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Supplementary Material 

Note 1: Algorithm complexity of clustering unaligned LRs 

IDP-denovo employs a greedy incremental clustering algorithm for k-mer clustering.  

First, unaligned long reads (LRs) are processed with homopolymer compression, which 

has the complexity 𝑂(𝑁𝑙), where 𝑁 is the number of unaligned LRs and 𝑙 is the average 

length of those LRs. Then, LRs are sorted by decreasing lengths with the complexity 

𝑂(𝑁𝑙𝑜𝑔𝑁) using the C++ standard library.  

Second, the longest LR is assigned to the first cluster and it is set as the representative 

LR of this cluster. When considering the next LR, we examine the percentages of 

shared k-mers between this LR and the representative LRs of all existing clusters. 

Extraction of k-mers is with the complexity 𝑂(𝑙) for each LR. Bloom filters are used to 

store and query k-mers with the complexity 𝑂(1)  for either (Melsted and Pritchard, 

2011). The worst case for clustering is that each cluster contains only one LR, and thus 

the shortest LR need to be compared to each representative LR from 𝑁 − 1 existing 

clusters. The time complexity of this step is 𝑂(𝑁2𝑙). 

Taken together, the time complexity for clustering unaligned LRs is 𝑂(𝑁2𝑙). 
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Note 2: Algorithms for pseudo-reference generation 

Algorithm 1. Generating_consensus 

Input: sequence s, a set of sequences T 

Output: consensus sequence p 

 

𝑉 ← {𝑠} 

for each 𝑡 ∈ 𝑇 

     if s and t have ≥ 30% identities then 

         𝑉 ← 𝑉 ∪ {𝑡} 

     end if 

end for 

𝑝 ←  consensus generated from members in V via multiple sequence alignment with 

Clustal Omega 

return p 

 

Algorithm 2. Generating pseudo-reference 

Input: a set of sequences L 

Output: pseudo-reference m 

 

𝑁 ← number of input sequences L 
{𝑙1, 𝑙2, … , 𝑙𝑁} ← input sequences after sorting by descending order of lengths 

𝑚 ← 𝑙1 

𝑖 ← 2  

while i ≤ 𝑁 do 

   if i = 𝑁  then 

        𝐺 ←  ∅ 

        𝐺 ← 𝐺 ∪ {𝑙𝑖} 

        𝑚 ← Generating_consensus(m, G) 

   else 

        𝐺 ←  ∅ 

        𝐺 ← 𝐺 ∪ {𝑙𝑖} 

        𝐺 ← 𝐺 ∪ {𝑙𝑖+1} 

       𝑚 ← Generating_consensus(m, G) 

   end if 

   𝑖 ← 𝑖 + 2 

end while 

return m 

Figure S1. The algorithms for pseudo-reference generation. 
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Note 3: Optimization of gap length cutoff for a possible alternative 

exon usage event 

Errors in the assembled transcript sequences can cause small gaps (i.e., indel) in 

transcript alignment to pseudo-reference sequences. Therefore, we need to find a gap 

length cutoff to distinguish alternative exon usage events from error-caused gaps.  

We investigated the length distribution of alternative exon usage in the Ensembl 

annotation library (version 79) (Cunningham, et al., 2015). A toy example is shown 

below (Figure S2). The lengths within gaps between adjacent exons were labeled in 

black above the gaps. In this example, we can get the lengths of alternative exon usage 

as 85, 70, 35, 50 and 15 bp. Considering all genes and transcripts in the whole Ensembl 

annotation library (version 79), we found 95% alternative exon usage were ≥43 bp. 

Since error rates of LRs and SRs are 10-20% and <1%, respectively, the probability of 

an error-caused gap ≥43 bp is very low, so we set 43 bp as the gap length cutoff to 

determine if a gap in alignment indicates an alternative exon usage event.  
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Figure S2. Schematic illustration of computing lengths of alternative exon usage (i.e., genomic 

regions between adjacent exons that are covered by exons from other transcripts). 

 

Note 4: Dataset for performance evaluation 

To assess the performance of IDP-denovo, human RNA-seq data produced on the 

Illumina and Pacific Biosciences (PacBio) platforms from GM12878 cell line 

(SRP036136) (Tilgner, et al., 2014) were used. Read quality was checked with FastQC, 

and 10 bp at the end were trimmed. LRs from the PacBio platform were corrected by 

short reads (SRs) from the Illumina platform by the error correction tool LSC (Au, et al., 

2012).  
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Note 5: Parameter settings of existing SR-scaffold assembly 

algorithms and precision-recall statistics 

To choose an optimal SR-scaffold assembly algorithm, we applied performance 

evaluation granularities (Li, et al., 2014) including precision (fraction of matched 

nucleotides of assembled transcripts), recall (fraction of matched nucleotides of 

reference transcripts), and F1 score (harmonic mean of precision and recall) to pick out 

the SR-alone algorithm with the best performance for SR-scaffold assembly. We tested 

the existing tools Trinity (version 2.1.1) (Grabherr, et al., 2011), SOAPdenovo-Trans 

