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Supplementary Document A: Proof of Convergence of the
Alternating Minimization with Majority Voting

Recall the objective function of the optimization problem,

f(M,H) = min
M,H

1

2
‖PΩ(F−MH>)‖2F .

Given the current estimate Mt and Ht, we alternately update

Mt+1 = arg min
M∈{0,1}m×k

1

2
‖PΩ(F−MH>t )‖2F

and

Ht+1 = arg min
H∈{0,1}4n×k

1

2
‖PΩ(F−Mt+1H

>)‖2F .

Having fixed Ht, Mt+1 is updated by examining for each read all the possible
viral haplotype associations and selecting the one that minimizes the number
of base changes needed to make reads consistent with the observed information
in F, which implies that

f(Mt+1,Ht)− f(Mt,Ht) ≤ 0. (1)

Now let us divide F into k sub-matrices Fi, 1 ≤ i ≤ k, each represent-
ing the collection of reads assigned to the ith haplotype in Mt+1, and rewrite
f(Mt+1,Ht) as

f(Mt+1,Ht) =
1

2

k∑
i=1

n∑
j=1

‖PΩFi(·,j)
(Fi(·, j)−Mi

t+1Ht(j, ·)>)‖22,

where F(i)(·, j) denotes the jth column of F(i), Mi
t+1 has for rows the standard

unit vectors ei, and Ht(j, ·) is the jth row of Ht at the tth iteration. Since
Ht+1 is updated by forming consensus sequences using reads in each sub-matrix
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clustered by Mt+1, we obtain

f(Mt+1,Ht+1)− f(Mt+1,Ht)

=
1

2

k∑
i=1

n∑
j=1

‖PΩFi(·,j)
(Fi(·, j)−Mi

t+1Ht+1(j, ·)>)‖22

− 1

2

k∑
i=1

n∑
j=1

‖PΩFi(·,j)
(Fi(·, j)−Mi

t+1Ht(j, ·)>)‖22

=
1

2

k∑
i=1

n∑
j=1

((N −NHt+1(j,i))− (N −NHt(j,i)))

=
1

2

k∑
i=1

n∑
j=1

(NHt(j,i) −NHt+1(j,i)) ≤ 0

(2)

where N denotes the total number of the observed nucleotides in Fi(·, j) and

NHt(j,i) is the number of nucleotides corresponding to H
(j,i)
t . The combination

of expressions (1) and (2) shows that the proposed alternating minimization
procedure is guaranteed to converge.
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Supplementary Document B: Additional results

(1) Comparing speed of tensor factorization that relies on majority
voting with the one that relies on gradient descent

Table S1: Runtime comparison of majority voting and gradient descent.
div%

k method 1 2 3 4 5 6 7 8 9 10

5 MV 1.00 1.50 1.83 2.64 3.63 3.51 4.17 4.49 4.59 5.95
GD 31.84 42.40 39.60 78.60 66.04 105.55 93.87 112.49 116.83 202.12

10 MV 3.93 8.75 13.13 19.62 24.96 25.03 28.73 33.51 38.32 36.20
GD 233.88 321.14 320.79 374.16 426.62 535.04 513.29 752.01 604.85 678.27

Running time comparisons (sec) of majority voting (MV) and gradient descent (GD) for tensor

factorization on the simulated data with ε = 2× 10−3 and cov = 500× for a mixture of 5 and 10
strains vs diversity (div), measured on a Linux OS servers with Intel Xeon Phi 7250 (1.4GHz) and

96GB RAM.

In Table S2, we compare runtimes of majority voting and gradient descent
applied to solving equation (3) in Section 2.2 of the main paper. The dataset
is the same as the one used in Section 3.1: mixtures of 5 and 10 strains are
sequenced with error rate ε = 2 × 10−3 and coverage cov = 500×. The speed
is measured on a Linux OS server with Intel Xeon Phi 7250 (1.4GHz) and
96GB RAM. As evident from the table, tensor factorization implemented with
majority voting is much more time-efficient than the gradient-descent based
approach for all strain diversity levels.

(2) Comparing accuracy of viral quasispecies reconstruction based
on single-pass tensor factorization (AltHap) with the one that em-
ploys multiple tensor factorizations and read removal (TenSQR)

We compare the performance of TenSQR and AltHap (?) on the simulated
dataset consisting of 5 viral strains whose synthesis is described in Section 3.1.
We measure the performances of two schemes in terms of Recall, Precision,
Predicted Proportion (PredProp), Reconstruction Rate (ReconRate) and JSD.
Since AltHap requires the number of haplotypes a priori, we do not report
Predicted Proportion. As shown in Figure S1, TenSQR significantly outperforms
AltHap. This, of course, is expected: AltHap is designed for reconstruction of
sequence communities characterized by uniform abundances – an assumption
violated in viral quasispecies.
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Figure S1: Performance comparison of TenSQR and AltHap in terms of Recall,
Precision, Reconstruction Rate (ReconRate) and JSD on the simulated data
with ε = 2× 10−3 for a mixture of 5 viral strains.
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Figure S2: Performance comparison of TenSQR, aBayesQR, ShoRAH, ViQuaS
and PredictHaplo in terms of Recall, Precision, Predicted Proportion (Pred-
Prop), Reconstruction Rate (ReconRate) and JSD on the simulated data with
ε = 2× 10−3 for a mixture of (a) 5 viral strains and (b) 10 viral strains.
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Figure S3: Performance comparison of TenSQR, aBayesQR, ShoRAH, ViQuaS
and PredictHaplo in terms of Recall, Precision, Predicted Proportion (Pred-
Prop), Reconstruction Rate (ReconRate) and JSD on the simulated data with
ε = 7× 10−3 for a mixture of (a) 5 viral strains and (b) 10 viral strains.
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Supplementary Document C: Estimating insertions

In addition to deletions, strains of a quasispecies may also contain insertions
as compared to a reference genome. Here we propose a pipeline to detect and
reconstruct insertions by processing paired-end reads that were previously fil-
tered out due to inability to match them confidently with the reference genome;
therefore, those reads have not been used in tensor factorization. The idea is
that some of the discarded reads that have high base-calling quality scores might
have not been matched successfully to the reference because they originate from
a region that was inserted into one of the strains of the quasispecies.

