijayan et al., 2017), and $t a(H)$ is the total amount of time during which events in dynamic network $H(V, T)$ are active, i.e., $t a(H)=\sum_{\left(u, v, t_{s}, t_{e}\right) \in T}\left(t_{e}-t_{s}\right)=\frac{1}{2} \sum_{(u, v) \in V \times V} \operatorname{CET}((u, v),(u, v))$.

S1.2.2 DynaWAVE alignment strategy

We continue our discussion of DynaWAVE's alignment strategy from Section 2 of the main paper. We extend the arguments for WAVE's alignment strategy from static NA to dynamic NA.

Above, we described DWEC when given two dynamic networks $H_{1}\left(V_{1}, T_{1}\right)$ and $H_{2}\left(V_{2}, T_{2}\right)$, and a dynamic NA $f: V_{1} \rightarrow V_{2}$ between them. That is, f describes a mapping from V_{1} to V_{2} for all nodes $v \in V_{1}$. However, it is also possible to describe DWEC when given a partial mapping from V_{1} to V_{2}, i.e., when given a partial mapping $f^{*}: V_{1}^{*} \rightarrow V_{2}$ where $V_{1}^{*} \subset V_{2}$. In order to motivate the DynaWAVE alignment strategy, we will now describe DWEC when given a partial mapping between two static networks. Given a partial mapping $f^{t}: V_{1}^{t} \rightarrow V_{2}$, where only the nodes in V_{1}^{t} are aligned, we are able to calculate the partial DWEC:

$$
\mathrm{DWEC}^{t}=\sum_{(u, v) \in V_{1}^{t} \times V_{1}^{t}} \frac{s\left(v, v^{\prime}\right) \operatorname{CET}\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right)}{2 \min \left(t a\left(H_{1}\right), t a\left(H_{2}\right)\right)}
$$

Now, what happens to DWEC ${ }^{t}$ when we align a new node $w \in V_{1}$ to the partial mapping? What is the marginal improvement in DWEC ${ }^{t}$ when we add a new node $w \in V_{1}$ that is mapped to node $w^{\prime} \in V_{2}$? Formally, let $f^{t+1}: V_{1}^{t+1} \rightarrow V_{2}$ be the partial mapping when we add to V_{1}^{t} a new node $w \in V_{1}$ that maps to node $w^{\prime} \in V_{2}$; that is, $V_{1}^{t+1}=\{w\} \cup V_{1}^{t}$ and $f^{t+1}\left(V^{t}\right)=\left\{w^{\prime}\right\} \cup f^{t}\left(V^{t}\right)$ where $w^{\prime}=f^{t+1}(w)$. Then, the marginal improvement of DWEC ${ }^{t}$ when adding the aligned node pair $\left(w, w^{\prime}\right)$ to f^{t} is:

$$
\begin{aligned}
\mathrm{DWEC}^{t+1}-\mathrm{DWEC}^{t} & =\sum_{(u, v) \in V_{1}^{t+1} \times V_{1}^{t+1}} \frac{s\left(v, v^{\prime}\right) \operatorname{CET}\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right)}{2 \min \left(t a\left(H_{1}\right), t a\left(H_{2}\right)\right)}-\sum_{(u, v) \in V_{1}^{t} \times V_{1}^{t}} \frac{s\left(v, v^{\prime}\right) \operatorname{CET}\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right)}{2 \min \left(t a\left(H_{1}\right), t a\left(H_{2}\right)\right)} \\
& =\sum_{u \in V_{1}^{t}} \frac{s\left(w, w^{\prime}\right) \operatorname{CET}\left((u, w),\left(u^{\prime}, w^{\prime}\right)\right)}{2 \min \left(t a\left(H_{1}\right), t a\left(H_{2}\right)\right)}+\sum_{v \in V_{1}^{t}} \frac{s\left(v, v^{\prime}\right) \operatorname{CET}\left((w, v),\left(w^{\prime}, v^{\prime}\right)\right)}{2 \min \left(t a\left(H_{1}\right), t a\left(H_{2}\right)\right)} \\
& =\sum_{u \in V_{1}^{t}} \frac{\left(s\left(w, w^{\prime}\right)+s\left(u, u^{\prime}\right)\right) \operatorname{CET}\left((u, w),\left(u^{\prime}, w^{\prime}\right)\right)}{2 \min \left(t a\left(H_{1}\right), \operatorname{ta}\left(H_{2}\right)\right)} \quad\left(\text { since } \operatorname{CET}\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right)=\operatorname{CET}\left((v, u),\left(v^{\prime}, u^{\prime}\right)\right)\right) \\
& =\sum_{u \in V_{1}^{t} \wedge\left(u, u^{\prime}\right) \in N_{w} \times N_{w^{\prime}}} \frac{\left(s\left(w, w^{\prime}\right)+s\left(u, u^{\prime}\right)\right) \operatorname{CET}\left((u, w),\left(u^{\prime}, w^{\prime}\right)\right)}{2 \min \left(t a\left(H_{1}\right), t a\left(H_{2}\right)\right)},
\end{aligned}
$$

