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A Algorithm

A.1 ADMM for Step 2

It is difficult to compute the optimizer directly by minimizing (9) because

the penalty function is not easily handled with the constraints. Following Lu

et al. (2016a), we reparameterize (9) by introducing a new parameter Q :=

P . Then, the minimization of (9) is equivalent to the following constrained
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optimization problem: for S̄ :=
∑

l w
i+1
l Ḡ(l),

min
P,Q

c‖P‖2
F − 〈S̄, P 〉+ λ‖P‖1,P̄ s.t. P = Q, Q ∈ CH(n,C). (S1)

By the augmented Lagrangian method, we solve

min
P,Q,Γ

c‖P‖2
F − 〈S̄, P 〉+ λ‖P‖1,P̄ + 〈Γ, P −Q〉+

η

2
‖P −Q‖2 s.t. Q ∈ CH(n,C),(S2)

where the dual variables Γjk are the Lagrangian multipliers and η > 0 is

the penalty parameter. Let F (P,Q,Γ) be the objective function in (S2). We

solve for the minimizer iteratively using the following steps at the ith iteration

until it converges.

Update P : P i+1 = argmin
P

F (P,Qi,Γi)

Update Q: Qi+1 = argmin
Q;Q∈CH(n,C)

F (P i+1, Q,Γi)

Update Γ: Γi+1 = Γi + η(P i+1 −Qi+1).

Since (9) is convex, the iterates of ADMM converge to an optimal point

with the convergence rate O(1/K) (He and Yuan, 2012; Monteiro and Svaiter,

2013; Lu et al., 2016b), where K is the number of iterations. The following

are details in updating P , Q, and Γ.

Details in updating P :

Let tjk = S̄jk − Γjk + ηQjk. Then, by KKT condition,

Pjk = (tjk − λp̄jk)(2c+ η)−1 if tjk > λp̄jk

Pjk = (tjk + λp̄jk)(2c+ η)−1 if tjk < −λp̄jk

Pjk = 0 if |tjk| ≤ λp̄jk.
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Details in updating Q:

Minimizing F (P i+1, Q,Γi) with respect to Q is equivalent to solve

min
Q
‖Q− P i+1 − Γ/η‖2

F s.t. Q ∈ CH(n,C).

Let T3 = P i+1 + Γ/η. Let B =
T3+TT

3

2
and B = U diag(u)UT be the spectral

decomposition of B, where u ∈ Rn and diag(u) is the n by n diagonal matrix

with (diag(u))ii = ui. Then, by using Theorem 2 in Lu et al. (2016a),

P = U diag(x∗)UT , where x∗ is the solution to

min
x
‖x− u‖2, s.t. 0 ≤ x ≤ 1, 1Tx = C,

which can be efficiently solved using existing algorithm.

Stopping Criterion

We use a termination criterion that P i+1 − P i, Qi+1 −Qi, and Γi+1 − Γi are

nearly zero, i.e.,

‖P i+1 − P i‖2
F + ‖Qi+1 −Qi‖2

F + ‖Γi+1 − Γi‖2
F ≤ ε

for some small ε > 0. In our implementation, we set ε = 0.005.

A.2 ADMM for Step 3

It is difficult to compute the optimizer directly by minimizing (6) in the

main paper because the penalty functions are not separable in Xi,·. We

introduce a new set of parameters Θjk = Xj,· − Xk,· for 1 ≤ j < k ≤ n.

The minimization of (6) in the main paper is equivalent to the constrained
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optimization problem

min
X,Θ
‖X − P̂‖2

F + µ
∑
j<k

‖Θj,k‖2

‖P̂j,· − P̂k,·‖2

s.t. Θjk = Xj,· −Xk,·, X ∈ CH(n,C), (S3)

where Θ = {Θjk : j < k}. By the augmented Lagrangian, we solve

min
X,Θ,γ

‖X − P̂‖2
F + µ

∑
j<k

‖Θjk‖2

‖P̂j,· − P̂k,·‖2

+

∑
j<k

〈γjk, Xj,· −Xk,· −Θjk〉+
η

2

∑
j<k

‖Xj,· −Xk,· −Θjk‖2

s.t. X ∈ CH(n,C), (S4)

where the dual variables γjk are the Lagrangian multipliers and η > 0 is the

penalty parameter. Since (4) is convex, ADMM guarantees convergences of

the iterates.

