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Supplementary Methods 

 

1. Detail Methods of GAIT 

 

GAIT is to detect significantly associated genes with interval times of two events in the presence of censoring. 

Formally, for sample i, let 𝑇𝑖1 and 𝑇𝑖2 be the occurrence times of event 1 and 2, respectively. Also, let 𝐶𝑖1 and 

𝐶𝑖2 be the censoring times of event 1 and 2, respectively. In the presence of censoring, instead of true occurrence 

time 𝑇𝑖1 and 𝑇𝑖2, we observe censored time point 𝑋𝑖1 and 𝑋𝑖2, which are given by 𝑋𝑖1 = min(𝑇𝑖1 , 𝐶𝑖1) , 𝑋𝑖2 =

min(𝑇𝑖2, 𝐶𝑖2), and cersoring indicator ∆𝑖1 and ∆𝑖2, which are given by ∆𝑖1= 𝐼(𝑇𝑖1 ≤ 𝐶𝑖1), ∆𝑖2= 𝐼(𝑇𝑖2 ≤ 𝐶𝑖2) 

where 𝐼(∙)  is a indicator function. GAIT is to find genes whose expression is significantly associated with 

interval time 𝑇2 − 𝑇1 based on observed data {𝑋1, ∆1, 𝑋2, ∆2} of n samples. 

GAIT works through the following steps. 

 

(Step 1) The estimation of joint probabilty distribution of 𝑇1 and 𝑇2, 𝑓𝑇1,𝑇2
. 

From observed {𝑋1, ∆1, 𝑋2, ∆2}, the joint distribution of 𝑇1 and 𝑇2 is estimated using the multivariate survival 

analysis of the optional Polya tree bayseian estimation (Seok et al, 2014). While Seok et al handles a general 

p-dimensional multivariate problem, GAIT simplifies it as a two-dimensional bivaraite problem for the 

computation efficiency. Since the detail procedure is fully described in Seok et al, here we breifly explain the 

method focusing on the simplification maded by GAIT. 

GAIT uses an optional Polya tree (OPT) to estimate the joint distribution (Wong and Ma, 2010). An OPT is 

characterized by the likelihood Φ(𝐴) for region A in a sample space . Φ(𝐴) is recursively calculated by 

Φ(𝐴11), Φ(𝐴12), Φ(𝐴21), and Φ(𝐴22) where 𝐴𝑖𝑗 is the j-th subregion of A when A is split at the center 

point of the 𝑇𝑖  axis. Formally, 

Φ(𝐴) =
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where Φ0(𝐴) is a likelihood when all sample points in A are uniformly distributed, 𝐵(∙) is a beta function, 

and N(A) is the number of samples in region A. If region A has one or no sample, Φ(𝐴) = Φ0(𝐴) . By 

recursively splitting, we can obtain Φ(𝐴)’s for all subregions of  obtained by binary splitting. 

To calculate the joint distribution of 𝑇1 and 𝑇2, GAIT performs the following steps. For given region A,  
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𝑖=1 , A is considered to have a uniform distribution. 

The probability density of A is calculated as 
𝑁(𝐴)

𝑛|𝐴|
 where n is the total number of observed samples and |𝐴| 

is the area of A. 

(2) Otherwise, the given region A is considered to have an non-uniform distribution and is split further. If 

 
𝐵(𝑁(𝐴11)+0.5,𝑁(𝐴12)+0.5)

𝐵(0.5,0.5)
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A is split into 𝐴11 and 𝐴12. Otherwise, it is split into 𝐴21 and 𝐴22.  

GAIT recursivly applies these steps for the partitioned subregions. Finally, GAIT partitions the whole sample 

space into subregions where samples are considered to be uniformly distributed. According to the number of 

samples in each region, the probability density is determined. 

