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1 Identifiability of pc-NEMs

Here we provide a detailed proof of the identifiability of pc-NEMs. As defined in the main text, S is a
set of N signalling genes, E is a set of L e↵ects genes, and K is a set of K knockdown experiments.

Theorem: Let a perturbation map ⇢ and a pair of error rates ↵,� 2 [0, 0.5) be given. If there exists a
subset U ✓ K of size at least N , such that ⇢us 2 [0, 1), for all (u, s) 2 U ⇥ S, and the matrix P defined
by Pus = log(1� ⇢us) has rank N , then the pc-NEM F

pc = ⇧⇥ is identifiable.

Proof: A model is identifiable if the mapping between the parameter space and the probability space of
the data given by the likelihood function is one to one. For given ⇢, ↵, �, and ⇥, the likelihood function
L(�;D) is only a function of the DAG � and the data D 2 D = {0, 1}L⇥K generated from K knockdown
experiments with L phenotypic e↵ects. Then, the pc-NEM is identifiable if for all (�1,�2) 2 G and for
all D 2 D

L(�1;D) = L(�2;D) () �1 = �2,

where G is the set of all DAGs.
Given a perturbation map ⇢, an e↵ects graph ⇥, the error rates ↵,� 2 [0, 0.5), and a pair of DAGs
(�1,�2) 2 G, we start from L(�1;D) = L(�2;D) and will prove that this implies �1 = �2. From the
likelihood defined in Eq. 6, we have, for j = 1, 2,

L(�j ;D) = P (D | ⇢,�j ,⇥,↵,�) =

LY

l=1

KY

k=1

P (Dlk | ⇢,�j ,⇥i(l)l,↵,�)

Since Dlk 2 {0, 1} we can write

L(�j ;D) =

LY

l=1

KY

k=1

DlkP (Dlk = 1 | ⇢,�j ,⇥i(l)l,↵,�) + (1�Dlk)P (Dlk = 0 | ⇢,�j ,⇥i(l)l,↵,�)

Based on Eq. 5 this is further equal to

L(�j ;D) =
LY

l=1

KY

k=1

Dlk[⇧jki(l)
(1� �) + (1�⇧jki(l)

)↵] + (1�Dlk)[(1�⇧jki(l)
)(1� ↵) +⇧jki(l)

�)],

where ⇧j , for j = 1, 2, are the corresponding propagation matrices for the two DAGs �1 and �2,
respectively.
Since the likelihoods are equal, we have

LY

l=1

KY

k=1

Dlk[⇧1ki(l)
(1� �) + (1�⇧1ki(l)

)↵] + (1�Dlk)[(1�⇧1ki(l)
)(1� ↵) +⇧1ki(l)

�)]

=

LY

l=1

KY

k=1

Dlk[⇧2ki(l)
(1� �) + (1�⇧2ki(l)

)↵] + (1�Dlk)[(1�⇧2ki(l)
)(1� ↵) +⇧2ki(l)

�)]

(S1)
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This equality is true for all D 2 D. Now, imagine changing one l, k entry in the data. Then Eq. S1 with
Dlk = 1 divided by Eq. S1 with Dlk = 0 would result in cancellation of all terms apart from the l, k

terms corresponding to the changed entry. That is, the ratio of Eq. S1 with Dl,k = 1 to Eq. S1 with
Dl,k = 0 is

⇧1ki(l)
(1� �) + (1�⇧1ki(l)

)↵

(1�⇧1ki(l)
)(1� ↵) +⇧1ki(l)

�)
=

⇧2ki(l)
(1� �) + (1�⇧2ki(l)

)↵

(1�⇧2ki(l)
)(1� ↵) +⇧2ki(l)

�)

⇧1ki(l)
(1� ↵� �) + ↵

1� (⇧1ki(l)
(1� ↵� �) + ↵)

=
⇧2ki(l)

(1� ↵� �) + ↵

1� (⇧2ki(l)
(1� ↵� �) + ↵)