Let F (X,Θ, γ) be the objective function in (S4). We iteratively solve for

the minimizer at the ith iteration until it converges:

Update X: X i+1 = argmin
X∈CH(n,C)

F (X,Θi, γi)

Update Θ: Θi+1 = argmin
Θ

F (X i+1,Θ, γi)

Update γjk: γi+1
jk = γijk + η(X i+1

j,· −X i+1
k,· −Θi+1

jk )

Details in updating X:

Let ∆ ∈ R(n2−n)/2×n such that ∆jk,· = ej − ek for 1 ≤ j < k ≤ n. It holds

that ∆T∆ = nIn−1n×n, where 1n×n is the n by n matrix with all entries one

and ej is the 1 by n vector with the jth component equal to one and all other

components equal to zero. Let T4 = (η∆T∆ + 2I)−1(2P̂ + η∆TΘi −∆Tγi).

Let T5 = (T4 + T T4 )/2 and U diag(v)UT be the spectral decomposition of
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T5, where v ∈ Rn. Then, by using Theorem 2 in Lu et al. (2016a), X i+1 =

U diag(λ∗)UT , where λ∗ is the solution to

min
λ
‖λ− v‖2, s.t. 0 ≤ λ ≤ 1, 1Tλ = C.

Details in updating Θ:

Let dP̂j,k := ‖P̂j,·− P̂k,·‖2 for j < k, and tjk =
γijk
µ

+ η
µ
(X i+1

j,· −X i+1
k,· ). By KKT

condition and simple calculation, we can update such that if ‖tjk‖ ≤ 1/dP̂j,k,

then Θjk = 0, else if ‖tjk‖ > 1/dP̂j,k,

Θjk =
µ(‖tjk‖ − 1/dP̂j,k)

η‖tjk‖
tjk.

Stopping Criteria

We use a termination criterion that X i+1 −X i, Θi+1 −Θi, and γi+1 − γi are

nearly zero, i.e.,

‖P i+1 − P i‖2
F + ‖Θi+1 −Θi‖2

F + ‖γi+1 − γi‖2
F ≤ ε

for some small ε > 0. In our implementation, we set ε = 0.005.

Since (6) in the main paper is convex, the solution by ADMM is optimal

with the convergence rate O(1/K) (He and Yuan, 2012; Monteiro and Svaiter,

2013; Lu et al., 2016b), where K is the number of iterations.

B Proof of Proposition

Proposition S1. Let G(P,W ) be the objective function of (5) in the main

paper. Then the iterates (P i,W i) converge to a global minimum point of G
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with

G(P i−1,W i−1)−G(P i,W i) ≥ ρ

4
‖W i −W i−1‖2

F ,

where the objective value G(P i,W i) is monotonically decreasing.

Proof of Proposition S1. Fix i ≥ 1. At the ith iteration of the iterative

algorithm presented in (8) and (9) in the main paper, we first consider (8).

Note that solving (8) is equivalent to solve

min
W
〈
∑
l

wlḠ
(l),−P i〉+ ρ

∑
l

wl logwl s.t.
∑
l

wl = 1, wl ≥ 0. (S5)

We can easily show that optimizer wl’s of (S6) satisfy wl ≥ 0 for each l

without the constraint wl ≥ 0. Hence, by the Lagrangian method, the above

is equivalent to solve

min
W
〈
∑
l

wlḠ
(l),−P i〉+ ρ

∑
l

wl logwl + λ(1−
∑
l

wl) (S6)

for some λ > 0. Let H1(W ) = 〈
∑

l wlḠ
(l),−P i〉+ρ

∑
l wl logwl and H2(W ) =

H1(W ) + λ(1−
∑

l wl). Then

∂H2(W )

∂wl
= 〈Ḡ(l),−P i〉+ ρ(1 + logwl)− λ,

∂2H2(W )

∂wl∂wk
= 1{l=k} · ρ/wl.

Since W i+1 = {wi+1
l }l is solution to (S6), we have

H2(W i) ≥ H2(W i+1) +
ρ

2
(W i+1 −W i)T diag(W i+1)−1(W i+1 −W i)

≥ H2(W i+1) +
ρ

2
‖W i+1 −W i‖2.

