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S1 Methods

S1.1 WAVE
WAVE greedily maximizes βSE + (1 − β)SN , where SE is the WEC edge conservation measure, and SN =

1

|V1 |

∑
u ∈V1

s(u,u ′)
is the node conservation measure with s(u,u ′) being the node similarity between u ∈ V1 and u ′ ∈ V2, and β is a parameter

between 0 and 1 that balances between the two conservation types. Node similarities s(·, ·) can be based on network topology

only (e.g., graphlet-based node similarities), information external to network topology such as protein sequence similarities, or

a combination of the two. Two node similarities, s1(u,v) and s2(u,v), between nodes u and v can be combined, for example,

using the convex combination αs1(u,v) + (1 − α)s2(u,v). Speci�cally in this paper, we use graphlet-based node similarities

(Milenković and Pržulj, 2008) and set the β parameter to 0.5. Graphlets, for static networks, are small, connected, induced

sub-graphs of a larger static network. Graphlets can be used to describe the local topology of a node in a static network. We

use the graphlet-based node similarity s(·, ·) for static networks as described in Vijayan et al. (2017).

S1.1.1 WEC

We continue our discussion of WEC from Section 2 of the main paper. Similar to MAGNA++’s S
3
, WAVE’s WEC also counts the

number of conserved edges, but unlike S
3

that treats each conserved edge the same, WEC favors conserved edges with similar

end-nodes over conserved edges with dissimilar end-nodes. �at is, for each edge (u,v) ∈ E1 aligned to edge (u ′,v ′) ∈ E2, the

conserved edge is weighted by s(u,u ′) and s(v,v ′), the node similarity between nodes (u,u ′) ∈ V1×V2 and nodes (v,v ′) ∈ V1×V2,

respectively.

Formally, given two static networks G1(V1,E1) and G2(V2,E2), assuming without loss of generality that |V1 | ≤ |V2 |, and a

static NA f : V1 → V2 between them,

WEC =
∑

(u,v)∈V1×V1

s(v,v ′)1 [(u,v) ∈ E1 ∧ (u
′,v ′) ∈ E2]

2 min(|E1 |, |E2 |)
,

whereU ×V is the Cartesian product of setsU and V , u ′ = f (u), v ′ = f (v), and c(u,v) = 1 if the edge (u,v) ∈ E1 is conserved

and c(u,v) = 0 otherwise. �at is, c(u,v) = 1 [(u,v) ∈ E1 ∧ (u
′,v ′) ∈ E2], where 1 [p] = 1 if p is true and 1 [p] = 0 if p is false.

S1.1.2 WAVE alignment strategy

We continue our discussion of WAVE’s alignment strategy from Section 2 of the main paper. Above, we described WEC when

given two static networksG1(V1,E1) andG2(V2,E2), and a static NA f : V1 → V2 between them. �at is, f describes a mapping

from V1 to V2 for all nodes v ∈ V1. However, it is also possible to describe WEC when given a partial mapping from V1 to V2,

i.e., when given a partial mapping f ∗ : V ∗
1
→ V2 where V ∗

1
⊂ V2. In order to motivate the WAVE alignment strategy, we will

now describe WEC when given a partial mapping between two static networks. Given a partial mapping f t : V t
1
→ V2, where

only the nodes in V t
1
⊂ V1 are aligned, we are able to calculate the partial WEC:

WEC
t =

∑
(u,v)∈V t

1
×V t

1

s(v,v ′)1 [(u,v) ∈ E1 ∧ (u
′,v ′) ∈ E2]

2 min(|E1 |, |E2 |)
.

Now, what happens to WEC
t

when we align a new nodew ∈ V1 to the partial mapping? What is the marginal improvement

in WEC
t

when we add a new node w ∈ V1 that is mapped to node w ′ ∈ V2? Formally, let f t+1
: V t+1

1
→ V2 be the partial
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mapping when we add toV t
1

a new nodew ∈ V1 that maps to nodew ′ ∈ V2; that is,V t+1

1
= {w}∪V t

1
and f t+1(V t ) = {w ′}∪f t (V t )

where w ′ = f t+1(w). �en, the marginal improvement of WEC
t

when adding the aligned node pair (w,w ′) to f t is:

WEC
t+1 −WEC

t =
∑

(u,v)∈V t+1

1
×V t+1

1

s(v,v ′)1 [(u,v) ∈ E1 ∧ (u
′,v ′) ∈ E2]

