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1 User Documentation

A Tutorial and detailed User Guide documentations for MIIC online server are available at https://miic.curie.fr

2 MIIC online pipeline

The work-flow of MIIC online server is outlined in Fig. S1.

It consists of i) an input layer including the data, default or user-defined parameters and optional supple-
mentary files uploaded by the user, ii) the algorithmic core of the network reconstruction and iii) an output
layer with all interactive visualizations and analyses about the results.

MIIC algorithmic core (ii) includes three main steps detailed in the Methodological Sections of [Verny et al., 2017].

These three algorithmic steps are summarized below:

Step1: Learning the network ‘skeleton’

Starting from a fully connected undirected graph, MIIC iteratively prunes the edges that are not required to
account for the observed correlations in the available data, as the corresponding correlations can already been
explained by indirect paths without the need for additional edges between some of the nodes. MIIC algorithm
proceeds as follows based on information-theoretic results [Affeldt et al., 2015, Affeldt et al., 2016].

Given two nodes X and Y , MIIC looks for the most significant contributors susceptible to explain the mutual
information between X and Y , I(X;Y ), and iteratively removes their contributions as,

I(X;Y |{Ai}) = I(X;Y )− I(X;Y ;A1)− I(X;Y ;A2|A1)...− I(X;Y ;Ai|{Ai−1}) (1)

until the residual conditional mutual information between X and Y given {Ai}, I(X;Y |{Ai}), becomes lower
than the associated complexity loss of the graphical model without the XY edge, kX;Y |{Ai}/N , where N is
the number of independent samples. Otherwise, if I(X;Y |{Ai}) > kX;Y |{Ai}/N , the XY edge is retained, if
no additional contributor can be found to account for the residual conditional mutual information between X
and Y . This first step of MIIC algorithm returns an undirected graph, referred to as the network ‘skeleton’.
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Step2: Edge filtering (optional) based on Confidence ratio

The edge filtering step (optional) allows to remove additional edges from the first network skeleton obtained in
Step 1, according to an edge-specific confidence assessment [Verny et al., 2017]. It is based on the probability
to delete the edge XY between nodes X and Y , which can be estimated as,

PXY = e−NI′(X;Y |{Ai}) (2)

where N is the number of independent samples in the data and I ′(X;Y |{Ai}) = I(X;Y |{Ai})−kX;Y |{Ai}/N .

The probability PXY is then evaluated for each retained edge of the skeleton obtained using the actual
dataset versus multiple randomized instances of the same dataset. This allows to compute the following
edge-specific confidence ratio:

CXY =
PXY

〈P rand
XY 〉

(3)

where 〈P rand
XY 〉 is the mean probability to remove the edge XY averaged over multiple randomized datasets.

Hence, a smaller confidence ratio, CXY , implies a higher statistical confidence on the retained XY edge.

Step3: Edge orientation

Finally, given the skeleton obtained in Step 1, possibly filtered in Step 2, MIIC infers edge orientations based
on the signature of causality in observational data as follows [Verny et al., 2017].

First, MIIC sorts unshielded triples, i.e. X − Z − Y without XY edge, by decreasing absolute value of their
three-point conditional mutual information including finite size complexity correction, |I ′(X;Y ;Z|{Ai})|,
where {Ai} is the (possibly empty) set of contributors accounting for the removal of the XY edge, i.e. with
I ′(X;Y |{Ai}) < 0. Then, MIIC orients the XZ and/or ZY edges as,

• If I ′(X;Y ;Z|{Ai}) < 0, it forms a V-structure: X∗→ Z ←∗Y

• If I ′(X;Y ;Z|{Ai}) > 0 and X∗→ Z, the second edge is oriented as to form a non-v-structure: X∗→ Z → Y

where the endpoint mark ∗ stands for either an arrow head > or tail −. This enables, in particular, to
obtain bidirected edges, e.g. Z ↔ Y , shared by two v-structures, e.g. X∗→ Z ↔ Y ←∗W , which reflects the
presence of unobserved (latent) causes such as, Z L99 L 99K Y .

3 Examples of causal versus non-causal networks

In this section we illustrate the use of MIIC online server with two examples of network reconstruction from
real biological data.