where N_{u} contains the neighbors of node u. So, the marginal improvement of DWEC ${ }^{t}$ weigh each conserved edge using the node similarities of w and its neighbors N_{w}, as well as the node similarities of w^{\prime} and its neighbors $N_{w^{\prime}}$, weighted by the conserved event time (CET) of the dynamic edges.

This suggests a greedy alignment strategy: given a partial alignment f^{t}, we may choose a new aligned pair (w, w^{\prime}) such that $\mathrm{DWEC}^{t+1}-\mathrm{DWEC}^{t}$ is maximized; furthermore, due to the above equation, we can see that this maximization procedure will depend only on the nodes that are already aligned and their neighbors. We then repeat this maximization process until all nodes in V_{1} are aligned. We describe this alignment strategy below.

Note that as explained in Section 2 of the main paper, DynaWAVE maximizes $\beta S_{E}+(1-\beta) S_{N}$, where S_{E} is the DWEC dynamic edge conservation measure, and $S_{N}=\frac{1}{\left|V_{1}\right|} \sum_{u \in V_{1}} s\left(u, u^{\prime}\right)$ is the node conservation measure with $s\left(u, u^{\prime}\right)$ being the node similarity between $u \in V_{1}$ and $u^{\prime} \in V_{2}$. Thus, the goal of DynaWAVE is to maximize the alignment quality measure $A Q=\beta D W E C+(1-\beta) S_{N}$. We now describe DynaWAVE's alignment strategy.

Given an initial empty mapping $f^{0}: V_{1}^{0} \rightarrow V_{2}$, where $V_{1}^{0}=\varnothing$, the associated alignment quality score $\mathrm{AQ}^{0}=0$. Then, the aligned node pair with the highest marginal increase in AQ is the node pair (u, u^{\prime}) with the highest node similarity score $s\left(u, u^{\prime}\right)$. This fulfills the base case of our induction. Now, we move to our inductive step. Given a partial mapping $f^{t}: V_{1}^{t} \rightarrow V_{2}$ and associated alignment quality score AQ^{t}, we find the node pair $\left(u, u^{\prime}\right)$ that gives the highest marginal increase in AQ. This is done as follows.