2 min(|E1 |, |E2 |)
−

∑
(u,v)∈V t

1
×V t

1

s(v,v ′)1 [(u,v) ∈ E1 ∧ (u
′,v ′) ∈ E2]

2 min(|E1 |, |E2 |)

=
∑
u ∈V t

1

s(w,w ′)1 [(u,w) ∈ E1 ∧ (u
′,w ′) ∈ E2]

2 min(|E1 |, |E2 |)
+

∑
v ∈V t

1

s(v,v ′)1 [(w,v) ∈ E1 ∧ (w
′,v ′) ∈ E2]

2 min(|E1 |, |E2 |)

=
∑
u ∈V t

1

(s(w,w ′) + s(u,u ′))1 [(u,w) ∈ E1 ∧ (u
′,w ′) ∈ E2]

2 min(|E1 |, |E2 |)
(since we have undirected edges)

=
∑

u ∈V t
1
∧(u,u′)∈Nw×Nw′

s(w,w ′) + s(u,u ′)

2 min(|E1 |, |E2 |)
,

where Nu contains the neighbors of node u. So, the marginal improvement of WEC
t

weigh each conserved edge using the

node similarities of w and its neighbors Nw , as well as the node similarities of w ′ and its neighbors Nw ′ .

�is suggests a greedy alignment strategy: given a partial alignment f t , we may choose a new aligned pair (w,w ′) such

that WEC
t+1 −WEC

t
is maximized; furthermore, due to the above equation, we can see that this maximization procedure will

depend only on the nodes that are already aligned and their neighbors. We then repeat this maximization process until all

nodes in V1 are aligned. We describe this alignment strategy below.

Note that as explained in Section 2 of the main paper, WAVE maximizes βSE + (1 − β)SN , where SE is the WEC edge

conservation measure, and SN =
1

|V1 |

∑
u ∈V1

s(u,u ′) is the node conservation measure with s(u,u ′) being the node similarity

between u ∈ V1 and u ′ ∈ V2. �us, the goal of WAVE is to maximize the alignment quality measure AQ = βWEC + (1 − β)SN .

We now describe WAVE’s alignment strategy.

Given an initial empty mapping f 0
: V 0

1
→ V2, where V 0

1
= ∅, the associated alignment quality score AQ

0 = 0. �en, the

aligned node pair with the highest marginal increase in AQ is the node pair (u,u ′) with the highest node similarity score

s(u,u ′). �is ful�lls the base case of our induction. Now, we move to our inductive step. Given a partial mapping f t : V t
1
→ V2

and associated alignment quality score AQ
t
, we �nd the node pair (u,u ′) that gives the highest marginal increase in AQ. �is

is done as follows.

First, WAVE creates a vote matrix ŝ(u,u ′), initialized to ŝ(u,u ′) = s(u,u′)
|V1 |

for all u ∈ V1,u
′ ∈ V2. ŝ(u,u ′) represents the

marginal increase in AQ if we align node u to node u ′. Second, WAVE selects the node pair (w,w ′) with the highest ŝ(w,w ′),
and aligns w to w ′. �ird, the aligned node pair (w,w ′) increments the weight of their neighbors with the marginal increase in

AQ if that neighbor were to be aligned (this can be seen as a “voting” mechanism). �at is, each node pair (u,u ′) ∈ Nw × Nw ′

receive a weighted vote
β (s(w,w ′)+s(u,u′))

2 min( |E1 |, |E2 |)
, normalized locally to

β (s(w,w ′)+s(u,u′))
|V1 |

, that updates its marginal increase in WEC, and

0 for the marginal increase in SN . Finally, WAVE goes to the second step, repeating the process of selecting the node pair (w,w ′)
with the highest ŝ(w,w ′), until all nodes in V1 are aligned. �is alignment strategy greedily maximizes AQ. Supplementary

Algorithm S1 describes our WAVE implementation that has O(|V1 | |V2 | log(|V1 | |V2 |) + |V1 |d1d2) time complexity, where d1 and

d2 are the average degrees of G1 and G2, respectively.
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Algorithm S1 WAVE algorithm.

1: procedure WAVE(G1(V1,E1), G2(V1,E1), s : |V1 | × |V2 |, β)

2: Let A = ∅ be an empty set of aligned node pairs.

3: Let Q = ∅ be an empty priority queue.