The first example is an inherently causal network corresponding to directed regulatory interactions between
specific transcription factors involved in hematopoietic stem cell differentiation, while the second example
is a non-causal network corresponding to undirected symmetric physical interactions between amino acid
residues in close contact in a protein structure.

As discussed in the main text, these different types of causal and non-causal networks cannot be reconstructed
with the single existing online server, which are all designed to learn specific classes of directed or undirected
networks without the possibility to compare between alternative classes of graphical models. This prevents
all existing network reconstruction servers to uncover or rule out causality in observational data.
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By contrast, MIIC online does not require the user to select a priori the type of causal or non-causal
underlying model, as MIIC algorithm learns the most appropriate causal, non-causal or mixed model given
the available data.

3.1 Reconstruction of regulatory networks from single cell expression data

This first example concerns the reconstruction of blood stem cell regulatory network models from single-cell
molecular profiles. The mammalian blood system is maintained throughout the adult lifetime by hematopoi-
etic stem cells (HSCs) that differentiate into all mature blood cell types. Differentiation of HSCs toward
alternative lineages is controlled by transcription factors within organized regulatory programs that can be
modeled as transcriptional regulatory networks.

While hematopoiesis in adult has been extensively studied and well-characterized at cell population level,
cell fate decisions are in fact made at the level of individual cells and lead to heterogeneous cell populations.
Recent developments of high-throughput single-cell technologies, such as quantitative real-time PCR (qRT-
PCR) and RNA sequencing (RNA-Seq), now provide unique tools to study such differentiation processes
and corresponding regulatory networks at single-cell level.

In this section, we analyze the recent dataset obtained by [Hamey et al., 2017], which contains qRT-PCR
gene expression profiles of 48 genes including 34 transcription factors for 2,167 single HSCs and progenitor
cells.

The input dataset used for MIIC online reconstruction includes all 34 transcription factors and has been
discretized into binary levels corresponding to expressed versus non-expressed genes, as suggested by the
clearly bimodal distributions of qRT-PCR expression profiles. As expected, no significant correlation bias
between successive single cell samples is identified with MIIC online correlation analysis. Hence, all 2,167
single cell expression profiles can be considered as independent samples for the network reconstruction.

The network inferred by MIIC online is displayed in Fig. 1 of the main text (zoomed view) and Fig. S2 (full
network). The edges in the reconstructed network have been filtered using a confidence ratio threshold of
10−1 (Step 2 of MIIC algorithm) and their width reflects their estimated confidence. They represent direct
regulatory interactions between regulator and target transcription factors. In particular, we observe that
nearly all predicted edges are directed, as expected for transcriptional regulatory networks, with red edges
indicating gene activation and blue edges indicating gene repression regulations.

MIIC predicted network corresponds to a global transcriptional regulatory network, as it combines expres-
sion profiles of HSCs with different progenitor cell types [Hamey et al., 2017]. This network exhibits a
number of known central regulators such as MECOM|EVI1, GATA1 and GATA2, with regulatory inter-
actions documented in the literature, such as MECOM → PBX1 [Yuan et al., 2015], MECOM → GATA2
[Yuasa et al., 2005] and GATA2 → TAL1|SCL [Chan et al., 2006].

3.2 Reconstruction of residue-residue interaction network in protein structure
from homolog genomic sequences

The three-dimensional structure similarity between homologous proteins imposes strong constraints on their
sequence variability. This gives rise to correlated substitution patterns among amino acid residues at dif-
ferent sequence positions of a protein family. It has long been suggested that these correlations can be
exploited to infer spatial contacts within the tertiary protein structure [Altschuhet al., 1987][Neher, 1994].
In the last years several methods have been proposed to disentangle direct and indirect correlations, that rep-
resents one of the major difficulties for the success of the approach [Burger et al., 2008] [Weigt et al., 2009]
[Morcos et al., 2011] [Marks et al., 2011].
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In this section, we show the efficacy of MIIC algorithm to retrieve the internal protein contact network
for a widely studied protein family: the response regulator receiver domain (Pfam code PF00072). This
extremely abundant protein family is involved in bacterial signal transduction and acts as a transcription
factor interacting with specific DNA binding domains. This family is especially suited to assess the per-
formance of inference methods for protein contact network as (1) it contains a great number of sequenced
proteins (63,624), (2) several protein structures belonging to this family have been experimentally resolved,
and (3) it is a classical example that has already been studied in depth in the literature [Weigt et al., 2009],
[Uguzzoni et al., 2017].