(version 1.03) (Xie, et al., 2014), Bridger (version r2014-12-01) (Chang, et al., 2015), 

Trans-ABySS (version 1.5.3) (Robertson, et al., 2010), and Oases (version 0.2.9), which 

is an assembly pipeline with input of preliminary assembly by SRs from Velvet (version 

1.2.10) (referred to herein as “Velvet+Oases”) (Schulz, et al., 2012; Zerbino and Birney, 

2008). Next, we aligned the assembled SR-scaffolds to the reference genome (GRCh38) 

by GMAP (Wu and Watanabe, 2005), and the precision, recall and F1 score of each tool 

were calculated. The length and coverage cutoff of k-mer were set as 31 and 10 for 

SOAPdenovo-Trans, Trans-ABySS, and Velvet+Oases; they were set as defaults for 

Trinity and Bridger. Velvet+Oases showed the best performance among the five SR-

alone methods. Therefore, as the first step of IDP-denovo, de novo assembly is applied 

to SRs by the assembly algorithm Velvet+Oases, with assembly parameters length and 

coverage cutoff of k-mer set as 31 and 10, respectively. PacBio LRs were aligned to the 

human genome by GMAP, and 697,247 LRs that could be annotated by Ensembl gene 

annotation (version 79) were used in evaluation. Assembled transcripts that cover all 

splice sites in annotation are considered as full-length gene isoforms. 
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 Note 6: Comparison of abundances between transcripts covered by 

SR-scaffolds and missed by SR-scaffolds but covered by LRs 

The boxplot below shows differences of their abundances: the transcripts missed by 

SR-scaffolds but covered by LRs have significantly lower FPKM than those covered by 

SR-scaffolds (Figure S3, p-value< 2.2e-16). It indicates that LRs can rescue lowly 

expressed transcripts that are missed by the SR assembly method.  

 

Figure S3. Comparison of abundances between transcripts covered by SR-scaffolds and those 

missed by SR-scaffolds but covered by LRs. To reduce effects of highly expressed transcripts and to  

avoid skewed distribution of transcript expression, we log10-tranformed FPKM of transcripts (FPKM ≥ 1e-

6) from those covered by SR-scaffolds (80.54%, n= 17,243) and those only by LRs (66.60%, n=13,780), 

with FPKM computed by StringTie (Pertea, et al., 2015) with SR coverage, then performed t-test between 

these two groups (Littlejohn, et al., 2014; Xu and Su, 2015; Zwiener, et al., 2014). Outliers are not 

included.  There are some assembled transcripts with unappreciable FPKM: FPKM was estimated by SRs, 

and thus transcripts only assembled by LRs may have unappreciable FPKM; for very low-expressed SR-

assembled transcripts, they may be caused by incorrect SR-assembly or incorrect abundance estimation 

of FPKM.  
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Note 7: The influences of SR and LR coverage on assembly accuracy 

To investigate the influences of SR and LR coverage, the output transcripts from 

GM12878 dataset by IDP-denovo were binned according to their SR coverage 

(estimated by StringTie) and LR coverage (number of aligned LRs) separately, with the 

roughly equal numbers of transcripts in each bin, and the accuracy metrics at average, 

including precision, recall and F1 score, were evaluated (Figure S4).  

The transcript accuracy improves with increasing coverage of SRs or LRs.  

1) Influence of SR coverage: High SR coverage aids in assembly of accurate SR-

scaffolds (step a1 in Figure 1 in main text), while low SR coverage can lead to 

low-accuracy assembly that further prevents long reads from being aligned 

correctly to extend SR-scaffolds. 

2) Influence of LR coverage: For the regions uncovered by SR-scaffolds, LRs are 

used for extension to get full-length transcripts (step a3 in Figure 1 in main text). 

High LR coverage is helpful to generate accurate consensus from error-prone 

LRs.  

Therefore, either high SR or high LR coverage contributes to accurate transcript 

assembly by IDP-denovo. 
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Figure S4. The influences of SR and LR coverage on assembly accuracy, with metrics of precision, 

recall and F1 score.  