4: Let L1 = ∅ be an empty set of nodes.

5: Let L2 = ∅ be an empty set of nodes.

6: Let ŝ : |V1 | × |V2 | be a matrix of zeros

7: for (u,u ′) ∈ V1 ×V2 do . Initialize priority queue

8: ŝ[u,u ′] ← s[u,u′]
|V1 |

9: Q[(u,u ′)] ← ŝ[u,u ′]

10: while Q , ∅ do . Main loop

11: (w,w ′) ← get maximum element(Q)
12: A← A ∪ {(w,w ′)}
13: L1 ← L1 ∪ {w}
14: L2 ← L2 ∪ {w

′}

15: for (u,u ′) ∈ Nw × Nw ′ do . Voting. Nw is the set of neighboring nodes of w , and similarly for Nw ′

16: ŝ[v,v ′] ←
β (s(w,w ′)+s(u,u′))

|V1 |

17: for (u,u ′) ∈ (Nw \ L1) × (Nw ′ \ L2) do . Update priority queue

18: Q[(u,u ′)] ← ŝ[u,u ′]

19: for u ∈ V1 \ L1 do . Remove node pairs that cannot be aligned anymore

20: remove element(Q, (u,w ′))

21: for u ′ ∈ V2 \ L2 do
22: remove element(Q, (w,u ′))

S1.2 DynaWAVE
DynaWAVE maximizes βSE+(1−β)SN , where SE is the DWEC dynamic edge conservation measure, and SN =

1

|V1 |

∑
u ∈V1

s(u,u ′)
is the node conservation measure with s(u,u ′) being the node similarity between u ∈ V1 and u ′ ∈ V2, and β is a parameter

between 0 and 1 that balances between the two conservation types. Node similarities s(·, ·) can be based on network topology

only (e.g., dynamic graphlet-based node similarities), information external to network topology such as protein sequence

similarities, or a combination of the two. Two node similarities, s1(u,v) and s2(u,v), between nodes u and v can be combined,

for example, using the convex combination αs1(u,v)+ (1−α)s2(u,v). Speci�cally in this paper, we use dynamic graphlet-based

node similarities (Hulovatyy et al., 2015) and set the β parameter to 0.5. Dynamic graphlets are an extension of static graphlets

to the dynamic se�ing. While static graphlets capture the local topology of a node, dynamic graphlets capture how the local

topology changes over time. We use the dynamic graphlet-based node similarity s(·, ·) for dynamic networks as described in

Vijayan et al. (2017).

S1.2.1 DWEC

We continue our discussion of DWEC from Section 2 of the main paper.

DWEC is an extension of WEC from static NA to dynamic NA. Similar to DynaMAGNA++’s DS
3
, DynaWAVE’s DWEC

also computes the conserved event time (CET) of the alignment (where the CET of the mapping of node pair (u,v) to node

pair (u ′,v ′) is the amount of time during which both (u,v) and (u ′,v ′) are active, and the total alignment CET is the sum of

CETs across all mapped node pairs (explained in detail below). However, unlike DS
3
, DWEC favors a conserved event with

similar end-nodes over an equally conserved event with dissimilar end-nodes. �at is, when calculating DWEC, for each node

pair (u,v) ∈ V1 ×V1 that is mapped to node pair (u ′,v ′) ∈ V2 ×V2, the CET of the node pair mapping is weighted by s(u,u ′)
and s(v,v ′), the node similarity between nodes (u,u ′) ∈ V1 ×V2 and nodes (v,v ′) ∈ V1 ×V2, respectively.

To describe the above formally, �rst, we de�ne a dynamic network and dynamic NA, then de�ne CET, and then we de�ne

DWEC. Let a dynamic networkH (V ,T ) consist of a node setV and an event setT . An event is an interaction between nodesu and

v from time ts to te , and is represented as a 4-tuple (u,v, ts , te ). Let a dynamic NA be a one-to-one node mapping f : V1 → V2

between dynamic networks H1(V1,T1) and H2(V2,T2), which produces the set of aligned node pairs {(v, f (v)) | v ∈ V1}.