Since H1(W i) = H2(W i) and H1(W i+1) = H2(W i+1), we have

H1(W i)−H1(W i+1) ≥ ρ

2
‖W i+1 −W i‖2,
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hence for the G, which is the objective function in (5) of the main paper,

G(P i,W i)−G(P i,W i+1) ≥ ρ

2
‖W i+1 −W i‖2. (S7)

Now consider the ADMM algorithm solving (9) in the main paper, i.e.,

at the ith iteration,

P i+1 = argmin
P : P∈CH(n,C)

G(P,W i+1). (S8)

Since (S8) is convex in P , the iterates {P i+1
j }j≥1 of the ADMM converge to an

optimal point of (9) (Boyd et al., 2011; He and Yuan, 2012), i.e., P i+1
j → P i+1

∗

as j → ∞, where P i+1
∗ is the optimal point of (S8). Since P i+1 = P i+1

j for

large enough j, we have

G(P i,W i+1)−G(P i+1,W i+1) ≥ −ρ
4
‖W i+1 −W i‖2. (S9)

Combining (S7) and (S9), we have

G(P i,W i)−G(P i+1,W i+1) ≥ ρ

4
‖W i+1 −W i‖2,

that is, the objective value G(P i,W i) is monotonically decreasing until con-

vergence.

Since both (8) and (9) in the main paper are strictly convex due to c >

0, (8) and (9) have unique global minimizers, respectively. By Theorem

4.1 of Tseng (2001), the convergence of the proposed biconvex algorithm is

achieved.

C Time complexity of the algorithm

The computational complexity of the algorithm is O(Kn3), where n is the

number of data points and K is the number of iterations. In the experiments,
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K is less than 20. Note that the traditional spectral clustering algorithm has

the complexity O(n3). The proposed algorithm is still fast for single-cell data,

since n is relatively small compared with the number of variables (genes).

Most of the simulations and scRNA-seq applications were implemented

on an Apple MacBook Pro (2.7 GHz, 8 GB of memory) using the MAT-

LAB 2016b. However, certain computational or memory-intensive steps (e.g.

larger-scale data sets) were run on the computing cluster (6 CPUs, 800 GB

of memory).

D Evaluation metrics

We use the following three performance metrics to evaluate the consistency

between the obtained clustering and the true labels: Normalized Mutual

Information (NMI) (Strehl and Ghosh, 2003), Purity (Wagner and Wag-

ner, 2007a), and Adjusted Rand Index (ARI) (Wagner and Wagner, 2007b).

Given two clustering results U and V on a set of n data points with CU and

CV clusters, respectively, the mutual information NMI is defined as

NMI(U, V ) =

∑CU

p=1

∑CV

q=1 |Up ∩ Vq| log n|Up∩Vq |
|Up|×|Vq |

max
(
−
∑CU

p=1 |Up| log |Up|
n
,−
∑CV

q=1 |Vq| log |Vq |
n

) ,
where the numerator is the mutual information between U and V , and the

denominator represents the entropy of the clustering U and V . For Purity,

each identified cluster is assigned to the one which is most frequent in the

cluster, and then the accuracy of this assignment is computed by counting

the number of correctly assigned samples divided by the number n:

Purity(U, V ) =

∑
p maxq |Up ∩ Vq|

n
.
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The ARI depends on the following four quantities: auv, the number of objects

in a pair that are placed in the same group in U and V ; au, the number of

objects in a pair that are placed in the same group in U but in different

groups in V ; av, the number of objects in a pair that are placed in the same

group in V but in different groups in U ; a, the number of objects in a pair

that are placed in the different group in U and V . The ARI is

ARI(U, V ) =

(
n
2

)
(auv + a)− [(auv + au)(auv + av) + (av + a)(au + a)](

n
2

)
− [(auv + au)(auv + av) + (av + a)(au + a)]

.

Note that the NMI and Purity take on values between 0 and 1, but ARI

can yield negative values. These metrics measure the concordance of two

clustering results such that higher value refers to higher concordance with

true labels.

E Simulation models

E.1 First simulation model

We generate the simulated data as follows:

(A1): Generate C points in the 2-dimensional latent space to create a circle,

each of which is considered to be the center of one cluster:

Ol = d× (cos(2lπ/C), sin(2lπ/C)) for l = 1, · · · , C.