In the presence of censoring, the number of samples in region A, 𝑁(𝐴), cannot be obtained by counting samples 

because of missing observations. Since 𝑁(𝐴) = 𝑛𝑃𝐴 where n is the number of total samples and 𝑃𝐴 is the 



probability mass in A, 𝑁(𝐴) can be easily calculated from the joint distribution 𝑓𝑇1,𝑇2
. Let 𝑁(𝐴|𝑓) be the 

estimated number of samples in A given joint distribution f. Also let OPT(𝑁(∙)) be the joint distribution from 

the OPT calculation with number of samples 𝑁(∙) for all subregions as described in the above paragraph. Here, 

we have  

𝑓𝑇1,𝑇2
=  OPT (𝑁(∙ |𝑓𝑇1,𝑇2

)) 

To solve, GAIT uses an iterative approach, which is 𝑓𝑇1,𝑇2

(𝑖+1)
=  OPT (𝑁(∙ |𝑓𝑇1,𝑇2

(𝑖)
)). By repeating the iteration 

until 𝑓𝑇1,𝑇2

(𝑖)
 converges, GAIT finds the final joint distribution.  

The initial distirbution is obtained from the initial estimation of number of samples, 𝑁(0)(𝐴) . 𝑁(0)(𝐴)  is 

estimated assuming that the distribution of 𝑇1 and 𝑇2 are independent in each subregion A. Here, univariate 

Kaplan-Meier estimators are used to estimate the distribution of 𝑇1 and 𝑇2 within A. The initial distirbution 

is given by 𝑓𝑇1,𝑇2

(1)
=  OPT (𝑁(0)(𝐴)). 

 

(Step 2) The Mote Carlo calculation of E[𝑇2 − 𝑇1|𝑋1, Δ1, 𝑋2, Δ2] 

From the estiamted joint distribution of 𝑇1 and 𝑇2, GAIT obtains the conditional distribution of 𝑇1 and 𝑇2 

given the observed {𝑋𝑖1, ∆𝑖1, 𝑋𝑖2, ∆𝑖2} for sample i. There are four cases: 

(1) ∆𝑖1= 1 and ∆𝑖2= 1: Since two events are observed, 𝑇1 and 𝑇2 are determined as 𝑋𝑖1 and 𝑋𝑖2. 

(2) ∆𝑖1= 1 and ∆𝑖2= 0: 𝑇𝑖1 = 𝑋𝑖1, and Pr[𝑇𝑖2| 𝑇𝑖1 = 𝑋𝑖1, 𝑇𝑖2 > 𝑋𝑖2] is obtained. 

(3) ∆𝑖1= 0 and ∆𝑖2= 1: 𝑇𝑖2 = 𝑋𝑖2, and Pr[𝑇𝑖1| 𝑇𝑖1 > 𝑋𝑖1, 𝑇𝑖2 = 𝑋𝑖2] is obtained. 

(4) ∆𝑖1= 0 and ∆𝑖2= 0: Pr[𝑇𝑖1, 𝑇𝑖2| 𝑇𝑖1 > 𝑋𝑖1, 𝑇𝑖2 > 𝑋𝑖2] is obtained. 

Then, E[𝑇2 − 𝑇1|𝑋1, Δ1, 𝑋2, Δ2]  is obtained empirically because the software implementation of analytical 

expectation calculation is not straightforward. From the conditional distribution of 𝑇1 and 𝑇2, the pairs of 

(𝑇1, 𝑇2)  are randomly generated. By numerically averaging the randomly sampled 𝑇2 − 𝑇1 , the empirical 

expecation is calculated. 

  

(Step 3) Statistical inference 

Let 𝑔𝑖𝑗  be the expression index of gene j of sample i. Also let 𝑦𝑖  be E[𝑇𝑖2 − 𝑇𝑖1|𝑋𝑖1, Δ𝑖1, 𝑋𝑖2, Δ𝑖2] , the 

expected interval time obtained in Step 2. From the pairs of (𝑦𝑖 , 𝑔𝑖𝑗)  for 𝑖 = 1, 2, … , 𝑛 , the statistical 

association between the gene expression of gene j and the expected interval time is estimated based on a simple 

linear model, 𝑦𝑖 = 𝛽0 + 𝛽1𝑔𝑖𝑗 + 𝜖𝑖𝑗  where 𝜖𝑖𝑗 is a noise.  

 

  



2. Simulation Settings 

 

The simulations were performed by the following steps in three different settings. 

Step 1. Simulation data generation 

500 samples are generated for the simulations. Each sample consists of two event times (𝑇1, 𝑇2) considered as 

true event times. The event times in each setting follows additive exponential distribution, log-normal 

distribution, and clayton model (Clayton, 1978) respectively. Censoring time points (𝐶1, 𝐶2) are also generated 

following either independent exponential distirbution or log-normal distribution. The sample distributions are 

summarized in the below table. 