CET is an extension of the notion of a conserved edge from static NA to dynamic NA. Similar to how an edge (u,v) ∈ E1

in static network G1(V1,E1) that is aligned to an edge (u ′,v ′) ∈ E2 in static network G2(V2,E2) is conserved, we measure the

CET of a the mapping of a node pair (u,v) ∈ T1 in dynamic network H1(V1,T1) to a node pair (u ′,v ′) ∈ T2 in dynamic network
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H2(V2,T2). �e CET of this node pair mapping measures the entire amount of time during which both node pairs are active at

the same time. �at is, the CET between (u,v) and (u ′,v ′) is

CET((u,v), (u ′,v ′)) =
∑

e ∈Tuv

∑
e ′∈Tu′v′

ct(e, e ′),

where the conserved time ct(e, e ′) = max(0,min(te , t
′
e ) −max(ts , t

′
s )) is the amount of time during which events e = (u,v, ts , te )

and e ′ = (u ′,v ′, t ′s , t
′
e ) are active at the same time, i.e., ct(e, e ′) is the length of the overlap of the intervals [ts , te ] and [t ′s , t

′
e ].

Vijayan et al. (2017) contains a more detailed explanation and justi�cation for this extension of the notion of a conserved edge

from static NA to dynamic NA.

�en, given two dynamic networks H1(V1,T1) and H2(V2,T2), assuming without loss of generality that |V1 | ≤ |V2 |, and a

dynamic NA f : V1 → V2 between them,

DWEC =
∑

(u,v)∈V1×V1

s(v,v ′)CET((u,v), (u ′,v ′))

2 min(ta(H1), ta(H2))
,

whereu ′ = f (u),v ′ = f (v), CET((u,v), (u ′,v ′)) is the CET of the mapping of node pair (u,v) to node pair (u ′,v ′) and is de�ned

in (Vijayan et al., 2017), and ta(H ) is the total amount of time during which events in dynamic network H (V ,T ) are active, i.e.,

ta(H ) =
∑
(u,v,ts ,te )∈T (te − ts ) =

1

2

∑
(u,v)∈V×V CET((u,v), (u,v)).

S1.2.2 DynaWAVE alignment strategy

We continue our discussion of DynaWAVE’s alignment strategy from Section 2 of the main paper. We extend the arguments

for WAVE’s alignment strategy from static NA to dynamic NA.

Above, we described DWEC when given two dynamic networks H1(V1,T1) and H2(V2,T2), and a dynamic NA f : V1 → V2

between them. �at is, f describes a mapping fromV1 toV2 for all nodes v ∈ V1. However, it is also possible to describe DWEC

when given a partial mapping from V1 to V2, i.e., when given a partial mapping f ∗ : V ∗
1
→ V2 where V ∗

1
⊂ V2. In order to

motivate the DynaWAVE alignment strategy, we will now describe DWEC when given a partial mapping between two static

networks. Given a partial mapping f t : V t
1
→ V2, where only the nodes in V t

1
are aligned, we are able to calculate the partial

DWEC:

DWEC
t =

∑
(u,v)∈V t

1
×V t

1

s(v,v ′)CET((u,v), (u ′,v ′))

2 min(ta(H1), ta(H2))
.

Now, what happens to DWEC
t

when we align a new node w ∈ V1 to the partial mapping? What is the marginal

improvement in DWEC
t

when we add a new node w ∈ V1 that is mapped to node w ′ ∈ V2? Formally, let f t+1
: V t+1

1
→ V2

be the partial mapping when we add to V t
1

a new node w ∈ V1 that maps to node w ′ ∈ V2; that is, V t+1

1
= {w} ∪ V t

1
and

f t+1(V t ) = {w ′} ∪ f t (V t ) where w ′ = f t+1(w). �en, the marginal improvement of DWEC
t

when adding the aligned node

pair (w,w ′) to f t is:

DWEC
t+1 − DWEC

t =
∑

(u,v)∈V t+1

1
×V t+1

1

s(v,v ′)CET((u,v), (u ′,v ′))

2 min(ta(H1), ta(H2))
−

∑
(u,v)∈V t

1
×V t

1

s(v,v ′)CET((u,v), (u ′,v ′))

2 min(ta(H1), ta(H2))

=
∑
u ∈V t

1

s(w,w ′)CET((u,w), (u ′,w ′))

2 min(ta(H1), ta(H2))
+

∑
v ∈V t

1

s(v,v ′)CET((w,v), (w ′,v ′))

2 min(ta(H1), ta(H2))

=
∑
u ∈V t

1

(s(w,w ′) + s(u,u ′))CET((u,w), (u ′,w ′))

2 min(ta(H1), ta(H2))
(since CET((u,v), (u ′,v ′)) = CET((v,u), (v ′,u ′)))

=
∑

u ∈V t
1
∧(u,u′)∈Nw×Nw′

(s(w,w ′) + s(u,u ′))CET((u,w), (u ′,w ′))

2 min(ta(H1), ta(H2))
,

where Nu contains the neighbors of node u. So, the marginal improvement of DWEC
t

weigh each conserved edge using the

node similarities of w and its neighbors Nw , as well as the node similarities of w ′ and its neighbors Nw ′ , weighted by the

conserved event time (CET) of the dynamic edges.