The input dataset consists of a multiple sequence aligment (MSA) including 112 positions of the homologous
sequences, which can be downloaded from the Pfam database [Bateman et al., 2004]. When the whole
dataset including the 63,624 homologous sequences is used as input file on MIIC online server, a warning
message appears in the Result page to indicate significant correlations between samples, which do not simply
decay exponentially between successive sequences in the MSA. These correlations have been discussed in the
literature and are due to the phylogeny, multiple-strain sequencing, and a biased selection of sequenced
species. To overcome this issue, we have used a standard procedure to reduce the redundancy due to
sequence bias [Morcos et al., 2011]. Namely, we filtered the MSA by randomly selecting sequences that
differ from each other for at least 30% of their positions and removing the other sequences from the MSA.
After this preprocessing of the data, the resulting filtered MSA contains 12,533 sequences.

The results of MIIC network prediction are presented in Figs. S3 & S4. The edges in the reconstructed network
represent the residue-residue physical proximity in the 3D structure. Using Pymol [DeLano et al., 2017], we
can visualize the contact predictions and overlay them to available crystallographic structures.

In Fig. S3, we report the contact predictions mapped on an experimentally resolved structure (1nxs) down-
loaded from the PDB database [Berman et al., 1999]. Note that MIIC predictions provide an accurate de-
scription of the contact map of the protein (green edges). Quite remarkably, we also observe that MIIC does
not predict any directed edges despites its lack of a priori restriction on the class of (undirected, directed
or mixed) reconstructed network; this prevalence of undirected edges is in fact expected from the symmetry
of the physical contacts between amino acid residues, by contrast to the asymmetric regulator-target gene
relationships in the transcriptional regulation network described above. In addition, we found that most
false positive contacts (red edges in left panel and red dots in right panel) are actually very close to true
contacts in the 1nxs protein structure (black dots in right panel) and are related to the intrinsic heterogeneity
of the different protein structures within this large family. This is clearly apparent in Fig. S4, where MIIC

predictions are compared to the union of 11 contact maps of homologous protein structures, see Fig. S4
caption. As a result, most of these apparently false positive contacts in the 1nxs protein structure turn
out to be true positive contacts once the structure heterogeneity of this large protein family is taken into
account.

Finally, when these results are compared with the state-of-the-art method for protein contact prediction,
PlmDCA [Ekeberg et al., 2013], we find that MIIC predicts a similar list of contacts and achieves similar
performance as PlmDCA, as shown in Fig. S4 and Fig. S5 (upper panel). However, it is important to stress
that MIIC predicts a finite list of 179 contacts, while PlmDCA sorts all potential pairwise contacts using a
rank but without predicting an explicit cutoff to distinguish between actual contacts and non-contacts. Note,
also, that contacts involving residues closer than 5 AA along the sequence are not displayed in Figs. S3-
S4 & S5, as they correspond to ‘trivial’ contacts and are possibly affected by small gap statistics in the MSA
[Feinauer et al., 2014]. Hence, Figs. S3 & S4 display in fact 75 long-distance contacts out of the 179 contacts
predicted by MIIC and the first 75 potential long-distance contacts inferred by PlmDCA. Interestingly, most
of remaining long-distance false positive contacts, predicted by the two methods in Fig. S4, have been shown
to correspond to intermolecular contacts across homodimers rather than intramolecular contacts within a
single protein domain as reported in [Uguzzoni et al., 2017]. Hence, while these predicted contacts are not in
the tertiary structure, they nonetheless correspond to real coevolutionary signals in the MSA due to direct
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physical interactions between individual monomers in the quaternary assembly of the protein homodimers.

To further assess the performance of MIIC on protein contact map predictions, we have analyzed two addi-
tional protein families containing fewer homologous sequences. These are the 1a3a:a PDB protein structure
with a total of 31,922 homologous sequences and the 1mb6:a PDB protein structure with a total of 246
sequences.