 T C 

Additive 

exponential 

𝑇1~𝐸𝑥𝑝(1) 

𝑇2~𝑇1 + 𝑍 

Z~𝐸𝑥𝑝(1), 𝑍 ⊥ 𝑇1 

𝐶1, 𝐶2~𝐸𝑥𝑝(0.5) 

𝐶1 ⊥ 𝐶2 

Log-normal log (
𝑇1

𝑇2
) ~𝑁 ((

0
0

) , (
1 0.5

0.5 1
)) log (

𝐶1

𝐶2
) ~ 𝑁 ((

0
0

) , (
1 0
0 1

)) 

Clayton 𝑇1, 𝑇2 ~ S(𝑡1, 𝑡2) = {𝑒𝑡1/𝜃 + 𝑒𝑡2/𝜃 − 1}
−𝜃

 

, where θ = 1 

𝐶1, 𝐶2~ 𝐸𝑥𝑝(0.5) 

𝐶1 ⊥ 𝐶2 

 𝑁(𝜇, Σ) is a bivariate normal distribution with mean μ and covariance Σ, and S(∙) denotes a bivariate 

survival function, i.e. S(𝑡1, 𝑡2) = Pr [𝑇1 > 𝑡1, 𝑇2 > 𝑡2]. 

Then, the 500 samples are censored by comparing the true event times and censoring time points. The censored 

time point 𝑋1  and 𝑋2  are given by 𝑋1 = min(𝑇1, 𝐶1) , 𝑋2 = min(𝑇2, 𝐶2) , and cersoring indicator ∆1  and 

∆2  are given by ∆1= 𝐼(𝑇1 ≤ 𝐶1), ∆2= 𝐼(𝑇2 ≤ 𝐶2) , where 𝐼(∙)  is a indicator function. Finally, the set of 

{𝑋1, ∆1, 𝑋2, ∆2} is provided as a data matrix for the simulations. 

Step 2. Gene expression generation 

A gene expression matrix with 1,000 genes is generated for the 500 samples in Step 1. The 1,000 genes are 

classified into four groups; group 1 (n=100) is correlated with 𝑇1, group 2 (n=100) is correlated with 𝑇2, group 

3 (n=100) is correlated with interval times (𝑇2 − 𝑇1), and group 4 (n=700) is random noise. The details are 

following. 

 

Group Number Distribution 

1 100 𝑔𝑖𝑗 = 𝑇𝑖1 + 𝑍𝑖𝑗 

2 100 𝑔𝑖𝑗 = 𝑇𝑖2 + 𝑍𝑖𝑗 

3 100 𝑔𝑖𝑗 = 𝑇𝑖2 − 𝑇𝑖1 + 𝑍𝑖𝑗 

4 700 𝑔𝑖𝑗 = 𝑍𝑖𝑗 

 

Here, 𝑔𝑖𝑗 is the gene expression index of sample i and gene j. 𝑇𝑖1 and 𝑇𝑖2 are the true event time 𝑇1 and 𝑇2 

of sample i, respectively. 𝑍𝑖𝑗 is Gaussian noise of which mean is 0 and varaince is 22. After then, the generated 

gene expression indices are standardized to have mean 0 and varaince 12. 

 

 

 



Step 3. Statistical inference 

The goal of the proposed GAIT is to sort out the group 3 genes associated with interval time among the whole 

genes. The group 3 genes are considered as positives to be detected, and the rest genes are considered as 

negatives to be neglected. The performance of GAIT is compared with the following methods. 

1. Univarite T1: This method finds genes associated with only T1. {𝑋1, ∆1} is regressed by gene expression 

indices with a Cox propotional harzard model. Associated genes are selected by the likelihood of the model. 

2. Univarite T2: This method finds genes associated with only T2. Similarly with Univariate T1, this method 

use Cox models on {𝑋2, ∆2}. 

3. Ignore censoring: This method ignores censoring statues and considers X1 and X2 as T1 and T2. In other 

words, it finds significantly associated genes with 𝑋2 − 𝑋1  instead of 𝑇2 − 𝑇1  based on simple linear 

regression. 