�is suggests a greedy alignment strategy: given a partial alignment f t , we may choose a new aligned pair (w,w ′) such

that DWEC
t+1 − DWEC

t
is maximized; furthermore, due to the above equation, we can see that this maximization procedure

will depend only on the nodes that are already aligned and their neighbors. We then repeat this maximization process until all

nodes in V1 are aligned. We describe this alignment strategy below.
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Note that as explained in Section 2 of the main paper, DynaWAVE maximizes βSE + (1 − β)SN , where SE is the DWEC

dynamic edge conservation measure, and SN =
1

|V1 |

∑
u ∈V1

s(u,u ′) is the node conservation measure with s(u,u ′) being the

node similarity between u ∈ V1 and u ′ ∈ V2. �us, the goal of DynaWAVE is to maximize the alignment quality measure

AQ = βDWEC + (1 − β)SN . We now describe DynaWAVE’s alignment strategy.

Given an initial empty mapping f 0
: V 0

1
→ V2, where V 0

1
= ∅, the associated alignment quality score AQ

0 = 0. �en, the

aligned node pair with the highest marginal increase in AQ is the node pair (u,u ′) with the highest node similarity score

s(u,u ′). �is ful�lls the base case of our induction. Now, we move to our inductive step. Given a partial mapping f t : V t
1
→ V2

and associated alignment quality score AQ
t
, we �nd the node pair (u,u ′) that gives the highest marginal increase in AQ. �is

is done as follows.

First, DynaWAVE creates a vote matrix ŝ(u,u ′), initialized to ŝ(u,u ′) = s(u,u′)
|V1 |

for all u ∈ V1,u
′ ∈ V2. ŝ(u,u ′) represents the

marginal increase inAQ if we align nodeu to nodeu ′. Second, DynaWAVE selects the node pair (w,w ′)with the highest ŝ(w,w ′),
and aligns w to w ′. �ird, the aligned node pair (w,w ′) increments the weight of their neighbors with the marginal increase in

AQ if that neighbor were to be aligned (this can be seen as a “voting” mechanism). �at is, each node pair (u,u ′) ∈ Nw × Nw ′

receive a weighted vote
β (s(w,w ′)+s(u,u′))CET((u,w ),(u′,w ′))

2 min(ta(H1),ta(H2))
, normalized locally to

β (s(w,w ′)+s(u,u′))CET((u,w ),(u′,w ′))
|V1 |maxv,v′ (CET(Tuv∪Tu′v′ ))

, that updates

its marginal increase in DWEC, and 0 for the marginal increase in SN . Finally, DynaWAVE goes to the second step,

repeating the process of selecting the node pair (w,w ′) with the highest ŝ(w,w ′), until all nodes in V1 are aligned. �is

alignment strategy greedily maximizes AQ. Supplementary Algorithm S2 describes our DynaWAVE implementation that has

O(|V1 | |V2 | log(|V1 | |V2 |) + |V1 |e1e2) time complexity, where e1 and e2 are the average number of events in each node in H1 and

H2, respectively.
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Algorithm S2 DynaWAVE algorithm.