We apply the same filtering procedure as for the response regulator receiver domain (1nxs) above. This
amounts to filtering sequences with more than 70% identity to reduce phylogenetic or other sampling biases,
which leads to significantly reduced datasets of only 2,897 out of 31,922 sequences for the 1a3a:a structure
and only 53 out of 246 sequences for the 1mb6:a structure.

Comparisons of MIIC and pmlDCA ranked predictions of protein map contacts are presented in Fig. S5 and
show a lower accuracy of MIIC with respect to pmlDCA for these two datasets containing fewer homologous
sequences. Yet, we note that, unlike MIIC, plmDCA uses the complete homologous sequence datasets through
a weighting scheme of similar sequences to compensate for phylogenetic or other sampling biases. By contrast,
as noted earlier, MIIC has the useful feature of providing a finite number of (mostly correct) predictions,
while plmDCA provides a ranked list of predictions including essentially all possible pairs without clear
cut-off, Fig. S5.
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PARAMETERS INPUT DATA SUPPLEMENTARY 
FILES

Step 1 - INFER SKELETON FROM INPUT DATA

Step 2 (optional) - FILTER THE 
INITIAL SKELETON

USING CONFIDENCE RATIO

Step 3 - ORIENTATION OF THE V-STRUCTURES
PROPAGATION OF THE ORIENTATIONS TO 

NON-V-STRUCTURES

VISUALIZE THE PREDICTED NETWORK WITH:
CYTOSCAPE WEB OR IGRAPH PLOTS

CONSULT TABLES INCLUDING STATISTICS ABOUT EDGES,
NODES AND NETWORK

Figure S1: MIIC online server workflow. It consists of i) an input layer including the data, default or user-
defined parameters and optional supplementary files uploaded by the user, ii) the algorithmic core of the
network reconstruction including three main steps and iii) an output layer with all interactive visualizations
and analyses about the results.
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Figure S2: MIIC online reconstruction of the regulatory network of hematopoietic stem cell differentiation
from single-cell expression data taken from [Hamey et al., 2017]. See main text and Supplementary Materials
for detailed information.
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Figure S3: MIIC residue-residue contact predictions of the response regulator receiver domain (PF00072)
mapped on an experimentally resolved structure (1nxs PDB). Contacts are defined as residues with a prox-
imity of less than 8Å. Left panel: protein 3D structure with correct predictions in green and apparent errors
in red, see however Fig. S4. Right panel: 2D contact map with experimental contacts in black and predictions
with same color code as in the left panel.
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Figure S4: Contact map predictions of MIIC (upper triangular region) and plmDCA (lower triangular region)
compared with the union of 11 experimental contact maps (from the following PDB structures: 1nxs, 1zes,
2pln, 2zwm, 3nnn, 3r0j, 2rdm, 6chy, 1l5y, 2vuh, 4l4u). Structural contacts are displayed in black (if shared in
all 11 models) or gray (if present in at least one of the 11 structures), while correct and erroneous predictions
are shown in green and red, respectively. Note that the two methods present only small differences in the
number of correct and erroneous predictions. Besides, many of the apparently erroneous contact predictions
are in fact due to intermolecular interactions across the protein homodimers [Uguzzoni et al., 2017].
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Figure S5: Fraction of true positive (TP) contacts amongst the first predicted pairs ranked by MIIC (red
curves) and plmDCA (black curves) for three protein structures: 1nxs (Figs S3 & S4), 1a3a:a and 1mb6:a.
PlmDCA predictions make use of the full datasets which requires a reweighting scheme to compensate for
sampling biases of similar sequences. By contrast, MIIC results are based on reduced datasets filtering out
sequences with more than 70% identity. This corresponds to reduced datasets including 12,533 out of 63,624
sequences for 1nxs (upper panel), 2,897 out of 31,922 sequences for 1a3a:a (middle panel) and 53 out of 246
sequences for 1mb6:a (lower panel). Note, however, that MIIC predicts a finite number of contacts, while
plmDCA ranks predictions without a clear cut-off.
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