The nl points are generated by adding independent noises to the center Ol:

Z̃
(l)
i = OT

l + (Z
(1)
l,i , Z

(2)
l,i )T for i = 1, · · · , nl, (S10)
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where Z
(1)
l,i and Z

(2)
l,i are i.i.d. N(µ, σ2

l ) random variables. Let Z̃l = [Z̃
(l)
1 , · · · , Z̃(l)

nl ]T ∈

Rnl×2, and Z̃ = [Z̃T
1 , · · · , Z̃T

C ]T ∈ Rn×2, where n =
∑

l nl.

(A2): Project the data Z̃ to a p-dimensional space through a projection ma-

trix P ∈ R2×p, where Pij ∼ unif(0, 1) for 1 ≤ j ≤ q and Pij = 0 for j > q.

The X = Z̃P ∈ Rn×p represents gene expression data, where p corresponds

to the number of genes.

(A3): Simulate a noisy gene expression matrix X ′ by adding independent

Gaussian noise: X ′ij = Xij + eij, where eij ∼ N(0, σ2).

(A4): Each entryX ′ij is independently observed with probability 1−exp(−γX ′ij):

we observe Y ∈ Rn×p, where

Yij =

X
′
ij with probability 1− exp(−γX ′ij)

0 with probability exp(−γX ′ij).

We use γ ∈ {0.01, 0.006}. In (A1), we construct five clusters such that

the centers of five clusters form a circle. One example of points in the latent

space generated in (A1) is shown in Figure S1. In (A4), we introduce dropout

events following Pierson and Yau (2015) and Wang et al. (2017). We fix

n = 250, p = 500, q = 50, C = 5, d = 10, σ2 = 1, and σl = 1. Note that d in

(A1) controls distances between samples in different clusters and σl controls

a density of samples within cluster. The σ2 in (A3) represents the extrinsic

noise from the environment outside the cell.
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Figure S1: Simulated latent data set Z̃ generated in (A1) with 5 clusters in

the 2-D. We observe that the centers of the five clusters form a circle.

E.2 Second simulation model

The second simulation model are based on sparse Gaussian mixture model.

We generate the simulated data as follows:

(A1): Generate elements of B̃ ∈ RC×q as left singular matrix of i.i.d. stan-

dard gaussian random matrix. We get B ∈ RC×p as B = [σB̃, 0C×(p−q)].

(A2): Generate the cluster label zi ∈ [C] of the ith sample by random as-

signment to one group. Then generate membership matrix Z ∈ Rn×C with

Zij = 1(zi = j).
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(A3): Generate data matrix X = ZB + W , where W is standard Gaussian

noise matrix.

(A4): Each entryXij is independently observed with probability 1−exp(−γX ′ij),

and we observe Y ∈ Rn×p.

The (A1)-(A2) are based on sparse Gaussian mixture model, where σ

controls the signal to noise ratio. To distinguish different cell types, it is likely

that only a few genes are informative, and non-informative and highly noisy

genes can increase the difficulty of identifying cell types. Under this context,

in the simulation models, we only use q of the p attributes to distinguish the

clustering labels. We set n = 500 p = 1000, q = 50, C = 10, σ = 5, and

γ ∈ {0.6, 0.1}.

F Real data

We collected nine scRNA-seq data sets representing several types of dynamic

processes such as cell differentiation, cell cycle, and response upon external

stimulus. Each scRNA-seq data contains cells for which the labels were

known a priori or validated in the respective studies. The characteristics of

the nine data sets are summarized as follows:

• Pollen: 249 single cells from 11 populations using microfluidics, includ-

ing neural cells and blood cells. The 11 clusters in the data set were

from different sources (CRL-2338, CRL-2339, K562, BJ, HL60, hiPSC,
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Keratinocyte, Fetal cortex (GW21+3), Fetal cortex (GW21), Fetal cor-

tex (GW16), and NPC) that are expected to show robust differences

in gene expression. Data were pre-filtered to exclude genes where more

than 90% of cells had zero measurements and include only single cells

with greater than 500,000 reads (n = 249).

• Buettner: Embryonic stem cells under different cell cycle stages. Buet-

tner et al. (2015) assayed the transcriptional profile of 182 ESCs that

had been staged for cell-cycle phase (G1, S, and G2M) based on sorting

of the Hoechst 33342-stained cell area of a flow cytometry (FACS) dis-

tribution. The cells were sorted for three stages of the cell cycle, and

they were validated using gold-standard Hoechst staining. The data

have been deposited at ArrayExpress: E-MTAB-2805.