1: procedure DynaWAVE(G1(V1,T1), G2(V1,T1), s : |V1 | × |V2 |, β)

2: Let A = ∅ be an empty set of aligned node pairs

3: Let Q = ∅ be an empty priority queue

4: Let L1 = ∅ be an empty set of nodes

5: Let L2 = ∅ be an empty set of nodes

6: Let ŝ : |V1 | × |V2 | be a matrix of zeros

7: for (u,u ′) ∈ V1 ×V2 do . Initialize priority queue

8: ŝ[u,u ′] ← s[u,u′]
|V1 |

9: Q[(u,u ′)] ← ŝ[u,u ′]

10: while Q , ∅ do . Main loop

11: (w,w ′) ← get maximum element(Q)
12: A← A ∪ {(w,w ′)}
13: L1 ← L1 ∪ {w}
14: L2 ← L2 ∪ {w

′}

15: for (u,u ′) ∈ Nw × Nw ′ do . Voting. Nw is the set of neighboring nodes of w , and similarly for Nw ′

16: ŝ[u,u ′] ←
β (s(w,w ′)+s(u,u′))CET((u,w ),(u′,w ′))
|V1 |maxv,v′ (CET(Tuv∪Tu′v′ ))

. Tuv is the set of events between u and v , and similarly for Tu′v ′ .

CET is de�ned in Supplementary Algorithm S3

17: for (u,u ′) ∈ (Nu \ L1) × (Nu′ \ L2) do . Update priority queue

18: Q[(u,u ′)] ← ŝ[u,u ′]

19: for u ∈ V1 \ L1 do . Remove node pairs that cannot be aligned anymore

20: remove element(Q, (u,w ′))

21: for u ′ ∈ V2 \ L2 do
22: remove element(Q, (w,u ′))
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Algorithm S3 Given a set of events,T = {(u,v, ts , te )}, sorted from smallest to largest by start time ts , this algorithm calculates

the CET of the set. �e CET is the total amount of time during which two events are active (i.e., where the time intervals

overlap).

1: procedure CET(T )

2: if T = ∅ then
3: return 0

4: Tc ← 0

5: (u,v,a,b) ← pop T
6: while T , ∅ do
7: (u,v, c,d) ← pop T
8: if b ≤ c then
9: (a,b) ← (c,d)

10: else if b > d then
11: Tc ← Tc + (d − c)
12: (a,b) ← (d,b)
13: else
14: Tc ← Tc + (b − c)
15: (a,b) ← (b,d)

16: return Tc

S2 Results and discussion

S2.1 Randomization
Here, we discuss the non-strict and strict randomization models that are used in Section 3 of the main paper, and was �rst

used by Vijayan et al. (2017).

S2.1.1 Non-strict randomization model

We continue our discussion on the non-strict randomization model from Section 3 of the main paper. �is randomization

scheme proposed by Holme (2015) works as follows. Given the original dynamic network H (V ,T ), to randomize to noise level

p, �rst, we arbitrarily number allm events in the network asT = {e1, e2, . . . , em}. �en, for each event ei , with probability p we

randomly select an event ei′ , and we rewire the two events. �at is, given ei = (u,v, ts , te ) and ei′ = (u
′,v ′, t ′s , t

′
e ), we either set

ei = (u,v
′, ts , te ) and ei′ = (u

′,v, ts , te ) with probability 0.5, or we set ei = (u,u
′, ts , te ) and ei′ = (v,v

′, ts , te ) with probability

0.5. If the resulting ei or ei′ forms a loop or a multiple link, then we undo the rewiring and randomly select another event ei′ .

S2.1.2 Strict randomization model

We continue our discussion on the strict randomization model from Section 3 of the main paper. �is randomization scheme

proposed by Holme (2015) works as follows. Given the original dynamic network H (V ,T ), to randomize to noise level p,

�rst, we arbitrarily number all m events in the network as T = {e1, e2, . . . , em}. �en, for each event ei , with probability p we

randomly select another event ei′, i
′ , i , and swap the time stamps of the two events.

S2.2 Synthetic networks
We continue our discussion of synthetic networks from Section 3 of the main paper. We create synthetic networks using three

dynamic network models that were described in Hulovatyy et al. (2015): geometric gene duplication model with probability

cuto� (GEO-GD, parameter p = 0.3, linear node arrival, Pržulj et al. (2010)), scale-free gene duplication model (SF-GD,

parameters p = 0.3,q = 0.7, exponential node arrival, Vazquez et al. (2002)), and a social network evolution model (SNE,

parameters λ = 0.032,α = 0.8, β = 0.002, quadratic node arrival, Leskovec et al. (2008)). Table S2 shows the details of the

generated synthetic networks.
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Supplementary Tables

Algorithms Parameters

DynaMAGNA++ m=DS3, p=15000, n=10000, a=0.5, s(·, ·) = dynamic GDV node similarity

MAGNA++ m=S3, p=15000, n=10000, a=0.5, s(·, ·) = static GDV node similarity

DynaWAVE beta=0.5, s(·, ·) = dynamic GDV node similarity

WAVE beta=0.5, s(·, ·) = static GDV node similarity

DynaMAGNA++ (DWEC) m=DWEC, p=15000, n=10000, a=0.5, s(·, ·) = dynamic GDV node similarity

MAGNA++ (WEC) m=WEC, p=15000, n=10000, a=0.5, s(·, ·) = static GDV node similarity

Table S1: Method parameters that we use in our study. We use parameters recommended in the methods’ original publications.