The three major steps of the proposed procedure are the following:

1. Infer the origin of the filtered-out paired-end reads having high base-
calling quality scores.

Let us denote two sequences in a paired-end read as (rh, rl) where the first
one is a read having high mapping score and the other one a read which is not
mapped or is only partially aligned to the reference (i.e., has a low mapping
score) due to an insertion. In order to infer the origin of the paired-end read
(rh, rl), we align the mapped read rh to the position identified by the alignment
software and count the number of mismatches between the read rh and each of
k reconstructed strains. The strain qI having the smallest Hamming distance
to the paired-end read is inferred as the origin of the paired-end read (rh, rl)
and thus contains an insertion.

2. Alignment of rl

Having identified strain qI as the origin of the paired-end read (rh, rl), we
next attempt to find the most likely position of rl relative to qI . To this end,
we examine subsequences that consist of the first and last l nucleotides of rl
and compare them to every l-nucleotides long subsequence of qI . Note that we
assume l < Lrl , where Lrl denotes the length of read rl. To identify the best
placement of rl along qI , we measure alignment scores for 2(Lg − l) windows,
where Lg is the length of qI , and choose the one with the largest score. More
specifically, the alignment score is updated for each window at each position of
1 ≤ i ≤ l; scorei+1 ← scorei + Nmatch if the ith nucleotide of the l-nucleotides
long subsequences is matched with one in qI , otherwise the score is updated
as scorei+1 ← scorei − (Nmismatch + 1)2 where Nmatch and Nmismatch are
the number of consecutive matches and mismatches, respectively; the scoring
function penalizes consecutive mismatches while favoring consecutive matches
to form a reliable estimate of the placement for rl.

Given a relative position of rl along qI , we infer the inserted position (i.e.,
the position at which rl starts to differ from qI due to insertions) by relying
on the same scoring function used to determine the best alignment position.
In particular, the score is computed for each position from 1 to LrI for reads
whose l-nucleotides-long prefix maps to qI and from LrI to i for those whose
l-nucleotides-long suffix maps to qI ; then the position at which insertion starts
is estimated as I + 1, where I = arg maxi scorei. For computational efficiency,
the updates of scorei are terminated once scorei < 0.
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Table S3: Performance of recovering insertions.
div%

lins fmin% 1 2 3 4 5 6 7 8 9 10

100 5 0.28 0.12 0.08 0.06 0.12 0.10 0.02 0.10 0.04 0.18
(0.95) (0.98) (0.99) (0.99) (0.99) (0.99) (0.99) (0.99) (0.99) (0.99)

10 0.14 0.08 0.10 0.04 0.04 0.04 0.04 0.02 0.02 0
(0.98) (0.99) (0.99) (0.97) (0.98) (0.98) (0.99) (0.99) (0.98) (0.99)

200 5 0.18 0.20 0.14 0.06 0.12 0.06 0.12 0.04 0.14 0.08
(0.99) (0.99) (0.99) (0.99) (0.99) (0.99) (0.99) (0.99) (0.99) (0.99)

10 0.12 0.10 0.02 0.06 0 0.06 0.04 0.02 0.02 0
(1) (1) (0.99) (1) (1) (0.99) (0.99) (0.99) (0.99) (0.99)

Performance of insertions recovery in terms of the ratio of False Negative and Reconstruction
Rate of insertion (in parentheses) averaged over 50 instances on the simulated dataset with

ε = 2× 10−3 and cov = 500× for a mixture of 2 strains, as a function of the diversity(div) and the
frequency of the low abundant strain (fmin) which contains an insertion of the length (lins)

100bp and 200bp.

3. Recover inserted sequences

Given the alignment and the position at which the insertion starts, recovery
of the insertion is readily performed by constructing two consensus sequences –
one built using the collection of reads whose l-nucleotides-long prefix maps to
qI and the other whose l-nucleotides-long suffix maps to qI . Finally, the two
consensus sequences are aligned and merged to recover the entire insertion.

To study insertions recovery, we generated data that emulate the same se-
quencing platform considered in Sections 3.1 and 3.2 of the paper. Sets of
quasispecies consisting of two strains where the length of the abundant strain
is 1300bp while the other strain (present at frequencies fmin of 5 and 10%) in-
cludes insertions of length lins = 100 and 200bp. 50 instances are generated for
each of 40 benchmark sets of sequencing reads. Strains in the quasispecies have
diversity that varies from 1% to 10%; sequencing is performed at the coverage
of 500× per strain and is affected by sequencing errors incurring with proba-
bility ε = 2 × 10−3. Performance of insertion detection is evaluated by means
of the false negative rate of the detected insertions and the reconstruction rate
of the inserted sequences. Table S3 reports the results of recovering insertions
in viral strains. As indicated by the reconstructed rate shown in parentheses,
once insertions in the strains are detected, our approach is able to accurately
reconstruct the inserted sequences.
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