This is true for any l, k 2 L⇥K. Let A1 = ⇧1ki(l)
(1�↵� �) +↵ and A2 = ⇧2ki(l)

(1�↵� �) +↵. Then
the above equation can be written as

A1

1�A1
=

A2

1�A2

It follows that A1 = A2, that is,

⇧1ki(l)
(1� ↵� �) + ↵ = ⇧2ki(l)

(1� ↵� �) + ↵

=) ⇧1ki(l)
= ⇧2ki(l)

The step above relied on the restricton that ↵ + � 6= 1 which is guaranteed by the assumption on the
range of ↵ and �. Therefore, given ↵,� 2 [0, 0.5), and since the above step holds for all l, k terms, the
equality of the likelihoods for all data implies ⇧1 = ⇧2.

From Eq. 9 it follows that for each experiment k 2 K and S-gene s 2 S we have,

1�
NY

i=1

(1� ⇢ki)
C1is = 1�

NY

i=1

(1� ⇢ki)
C2is

NX

i=1

C1is log(1� ⇢ki) =

NX

i=1

C2is log(1� ⇢ki),

(S2)

where C1 and C2 are the path count matrices for the two DAGs �1 and �2, respectively. Based on the
condition on ⇢, there exists a subset of knockdown experiments U with |U| � N and ⇢us 2 [0, 1) for
(u, s) 2 U ⇥ S. Further, we have a matrix P as a function of experiments in U with Pus = log(1� ⇢us).
Rewriting Eq. S2 only for experiments u 2 U as a matrix product

NX

i=1

C1is log(1� ⇢ui) =

NX

i=1

C2is log(1� ⇢ui)

P C1 = P C2

Since P is full rank it follows that C1 = C2.

The N ⇥N path count matrix C is a function of the signal graph �, where each entry Cij denotes the
total number of paths (both direct and indirect) from node i to node j. It can be written as

C = f(�) =

NX

i=0

�i =

1X

i=0

�i = (I � �)�1

because the adjacency matrix of any DAG � can be permuted and represented as a strictly upper
triangular matrix by sorting the rows and columns accordingly. The matrix (I � �) is then an upper
triangular matrix with 1’s on the diagonal. Hence, all of its eigenvalues are equal to 1 and (I � �) is
invertible. Thus, we can solve the equation above for �,

� = I � C

�1

and see that f : � ! C is bijective, which proves that �1 = �2.

⌅
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The condition on the range of knockdown probabilities of experiments in U ensures that the experiments
can distinguish between any two DAGs. If ⇢ks = 1 then ⇧ks = 1 , reducing the model to classical NEM
which is identifiable only in the transitively closed space. This condition in combination with the full
rank condition guarantee unique likelihoods for each DAG. All the perturbation maps used in this paper
complied with this condition illustrating that this assumption is generally fulfilled in practice.

2 Supplementary Figures
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Figure S1: Parameter optimization for adaptive simulated annealing. The minimum number
of steps (y-axis) required to attain the maximum likelihood at di↵erent start temperatures (x-axis) and
adaptation rates for a fixed ideal acceptance rate of 1