We use similar corresponding parameters as the other studies for DynaWAVE. s(·, ·) indicates the node similarity values given

to the method. Details on both the dynamic and static GDV node similarity measures are described in Vijayan et al. (2017).

Network model Num. nodes Num. events

GEO-GD 100 296.00 (136.57)

GEO-GD 200 480.00 (237.46)

GEO-GD 400 808.00 (158.76)

GEO-GD 800 2094.67 (106.59)

GEO-GD 1600 5247.33 (1096.29)

GEO-GD 2400 9506.00 (1296.39)

GEO-GD 3200 9843.33 (1038.07)

GEO-GD 4000 13646.67 (883.46)

SF-GD 100 338.67 (78.85)

SF-GD 200 799.33 (105.10)

SF-GD 400 1440.67 (508.39)

SF-GD 800 2539.33 (216.97)

SF-GD 1600 4838.67 (570.02)

SF-GD 2400 7112.00 (42.33)

SF-GD 3200 10112.67 (1352.24)

SF-GD 4000 11067.33 (915.94)

SNE 100 275.33 (16.17)

SNE 200 592.67 (5.03)

SNE 400 1224.67 (32.02)

SNE 800 2513.33 (98.07)

SNE 1600 5184.00 (24.58)

SNE 2400 7879.33 (20.03)

SNE 3200 10510.00 (81.90)

SNE 4000 13095.33 (185.30)

Table S2: Details of synthetic networks generated using the GEO-GD, SF-GD, and SNE network models for varying network

sizes. �e average number of events (with standard deviation in brackets) is shown for each network model and each network

size.
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Supplementary Figures
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Figure S1: Node correctness (NC) of DynaWAVE, WAVE, DynaMAGNA++, and MAGNA++ as a function of noise level while

aligning the original Zebra proximity network to randomized (noisy) versions of the original network. Two randomization

models are used: (a) the non-strict randomization model that randomly rewires events in the network up to the given percentage

(noise level) and does not conserve the structure of the �a�ened version of the original dynamic network, and (b) the strict

randomization model that conserves all structure of the �a�ened version of the original dynamic network and only randomly

“shu�es” the given percentage (noise level) of its event time stamps.
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Figure S2: Node correctness (NC) of DynaWAVE, WAVE, DynaMAGNA++, and MAGNA++ as a function of noise level

while aligning the original Yeast protein interaction network to randomized (noisy) versions of the original network. Two

randomization models are used: (a) the non-strict randomization model that randomly rewires events in the network up to the

given percentage (noise level) and does not conserve the structure of the �a�ened version of the original dynamic network,

and (b) the strict randomization model that conserves all structure of the �a�ened version of the original dynamic network

and only randomly “shu�es” the given percentage (noise level) of its event time stamps.
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Figure S3: Node correctness (NC) of DynaWAVE, WAVE, DynaMAGNA++, and MAGNA++ as a function of noise level while

aligning the original Human aging protein interaction network to randomized (noisy) versions of the original network. Two

randomization models are used: (a) the non-strict randomization model that randomly rewires events in the network up to the

given percentage (noise level) and does not conserve the structure of the �a�ened version of the original dynamic network,

and (b) the strict randomization model that conserves all structure of the �a�ened version of the original dynamic network

and only randomly “shu�es” the given percentage (noise level) of its event time stamps.
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Figure S4: Node correctness (NC) of DynaWAVE, DynaMAGNA++, and DynaMAGNA++ (DWEC) as a function of noise level

while aligning an original synthetic network to randomized (noisy) versions of the original network. NC is averaged for each

network model (GEO-GD, SF-GD, SNE), for each network size (100, 200, 400, 800, 1600, 2400, 3200, 4000) at a given noise

level. �e non-strict randomization model that rewires events in the network and does not conserve structure of the �a�ened

version of the original dynamic network is used.
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