First, DynaWAVE creates a vote matrix $\hat{s}\left(u, u^{\prime}\right)$, initialized to $\hat{s}\left(u, u^{\prime}\right)=\frac{s\left(u, u^{\prime}\right)}{\left|V_{1}\right|}$ for all $u \in V_{1}, u^{\prime} \in V_{2} . \hat{s}\left(u, u^{\prime}\right)$ represents the marginal increase in $A Q$ if we align node u to node u^{\prime}. Second, DynaWAVE selects the node pair (w, w^{\prime}) with the highest $\hat{s}\left(w, w^{\prime}\right)$, and aligns w to w^{\prime}. Third, the aligned node pair $\left(w, w^{\prime}\right)$ increments the weight of their neighbors with the marginal increase in AQ if that neighbor were to be aligned (this can be seen as a "voting" mechanism). That is, each node pair ($\left.u, u^{\prime}\right) \in N_{w} \times N_{w^{\prime}}$ receive a weighted vote $\frac{\beta\left(s\left(w, w^{\prime}\right)+s\left(u, u^{\prime}\right)\right) \operatorname{CET}\left((u, w),\left(u^{\prime}, w^{\prime}\right)\right)}{2 \min \left(t a\left(H_{1}\right), t a\left(H_{2}\right)\right)}$, normalized locally to $\frac{\beta\left(s\left(w, w^{\prime}\right)+s\left(u, u^{\prime}\right)\right) \operatorname{CET}\left((u, w),\left(u^{\prime}, w^{\prime}\right)\right)}{\left|V_{1}\right| \max _{v, v^{\prime}}\left(\operatorname{CET}\left(T_{u v} \cup T_{u^{\prime} v^{\prime}}\right)\right)}$, that updates its marginal increase in DWEC, and 0 for the marginal increase in S_{N}. Finally, DynaWAVE goes to the second step, repeating the process of selecting the node pair (w, w^{\prime}) with the highest $\hat{s}\left(w, w^{\prime}\right)$, until all nodes in V_{1} are aligned. This alignment strategy greedily maximizes AQ. Supplementary Algorithm S2 describes our DynaWAVE implementation that has $O\left(\left|V_{1}\right|\left|V_{2}\right| \log \left(\left|V_{1}\right|\left|V_{2}\right|\right)+\left|V_{1}\right| e_{1} e_{2}\right)$ time complexity, where e_{1} and e_{2} are the average number of events in each node in H_{1} and H_{2}, respectively.

```
Algorithm S2 DynaWAVE algorithm.
    procedure DynaWAVE \(\left(G_{1}\left(V_{1}, T_{1}\right), G_{2}\left(V_{1}, T_{1}\right), s:\left|V_{1}\right| \times\left|V_{2}\right|, \beta\right)\)
        Let \(A=\varnothing\) be an empty set of aligned node pairs
        Let \(Q=\varnothing\) be an empty priority queue
        Let \(L_{1}=\varnothing\) be an empty set of nodes
        Let \(L_{2}=\varnothing\) be an empty set of nodes
        Let \(\hat{s}:\left|V_{1}\right| \times\left|V_{2}\right|\) be a matrix of zeros
        for \(\left(u, u^{\prime}\right) \in V_{1} \times V_{2}\) do \(\triangleright\) Initialize priority queue
            \(\hat{s}\left[u, u^{\prime}\right] \leftarrow \frac{s\left[u, u^{\prime}\right]}{\left|V_{1}\right|}\)
            \(Q\left[\left(u, u^{\prime}\right)\right] \leftarrow \hat{s}\left[u, u^{\prime}\right]\)
        while \(Q \neq \varnothing\) do \(\quad \triangleright\) Main loop
            \(\left(w, w^{\prime}\right) \leftarrow\) get_maximum_element \((Q)\)
            \(A \leftarrow A \cup\left\{\left(w, w^{\prime}\right)\right\}\)
            \(L_{1} \leftarrow L_{1} \cup\{w\}\)
            \(L_{2} \leftarrow L_{2} \cup\left\{w^{\prime}\right\}\)
            for \(\left(u, u^{\prime}\right) \in N_{w} \times N_{w^{\prime}}\) do \(\quad\) Voting. \(N_{w}\) is the set of neighboring nodes of \(w\), and similarly for \(N_{w^{\prime}}\)
                \(\hat{s}\left[u, u^{\prime}\right] \leftarrow \frac{\beta\left(s\left(w, w^{\prime}\right)+s\left(u, u^{\prime}\right)\right) \operatorname{CET}\left((u, w),\left(u^{\prime}, w^{\prime}\right)\right)}{\left|V_{1}\right| \max _{v, v^{\prime}}\left(\operatorname{CET}\left(T_{u v} \cup T_{u^{\prime}} v^{\prime}\right)\right)} \triangleright T_{u v}\) is the set of events between \(u\) and \(v\), and similarly for \(T_{u^{\prime} v^{\prime}}\).
    CET is defined in Supplementary Algorithm S3
            for \(\left(u, u^{\prime}\right) \in\left(N_{u} \backslash L_{1}\right) \times\left(N_{u^{\prime}} \backslash L_{2}\right)\) do \(\quad \triangleright\) Update priority queue
                \(Q\left[\left(u, u^{\prime}\right)\right] \leftarrow \hat{s}\left[u, u^{\prime}\right]\)
            for \(u \in V_{1} \backslash L_{1}\) do \(\quad \triangleright\) Remove node pairs that cannot be aligned anymore
                remove_element \(\left(Q,\left(u, w^{\prime}\right)\right)\)
            for \(u^{\prime} \in V_{2} \backslash L_{2}\) do
                remove_element \(\left(Q,\left(w, u^{\prime}\right)\right)\)
```

```
overlap).
procedure \(\mathrm{CET}(T)\)
    if \(T=\varnothing\) then
        return 0
    \(T_{c} \leftarrow 0\)
    \((u, v, a, b) \leftarrow \operatorname{pop} T\)
    while \(T \neq \varnothing\) do
        \((u, v, c, d) \leftarrow \operatorname{pop} T\)
        if \(b \leq c\) then
            \((a, b) \leftarrow(c, d)\)
        else if \(b>d\) then
            \(T_{c} \leftarrow T_{c}+(d-c)\)
            \((a, b) \leftarrow(d, b)\)
        else
            \(T_{c} \leftarrow T_{c}+(b-c)\)
            \((a, b) \leftarrow(b, d)\)
    return \(T_{c}\)
```

Algorithm S3 Given a set of events, $T=\left\{\left(u, v, t_{s}, t_{e}\right)\right\}$, sorted from smallest to largest by start time t_{s}, this algorithm calculates
the CET of the set. The CET is the total amount of time during which two events are active (i.e., where the time intervals

S2 Results and discussion

S2.1 Randomization

Here, we discuss the non-strict and strict randomization models that are used in Section 3 of the main paper, and was first used by Vijayan et al. (2017).