4. Without censoring: This method considers only a subset of samples, whose events are all observed. For 

these samples, ∆1= 1  and ∆2= 1 . Consequently, 𝑋1 = 𝑇1  and 𝑋2 = 𝑇2 . Significantly associated genes 

are selected by simple linear regression models on 𝑋2 − 𝑋1. 

5. Multi-state model (MSM): The censored data of two events can be considered as panel data with four 

states. State 1 is when both events don’t occur, state 2 is when only event 1 occurs, state 3 is when only event 

2 occurs, and state 4 is when both event occur. Recently developed Markov multi-state models can be used 

to find significantly associated covariates to each state transition in the presence of censoring. Here, we used 

msm R-package for this analysis (Jackson et al, 2011). 

The expression indices of a gene is provided as a covariate, and its association with state transition is 

measured. Since the goal is finding genes associated with interval time 𝑇2 − 𝑇1, the transitions from state 2 

to 4 and from 3 to 4 are of interest. Let p1 and p2 be the p-values for the associations with transition from 

state 2 to 4 and from state 3 to 4, respectively. The overall significance of the association is measured by 

min(𝑝1, 𝑝2). 

Step 4. Evaluation of the detection performance 

Group 3 genes, of which expression indices are generated to be correlated with interval times, are considered 

as conditional positives. The rest genes are conditional negatives. Based on the estimated significance in Step 

3, a gene is detected to be positive if its p-value is less than a pre-defined significance level. Otherwise, it is 

considered to be negative. The true-positives (TP) are when a conditionaly positive genes are detected as 

positive. The false-positives (FP) are when a conditional negative genes are detected to be positive. For various 

significance levels, the true-positive rates and false positive rates are calcualted, and accordingly ROC curves 

are drawn and AUCs are calculated. 

 

This simulation study was performed with 6 CPU cores which are Intel® Xeon® E5-2630 v2 @ 2.60GHz and 

128GB RAM and the average elapsed times for GAIT were 63.9, 89.3 and 34.7 seconds in three different settings, 

respectively. All simulation codes are available at http://cdal.korea.ac.kr/GAIT. 

  

http://cdal.korea.ac.kr/GAIT


3. Simulations with Structured Gene Expression Data 

 

The simulations in the previous section assume that genes are indepdent to each other except the association with 

phenotypes. However, in a real situation, genes are correlated with each other because of many biological 

functions such as canonical pathways. To consider it, additional simulations were performed with structured 

expression patterns.  

The simulation settings are similar with what is described in the previous section except the way generating gene 

expression (Step 2). Briefly, 20 genes are randomly selected to be correlated each other and a common random 

signal is added to their gene expression indices. This selection is repeated by 10 times. Finally, 10 groups of genes 

are formed, and 20 genes in the same group are correlated with each other. The details are given in the below. 

Step 2. Gene expression generation 

A gene expression matrix with 1,000 genes is generated for the 500 samples in Step 1. The 1,000 genes are 

classified into four groups; group 1 (n=100) is correlated with 𝑇1, group 2 (n=100) is correlated with 𝑇2, group 

3 (n=100) is correlated with interval times (𝑇2 − 𝑇1), and group 4 (n=700) is random noise. The details are 

following. 

Group Number Distribution 

1 100s 𝑔𝑖𝑗 = 𝑇𝑖1 + ∑ 𝑉𝑖𝑘𝐼(𝑗 ∈ 𝑃𝑘)𝑘 + 𝑍𝑖𝑗  

2 100 𝑔𝑖𝑗 = 𝑇𝑖2 + ∑ 𝑉𝑖𝑘𝐼(𝑗 ∈ 𝑃𝑘)𝑘 + 𝑍𝑖𝑗  

3 100 𝑔𝑖𝑗 = 𝑇𝑖2 − 𝑇𝑖1 + ∑ 𝑉𝑖𝑘𝐼(𝑗 ∈ 𝑃𝑘)𝑘 + 𝑍𝑖𝑗  

4 700 𝑔𝑖𝑗 = ∑ 𝑉𝑖𝑘𝐼(𝑗 ∈ 𝑃𝑘)𝑘 + 𝑍𝑖𝑗   

 

Here, 𝑔𝑖𝑗 is the gene expression index of sample i and gene j. 𝑇𝑖1 and 𝑇𝑖2 are the true event time 𝑇1 and 𝑇2 

of sample i, respectively. 𝑍𝑖𝑗 is Gaussian noise of which mean is 0 and varaince is 22. 