• Ting: Single Cell RNA-sequencing of Pancreatic Circulating Tumor

Cells. We downloaded the data from GEO (GSE51372), which contains

5 subtypes from Single-cell transcriptomes from MEFs, the NB508 pan-

creatic cancer cell line, normal WBCs, bulk primary tumors diluted to

10 or 100 pg of RNA, and classical CTC.

• Treutlein: This data set contains single cell RNA-seq expression data

for 80 lung epithelial cells at E18.5 together with the five putative

cell type; AT1, AT2, Clara, BP, and ciliated. We downloaded the

data from https://www.nature.com/articles/nature13173. We consid-

ered data with selected genes with 959 highest loadings in the first

four PCA coefficients following the similar approach of Treutlein et al.

(2014).
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• Deng (Deng et al., 2014): The Deng data set consists of transcriptomes

for individual cells isolated from mouse embryos at different preimplan-

tation stages. The data set consists of 135 cells and 19,703 genes, where

cells belong to zygote, early 2-cell-stage, mid 2-cell-stage, late 2-cell-

stage, 4-cell-stage, 8-cell-stage, and 16-cell-stage. We downloaded the

processed data from GEO (GSE45719).

• Ginhoux (Schlitzer et al., 2015): This data set contains the expres-

sion values of 15,752 genes for 251 dendritic cell progenitors in one

of following three cellular states: Monocyte and Dendritic cell Pro-

genitors (MDPs), Common Dendritic cell Progenitors (CDPs), and

Pre-Dendritic Cells (PreDCs). The data set contains 59 MDPs, 96

CDPs, and 96 PreDCs. We downloaded the processed data from GEO

(GSE60783).

• Tasic (Tasic et al., 2016): Tasic et al. (2016) identified 49 transcrip-

tomic cell types, including 23 GABAergic, 19 glutamatergic and 7

non-neuronal types. To identify cell types, they applied two parallel

and iterative approaches for dimensionality reduction and clustering,

iterative principal component analysis (PCA) and iterative weighted

gene coexpression network analysis (WGCNA), and validated the clus-

ter membership from each approach using a non-deterministic machine

learning method (random forest). We downloaded the processed data

from GEO (GSE71585).

• Zeisel (Zeisel et al., 2015): Zeisel et al. (2015) have used large-scale

single-cell RNA sequencing to classify cells in the mouse somatosensory
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cortex and hippocampal CA1 region. 3,005 Cells from the mouse cortex

and hippocampus collected. Zeisel et al. (2015) found 47 molecularly

distinct subclasses identified by hierarchical biclustering and validated

by gene markers.

• Macosko (Macosko et al., 2015): Mouse retina cells with 39 subtypes.

This data set is obtained by droplet-based high-throughput technique.

The data set consists of 44,808 cells. The 39 cell types were identi-

fied via PCA and density-based clustering, and they were validated by

differential gene expression. We filtered out cells with less than 1,200

genes (yielding 6,418 cells) for clustering analysis. We downloaded the

data from GEO (GSE63473).
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G Additional figures
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Figure S2: The effects of parameters with c = 0.01(A), 0.05(B), 0.1(C),

and 1.0(D) on the clustering results of the simulated data set with d =

10, σk = 3, and γ = 0.2 when k̃ = 10. The (E) considers the case when

c ∈ {0.01, 0.1, 0.5, 1.0}, k̃ ∈ {5, 10, · · · , 80}, and λ = µ = 0.0001. The

(F) considers when c ∈ {0.01, 0.05, 0.1, 1.0} and ρ ∈ [0.01, 4]. We consider

(n, p, q, C) = (250, 500, 20, 5), nk = 50, and (d, µ, σk, σ) = (10, 10, 3, 0.5).
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Figure S3: The inference of the number of clusters with the proposed method

on the six real single-cell data sets; Pollen (Pollen et al., 2014)(A), Deng

(Deng et al., 2014)(B), Ginhoux (Schlitzer et al., 2015)(C), Ting (Ting et al.,

2014)(D), Treutlein (Treutlein et al., 2014)(E), and Buettner (Buettner et al.,

2015)(F).
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Figure S4: Evaluation of the six clustering methods by Purity (A) and ARI

(B) for the six small-scale data sets.
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Figure S5: Evaluation of the six clustering methods by Purity (A) and ARI

(B) for the three large-scale data sets.
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Figure S6: Sensitivity analysis of the proposed method on the Treutlein data

set (Treutlein et al., 2014). In (A), we set ρ = 0.2, c = 0.1, k = 10. In (B), we

set λ = 0.0001, c = 0.1, k = 10. In (C), we use λ = 0.0001, ρ = 0.2, k = 10.