 

Note 8: Parameter settings of existing assembly methods with Hybrid-

Seq data and evaluation granularities  

Two existing assembly methods with Hybrid-Seq data were tested: 1) Trinity (version 

2.1.1), which can integrate LRs into de novo assembly on SRs to improve assembly of 

isoforms with complex structures, and 2) a hybrid de novo transcriptome assembly 

pipeline proposed by the Roulin group (referred to herein as “Roulin’s pipeline”) (Roulin, 

et al., 2014), which assembles Roche 454 LRs and Illumina SRs separately, followed by 

clustering and removal of redundant contigs with usearch (Edgar, 2010) and CAP3 

(Huang and Madan, 1999). Parameters were set as default for these two methods. The 

performance of IDP-denovo was compared to these two existing assembly methods by 
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GM12878 data with precision-recall statistics (Li, et al., 2014) mentioned above and 

sensitivity (the number of reconstructed full-length transcripts) that were described in 

the previous study (Chang, et al., 2015). 

 

Note 9: Evaluation strategies for k-mer clustering 

To optimize the performance of the k-mer-based clustering method, 94,506 LRs from 

the GM12878 (Tilgner, et al., 2014) dataset that were annotated with genes in Chr19 

(chromosome 19) in Ensembl database by alignment with GMAP, were used as training 

data. Four typical measures of clustering performance, including the Jaccard Index, 

precision, recall, and F-measure, were applied (Bao, et al., 2011; Chen, et al., 2006). 

Let a be the number of pairs that are from the same class and grouped into the same 

cluster. Let b be the number of pairs that are from the same class but grouped into 

different clusters. Let c be the number of pairs that are from different classes but 

grouped into the same cluster. The Jaccard Index is computed as a/(a+b+c). Precision 

is computed as a/(a+c) and recall as a/(a+b). F-measure is computed as 2x 

precision/(precision+recall).  

The optimal values of these measures were obtained when k = 15 and Cthreshold = 0.05 

for all LRs from chr19 as well as unaligned LRs from chr19 (Table S1). Therefore, these 

parameter settings were used to cluster unaligned LRs. 
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Table S1. Performance of k-mer clustering with different combinations of lengths of k-mer and percentage 
cutoff Cthreshold with unaligned LRs from chr19. 

 
Percentage cutoff 

C
threshold

 

Length of k-mer 

 
13 15 17 

Jaccard index 0.04 0.991 0.992 0.992 

 
0.05 0.992 0.992 0.987 

 
0.06 0.992 0.987 0.987 

Precision 0.04 0.998 0.999 0.999 

 
0.05 0.999 0.999 0.999 

 
0.06 0.999 0.999 1.000 

Recall 0.04 0.993 0.993 0.994 

 
0.05 0.993 0.994 0.988 

 
0.06 0.994 0.988 0.987 

F-measure 0.04 0.996 0.996 0.996 

 
0.05 0.996 0.996 0.994 

 0.06 0.996 0.994 0.993 

a Results with the best performance for each performance measure are bold, underlined and italic. 

 

Note 10: Evaluation strategy for annotation of gene isoform structures 

The annotation analysis was applied to clusters with at most 30 sequences, which 

comprised of 89.67% of all clusters. To examine the accuracy of isoform structure 

annotation, transcript sequences from a cluster were aligned to the reference genome 

by GMAP. A gap in alignment is supposed to be an alternative exon usage event. The 5’ 

end splice site from the reported skipped exon corresponds to the nearest annotated 5’ 

end splice site in alignment. Identification error is defined as the difference between the 

positions of the predicted 3’ end splice site by IDP-denovo and the 3’ end splice site 

reported by reference-alignment. 

 

 



 
11 

 

Note 11: Comparison to abundance estimated by StringTie 

SR and LR abundance indices reported by IDP-denovo were compared to FPKM 

reported by StringTie (Pertea, et al., 2015) for each annotated isoform on a natural-

logarithmic scale, if all these values were positive. 5,967 isoforms were included. We 

calculated Spearman and Pearson correlation coefficients between the SR abundance 

index and the FPKM estimated by StringTie, as well as those between LR abundance 

index and FPKM estimated by StringTie. 

 

Note 12: Application of IDP-denovo to Dendrobium officinale 

To demonstrate application of IDP-denovo to non-model organisms, Illumina and 

PacBio data of D. officinale were used (accession number SRP094520). Read quality 

was checked with FastQC, and 13 bp at the end were trimmed. LRs from the PacBio 

platform were corrected by SRs from the Illumina platform by LSC. The two SR-scaffold 

assembly parameters of Velvet+Oases, length and coverage cutoff of k-mer, were set 

as 31 and 10, respectively. A previously published annotation library and a draft 

assembly of D. officinale genome (Yan, et al., 2015), polished by an assembled 

transcriptome (Wu, et al., 2016), were used to evaluate the IDP-denovo output. 

Annotation was performed by alignment of assembled sequences to the draft assembly 

by GMAP with aligned sequences with minimal alignment length of 30 nts were 

annotated, while the best alignment reported no overlap to annotated loci, the second 

best alignment was considered if the alignment length was at least 70% of the best 
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alignment. Transcripts unaligned to annotated loci in the draft genome were considered 

as novel transcripts from novel genes. 
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