N = 0.125. Data simulated from 30 di↵erent
networks with 320 phenotypic e↵ects and noise levels of ↵ = 0.01 and � = 0.01, ↵ = 0.05 and � = 0.20,
and ↵ = 0.20 and � = 0.05.
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α = 0.01;  β = 0.01 α = 0.05;  β = 0.20 α = 0.20;  β = 0.05
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Figure S2: Comparison of di↵erent algorithms developed for network inference in NEMs.
Maximum log likelihood per e↵ect (y-axis) of the inferred network using pairwise (blue), triples (green),
greedy (orange) and module network (red) algorithms. Each panel corresponds to inference from data
with 32, 64, 120, and 320 e↵ects and noise levels of ↵ = 0.01 and � = 0.01, ↵ = 0.05 and � = 0.20, and
↵ = 0.20 and � = 0.05.
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Figure S3: Noise estimation given the true network structure. Maximum likelihood estimates
(y-axis) of 120 di↵erent ↵ and � values learned using pc-NEMs given the true network structure, against
true error rates (x-axis). The blue bands correspond to one and two standard deviations of inferring the
error rates. In estimation of ↵(�), each point is coloured based on the corresponding �(↵) value used to
generate the data.
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Figure S4: Performance summary of network and noise parameters inference. Each panel
reports the performance (y-axis) of pc-NEMs (yellow) for network inference without a priori knowledge
of error rates, on simulated data with 320 phenotypic e↵ects at di↵erent noise levels. Each column (row)
defines the performances on data with fixed � (↵) value and varying ↵ (�) values. The purple box-plots
correspond to SHD of 30 uniformly sampled random DAGs.
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α = 0.01;  β = 0.01 α = 0.05;  β = 0.20 α = 0.20;  β = 0.05
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Figure S5: Results from simulation study on randomly sampled transitively closed net-
works. Structural Hamming distance (SHD) measuring the performance (y-axis) of pc-NEMs (yellow)
and NEMs with module network (blue) algorithms, on simulated data from 30 di↵erent transitively
closed networks of size N = 8 and perturbation maps, with 320 phenotypic e↵ects and varying noise
levels. The transitively closed networks were sampled at random from a set of all pathways in KEGG.
The average number of o↵-targets per network is 21.37.
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Figure S6: Results from simulation study on transitively closed networks. Structural Ham-
ming distance (SHD) measuring the performance (y-axis) of pc-NEMs (yellow) and NEMix (red) on
simulated data from 30 di↵erent transitively closed networks of size N = 8 and perturbation maps,
with varying number of phenotypic e↵ects and noise levels. The networks were sampled from hsa05200
pathway. It should be noted that NEMix is designed to perform network inference under unknown path-
way stimulation from single-cell observations. Since it depends on single cell observations, it is heavily
underpowered when used on gene-level data resulting in poor performance.
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Figure S7: Performance comparison on HRV data. Di↵erence of structural Hamming distance
(SHD) between pc-NEMs and NEMs inferred networks on HRV data with high o↵-target e↵ects. The p-
value reported is from one-sample Wilcoxon signed rank test. The plot is based on the values summarised
in Table S2.
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Figure S8: Example of networks inferred using HRV data. Binary gene-level data derived
from image-based single-cell data, used for inferring a network of five genes involved in MAPK signaling
pathway. A.The known KEGG pathway (hsa04010), B. The graph resulting from pc-NEM, and C. The
graph inferred by NEM.

3 Supplementary Tables

Table S1: Performance as a function of network size. Structural Hamming distance (SHD) and
runtime measuring performance of pc-NEMs on simulated data with 320 phenotypic e↵ects generated
from 30 di↵erent networks of size N = 8, N = 12 and N = 16, respectively. The networks were sampled
at random from a set of all signalling pathways in KEGG.

No. of
S-genes (N)

Median SHD
Median

runtime (min)
Median min.
iterations

8 0 13 2,348
12 0.5 37 8,918
16 4 86 17,740
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Table S2: Performance summary on HRV data. Structural Hamming distance measuring the
performance of pc-NEMs and NEMs on HRV infected RNAi screen data with low and high o↵-target
e↵ects. All the networks are of size N = 5.

SHD
Data pc-NEM NEM

Low o↵-target 7 7
High o↵-target 1 7
High o↵-target 3 5
High o↵-target 5 7
High o↵-target 5 7
High o↵-target 5 8
High o↵-target 5 5
High o↵-target 6 7
High o↵-target 6 8
High o↵-target 6 6
High o↵-target 7 7
High o↵-target 7 5
High o↵-target 7 8
High o↵-target 7 6
High o↵-target 8 8
High o↵-target 8 10
High o↵-target 8 9
High o↵-target 8 9
High o↵-target 8 7
High o↵-target 9 9
High o↵-target 10 8
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