S2.1.1 Non-strict randomization model

We continue our discussion on the non-strict randomization model from Section 3 of the main paper. This randomization scheme proposed by Holme (2015) works as follows. Given the original dynamic network $H(V, T)$, to randomize to noise level p, first, we arbitrarily number all m events in the network as $T=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. Then, for each event e_{i}, with probability p we randomly select an event $e_{i^{\prime}}$, and we rewire the two events. That is, given $e_{i}=\left(u, v, t_{s}, t_{e}\right)$ and $e_{i^{\prime}}=\left(u^{\prime}, v^{\prime}, t_{s}^{\prime}, t_{e}^{\prime}\right)$, we either set $e_{i}=\left(u, v^{\prime}, t_{s}, t_{e}\right)$ and $e_{i^{\prime}}=\left(u^{\prime}, v, t_{s}, t_{e}\right)$ with probability 0.5 , or we set $e_{i}=\left(u, u^{\prime}, t_{s}, t_{e}\right)$ and $e_{i^{\prime}}=\left(v, v^{\prime}, t_{s}, t_{e}\right)$ with probability 0.5 . If the resulting e_{i} or $e_{i^{\prime}}$ forms a loop or a multiple link, then we undo the rewiring and randomly select another event $e_{i^{\prime}}$.

S2.1.2 Strict randomization model

We continue our discussion on the strict randomization model from Section 3 of the main paper. This randomization scheme proposed by Holme (2015) works as follows. Given the original dynamic network $H(V, T)$, to randomize to noise level p, first, we arbitrarily number all m events in the network as $T=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. Then, for each event e_{i}, with probability p we randomly select another event $e_{i^{\prime}}, i^{\prime} \neq i$, and swap the time stamps of the two events.

S2.2 Synthetic networks

We continue our discussion of synthetic networks from Section 3 of the main paper. We create synthetic networks using three dynamic network models that were described in Hulovatyy et al. (2015): geometric gene duplication model with probability cutoff (GEO-GD, parameter $p=0.3$, linear node arrival, Pržulj et al. (2010)), scale-free gene duplication model (SF-GD, parameters $p=0.3, q=0.7$, exponential node arrival, Vazquez et al. (2002)), and a social network evolution model (SNE, parameters $\lambda=0.032, \alpha=0.8, \beta=0.002$, quadratic node arrival, Leskovec et al. (2008)). Table S 2 shows the details of the generated synthetic networks.

Supplementary Tables

Algorithms	Parameters
DynaMAGNA ++	$\mathrm{m}=\mathrm{DS} 3, \mathrm{p}=15000, \mathrm{n}=10000, \mathrm{a}=0.5, s(\cdot, \cdot)=$ dynamic GDV node similarity
MAGNA ++	$\mathrm{m}=\mathrm{S} 3, \mathrm{p}=15000, \mathrm{n}=10000, \mathrm{a}=0.5, s(\cdot, \cdot)=$ static GDV node similarity
DynaWAVE	$\mathrm{beta}=0.5, s(\cdot, \cdot)=$ dynamic GDV node similarity
WAVE	$\mathrm{beta}=0.5, s(\cdot, \cdot)=$ static GDV node similarity
DynaMAGNA++ (DWEC)	$\mathrm{m}=\mathrm{DWEC}, \mathrm{p}=15000, \mathrm{n}=10000, \mathrm{a}=0.5, s(\cdot, \cdot)=$ dynamic GDV node similarity
MAGNA $++($ WEC $)$	$\mathrm{m}=\mathrm{WEC}, \mathrm{p}=15000, \mathrm{n}=10000, \mathrm{a}=0.5, s(\cdot, \cdot)=$ static GDV node similarity

Table S1: Method parameters that we use in our study. We use parameters recommended in the methods' original publications. We use similar corresponding parameters as the other studies for DynaWAVE. $s(\cdot, \cdot)$ indicates the node similarity values given to the method. Details on both the dynamic and static GDV node similarity measures are described in Vijayan et al. (2017).