For sample i, 𝑉𝑖𝑘 is a common random signal of group k, which is generated from a normal distribution with 

mean 0 and variance (σ𝑣
2) 12 or 22. 𝑃𝑘 is a set of genes, and 𝐼(𝑗 ∈ 𝑃𝑘) = 1 if gene j is in 𝑃𝑘 and otherwise 

it is 0. Each 𝑃𝑘 consists of 20 genes randomly selected from the whole 1,000 genes. Here, 10 groups of genes 

are assumed. 

After then, the generated gene expression indices are standardized to have mean 0 and varaince 12. 
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Supplementary Figures 

 

 

Supplementary Figure 1. The distribution of AUCs for 100 times of simulations in Log-normal distribution 

setting.   



 

Supplementary Figure 2. The ROC curves for 100 times of simulations in Log-normal distribution setting 

(Supplementary Figure 1).  

  



 

Supplementary Figure 3. The distribution of AUCs for 100 times of simulations in Clayton model setting.  

  



 

Supplementary Figure 4. The ROC curves for 100 times of simulations in Clayton model setting (Supplementary 

Figure 3). 



 

Supplementary Figure 5. The distribution of AUCs and ROC curves for 100 times of simulations in Additive 

Exponential distribution setting and correlated gene structure with (A) σV =1 and (B) σV=2.  

  



 

Supplementary Figure 6. The distribution of AUCs and ROC curves for 100 times of simulations in Log-Normal 

distribution setting and correlated gene structure with (A) σV =1 and (B) σV=2.  



 

Supplementary Figure 7. The distribution of AUCs and ROC curves for 100 times of simulations in Clayton 

model setting and correlated gene structure with (A) σV =1 and (B) σV=2.  

  



Supplementary Tables 

 

 

Supplementary Table 1. The average AUCs of simulations in uncorrelated gene structures and correlated gene 

structures. 

 
 GAIT T1 T2 

Ignore 

censoring 

Without 

censoring 
MSM 

Additive 

Exponential 

uncorrelated 

structure 
0.92 0.61 0.80 0.76 0.83 0.81 

correlated 

structure  

(σV = 1) 

0.92 0.61 0.79 0.76 0.82 0.81 

correlated 

structure  

(σV = 2) 

0.90 0.61 0.78 0.74 0.80 0.79 

Log-

Normal 

uncorrelated 

structure 
0.95 0.62 0.88 0.89 0.84 0.89 

correlated 

structure  

(σV = 1) 

0.95 0.62 0.88 0.90 0.84 0.88 

correlated 

structure  

(σV = 2) 

0.95 0.62 0.88 0.89 0.83 0.86 

Clayton uncorrelated 

structure 
0.94 0.67 0.67 0.89 0.89 0.78 

correlated 

structure  

(σV = 1) 

0.95 0.67 0.67 0.89 0.89 0.77 

correlated 

structure  

(σV = 2) 

0.94 0.66 0.65 0.87 0.87 0.75 

 σ𝑣
2

 is the variance of common signals of a gene group 

 

 

Supplementary Table 2. Using 305 genes only found from applying GAIT for the real dataset of multiple 

myeloma patients, the five gene sets correlated with the genes were found from the Fisher’s exact test. The gene 

sets are in the cancer modules of MSigDB. 

Gene Sets Odds Ratio p-value 

Neighborhood of Cyclin A2 (CCNA2) gene 9.69 1.25 x 10-6 

Neighborhood of Cell Division Cycle 20 (CDC20) gene 10.57 2.73 x 10-6 

Neighborhood of Cell Division Cycle 2 (CDC2) gene 9.39 5.98 x 10-6 

Neighborhood of Hyaluronan-Mediated Motility Receptor (HAMMR) gene 11.06 8.74 x 10-6 

Neighborhood of cyclin B2 (CCNB2) gene 8.84 3.21 x 10-6 

 