In (D), we fix λ = 0.0001, ρ = 0.2, c = 0.1, k = 10.
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Figure S7: Sensitivity analysis of the proposed method on the Ting data set

(Ting et al., 2014). In (A), we set ρ = 0.2, c = 0.1, k = 10. In (B), we set

λ = 0.0001, c = 0.1, k = 10. In (C), we use λ = 0.0001, ρ = 0.2, k = 10. In

(D), we fix λ = 0.0001, ρ = 0.2, c = 0.1, k = 10.
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Figure S8: Sensitivity analysis of the proposed method on the Deng data set

(Deng et al., 2014). In (A), we set ρ = 0.2, c = 0.1, k = 10. In (B), we set

λ = 0.0001, c = 0.1, k = 10. In (C), we use λ = 0.0001, ρ = 0.2, k = 10. In

(D), we fix λ = 0.0001, ρ = 0.2, c = 0.1, k = 10.
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Figure S9: Sensitivity analysis of the proposed method on the Ginhoux data

set (Schlitzer et al., 2015). In (A), we set ρ = 0.2, c = 0.1, k = 10. In (B), we

set λ = 0.0001, c = 0.1, k = 10. In (C), we use λ = 0.0001, ρ = 0.2, k = 10.

In (D), we fix λ = 0.0001, ρ = 0.2, c = 0.1, k = 10.
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Figure S10: Sensitivity analysis of the proposed method on the Buettner data

set (Buettner et al., 2015). In (A), we set ρ = 0.2, c = 0.1, k = 10. In (B), we

set λ = 0.0001, c = 0.1, k = 10. In (C), we use λ = 0.0001, ρ = 0.2, k = 10.

In (D), we fix λ = 0.0001, ρ = 0.2, c = 0.1, k = 10.

24



0.00005 0.0001 0.0002 0.0005 0.001
0.9

0.91

0.92

0.93

0.94

0.95
PollenA

NMI

Purity

ARI

0.001 0.01 0.1 0.2 0.5 1 2 5 10
0.91

0.92

0.93

0.94

0.95

0.96
PollenB

NMI

Purity

ARI

0.0001 0.001 0.01 0.1 0.2 0.5 1
0.91

0.92

0.93

0.94

0.95

0.96
PollenC

NMI

Purity

ARI

5 10 15 20 25 30 35 40
0.93

0.935

0.94

0.945

0.95

0.955

0.96
PollenD

NMI

Purity

ARI

Figure S11: Sensitivity analysis of the proposed method on the Pollen data

set (Pollen et al., 2014). In (A), we set ρ = 0.2, c = 0.1, k = 10. In (B), we

set λ = 0.0001, c = 0.1, k = 10. In (C), we use λ = 0.0001, ρ = 0.2, k = 10.

In (D), we fix λ = 0.0001, ρ = 0.2, c = 0.1, k = 10.
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Figure S12: Sensitivity analysis of the proposed method on the Tasic data

set (Tasic et al., 2016). In (A), we set ρ = 0.2, c = 0.1, k = 10. In (B), we

set λ = 0.0001, c = 0.1, k = 10. In (C), we use λ = 0.0001, ρ = 0.2, k = 10.

In (D), we fix λ = 0.0001, ρ = 0.2, c = 0.1, k = 10.
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Figure S13: Sensitivity analysis of the proposed method on the Zeisel data

set (Zeisel et al., 2015). In (A), we set ρ = 0.2, c = 0.1, k = 10. In (B), we

set λ = 0.0001, c = 0.1, k = 10. In (C), we use λ = 0.0001, ρ = 0.2, k = 10.

In (D), we fix λ = 0.0001, ρ = 0.2, c = 0.1, k = 10.
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Figure S14: Sensitivity analysis of the proposed method on the Macosko data

set (Macosko et al., 2015). In (A), we set ρ = 0.2, c = 0.1, k = 10. In (B), we

set λ = 0.0001, c = 0.1, k = 10. In (C), we use λ = 0.0001, ρ = 0.2, k = 10.

In (D), we fix λ = 0.0001, ρ = 0.2, c = 0.1, k = 10.
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