Network model	Num. nodes	Num. events
GEO-GD	100	$296.00(136.57)$
GEO-GD	200	$480.00(237.46)$
GEO-GD	400	$808.00(158.76)$
GEO-GD	800	$2094.67(106.59)$
GEO-GD	1600	$5247.33(1096.29)$
GEO-GD	2400	$9506.00(1296.39)$
GEO-GD	3200	$9843.33(1038.07)$
GEO-GD	4000	$13646.67(883.46)$
SF-GD	100	$338.67(78.85)$
SF-GD	200	$799.33(105.10)$
SF-GD	400	$1440.67(508.39)$
SF-GD	800	$2539.33(216.97)$
SF-GD	1600	$4838.67(570.02)$
SF-GD	2400	$7112.00(42.33)$
SF-GD	3200	$10112.67(1352.24)$
SF-GD	4000	$11067.33(915.94)$
SNE	100	$275.33(16.17)$
SNE	200	$592.67(5.03)$
SNE	400	$1224.67(32.02)$
SNE	800	$2513.33(98.07)$
SNE	1600	$5184.00(24.58)$
SNE	2400	$7879.33(20.03)$
SNE	3200	$10510.00(81.90)$
SNE	4000	$13095.33(185.30)$

Table S2: Details of synthetic networks generated using the GEO-GD, SF-GD, and SNE network models for varying network sizes. The average number of events (with standard deviation in brackets) is shown for each network model and each network size.

Supplementary Figures

Figure S1: Node correctness (NC) of DynaWAVE, WAVE, DynaMAGNA++, and MAGNA++ as a function of noise level while aligning the original Zebra proximity network to randomized (noisy) versions of the original network. Two randomization models are used: (a) the non-strict randomization model that randomly rewires events in the network up to the given percentage (noise level) and does not conserve the structure of the flattened version of the original dynamic network, and (b) the strict randomization model that conserves all structure of the flattened version of the original dynamic network and only randomly "shuffles" the given percentage (noise level) of its event time stamps.

- DynaWAVE
- WAVE
- DynaMAGNA++
\triangle MAGNA ++
(a)

(b)

Figure S2: Node correctness (NC) of DynaWAVE, WAVE, DynaMAGNA++, and MAGNA++ as a function of noise level while aligning the original Yeast protein interaction network to randomized (noisy) versions of the original network. Two randomization models are used: (a) the non-strict randomization model that randomly rewires events in the network up to the given percentage (noise level) and does not conserve the structure of the flattened version of the original dynamic network, and (b) the strict randomization model that conserves all structure of the flattened version of the original dynamic network and only randomly "shuffles" the given percentage (noise level) of its event time stamps.

Figure S3: Node correctness (NC) of DynaWAVE, WAVE, DynaMAGNA++, and MAGNA++ as a function of noise level while aligning the original Human aging protein interaction network to randomized (noisy) versions of the original network. Two randomization models are used: (a) the non-strict randomization model that randomly rewires events in the network up to the given percentage (noise level) and does not conserve the structure of the flattened version of the original dynamic network, and (b) the strict randomization model that conserves all structure of the flattened version of the original dynamic network and only randomly "shuffles" the given percentage (noise level) of its event time stamps.

Figure S4: Node correctness (NC) of DynaWAVE, DynaMAGNA++, and DynaMAGNA++ (DWEC) as a function of noise level while aligning an original synthetic network to randomized (noisy) versions of the original network. NC is averaged for each network model (GEO-GD, SF-GD, SNE), for each network size (100, 200, 400, 800, 1600, 2400, 3200, 4000) at a given noise level. The non-strict randomization model that rewires events in the network and does not conserve structure of the flattened version of the original dynamic network is used.

Funding

This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-16-10147.

References

Holme, P. (2015). Modern temporal network theory: a colloquium. The European Physical fournal B, 88(9), 1-30.
Hulovatyy, Y., Chen, H., and Milenković, T. (2015). Exploring the structure and function of temporal networks with dynamic graphlets. Bioinformatics, 31(12), 171-180.
Leskovec, J., Backstrom, L., Kumar, R., and Tomkins, A. (2008). Microscopic evolution of social networks. In Proc. of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '08, pages 462-470.

Milenković, T. and Pržulj, N. (2008). Uncovering biological network function via graphlet degree signatures. Cancer Informatics, 6, 257-273.
Pržulj, N., Kuchaiev, O., Stevanović, A., and Hayes, W. (2010). Geometric evolutionary dynamics of protein interaction networks. In Proc. of the Pacific Symposium Biocomputing, pages 4-8.

Vazquez, A., Flammini, A., Maritan, A., and Vespignani, A. (2002). Modeling of protein interaction networks. ComPlexUs, 1, 38-44.
Vijayan, V., Critchlow, D., and Milenković, T. (2017). Alignment of dynamic networks. Bioinformatics, 33(14), i180-i189.

