
Supplementary Material for:
“A space and time-efficient index

for the compacted colored de Bruijn graph”

Fatemeh Almodaresi, Hirak Sarkar, Avi Srivastava and Rob Patro

1

1 The need to post-process TwoPaCo results

The TwoPaCo compacted de Bruijn graph has two main differences with the format that is expected
by pufferfish. First, it is not the case that k-mers and their reverse complements will appear only
once in the TwoPaCo compacted de Bruijn graph. Specifically, the inflection point of “palindromic”
sequences, where a string is followed by its own reverse complement are not necessarily treated
as junctions by the TwoPaCo algorithm. Thus, a unitig may contain both a k-mer and its reverse
complement. pufferfish does not allow this. Second, the GFA generated by TwoPaCo assumes that
edges of size at least k+1 will act as GFA segments, implying that they will overlap by k nucleotides.
However, we require that segments be of at least size k and overlap by exactly k−1 nucleotides.

2 Differences between the edge-explicit and induced-edge

de Bruijn graph

Dataset Tool num. of unitigs num. equivalence classes

Human Transciptome
TwoPaCo 528,931 NA
Pufferfish 526,935 343,407
Kallisto 542,540 360,747

Human Genome
TwoPaCo 37,069,091 NA
Pufferfish 35,776,802 1,894,231
Kallisto 38,967,126 1,894,235

Bacterial
TwoPaCo 82,644,380 NA
Pufferfish 82,991,439 29,267,832
Kallisto 84,935,209 36,234,837

Supplementary Table 1: The number of unitigs
in the compacted de Bruijn graph reported by different tools. We also provide total number of
equivalence classes for pufferfish and kallisto since these numbers are computed, and differ as well.

Dataset Tool k-mer num. of unitigs num. equivalence classes

Human Transciptome Pufferfish 29 556,637 357,667

Supplementary Table 2: The number of unitigs and number of equivalence classes
in the compacted de Bruijn graph reported by Pufferfish while changing the k-mer size to 29.

Decreasing the k-mer size from 31 to 29 for, (i.e. using k−2 instead of k), yeilds the statistics
shown in Supplementary Table 2 from the pufferfish produced gfa file. We observe that the number
of unitigs and number of equivalence classes are closer to those of the induced-edge compacted
de Bruijn graph using a value of 31. We note that since all tools considered here require k to be

1

odd, it was not possible to build the induced-edge compacted de Bruijn graph using a value of
k=32 or the edge-explicit compacted de Bruijn graph using a value of k=30.

2

0 1 2 3 4 5 6 7 8
Degree

102

103

104

105

106
Fr

eq
ue

nc
y

(lo
g

sc
al

e)
Human Transcriptome

(a)

0 1 2 3 4 5 6 7 8
Degree

102

103

104

105

106

107

108

Fr
eq

ue
nc

y
(lo

g
sc

al
e)

Human Genome

(b)

0 1 2 3 4 5 6 7 8
Degree

100

101

102

103

104

105

106

107

108

Fr
eq

ue
nc

y
(lo

g
sc

al
e)

Bacterial Genome

(c)

Supplementary Figure 1:
The edge density histogram of unipaths in the compacted de Bruijn graph of the human transcriptome

(a), the human genome (b), and the collection of bacterial genomes (c). The distribution is highly

skewed toward low degrees, suggesting that only a small fraction of possible edges are, in fact, present.

3 Empirical edge density of different colored compacted

de Bruijn graphs

In this section, we provide the results on the distribution of edge density over different datasets
in figure Supplementary Figure 1.

4 The sparse pufferfish query procedure

This section contains the sparse query algorithm (algorithm 1) as well as a detailed example of
performing a query in the sparse pufferfish index (Supplementary Figure 2).

3

GCGGCTG

TCACGGCGGCTGTCCTG
1000000001000 T000

CT00

ACT0

CACT

CCT0

CT00

T000

TCCT

…
…

IsSamp

Direction

GCGGCTG

MPHF h(x)x=

h(x) - rank(IsSamp[h(x)])

TCCT =x’

h(x’)

k’

Extension Vectorx … …Unipath Array

pos[rank(IsSamp[h(x’)])]

x - queried k-mer (not sampled)

x’- sampled k-mer (nearest)

-00001111-000

pos(x) = pos[rank(IsSamp[h(x’)])] - 4

0110000001000
IsCanon

CAGCCGC
pos[rank(IsSamp, h(x’))]

rank(IsSamp, h(x))

pos[rank(IsSamp, h(x’))] - 4

Supplementary Figure 2: An illustration of searching for a particular k-mer in the sparse pufferfish index

with sample factor (s) of 9 and extension size (e) of 4. Vector isSamp has length equal to the number

of valid k-mers, and isCanon and Direction have length equal to the total number of non-sampled

k-mers. The minimum perfect hash yields the index h(x̂) for x=CAGCCGC in isSamp, where we discover

that the k-mer’s position is not sampled. Since isCanon[h(x̂)−rank(isSamp,h(x̂))]=0 we know that the

k-mer, if present, is not in the canonical orientation in useq. Since x is in the canonical orientation, we

must reverse-complement it as x̄=GCGGCTG before adding the extension nucleotides. Then, based on the

value of Direction[h(x̂)−rank(isSamp,h(x̂))], we know that to get to the closest sampled k-mer we need

to append the extension nucleotides to the right of x̄. The extension is extracted from the QueryExt

vector. Since extensions are recorded only for non-sampled k-mers, to find the index of the current k-mer’s

extension, we need to determine the number of non-sampled k-mers preceding index h(x̂). This can easily

be computed as h(x̂)−rank(isSamp,h(x̂), which is the index into QueryExt from which we retrieve this

k-mers’s extension. We create a new k-mer, x′, by appending the new extension to x̄, and also removing

its first e=4 bases. Then, we repeat the same process for the new k-mer x′. This time, the k-mer is

sampled. Hence, we go directly to the index in useq suggested by pos[rank(isSamp,h(x̂′))]. To check if

the original k-mer we searched for exists, we need to compare the k-mer starting from e=4 bases to the

left of the current position with the non-canonical version of the original k-mer (since the sampled k-mer

x′ was arrived at by extending the original query k-mer by 4 nucleotides to the right). Generally speaking,

once we reach a sampled position, to check the original query k-mer, we need to move in useq to either

the right or the left by exactly the distance we traversed to reach this sample, but in the opposite direction.

4

Algorithm 1 Find Query Offset

procedure FindQueryOffset
x← the query k-mer
x̂q← x̂
i←h(x̂)
offset←0
while i<N and not isSamp[i] do

extIdx← i-rank (isSamp, i)
extNuc← QueryExt [extIdx]
extLen← len(extNuc)
if isCanon[extIdx] and Direction[extIdx] then

x← x̂[extLen :]+extNuc
offset←offset+e

if not isCanon[extIdx] and Direction[extIdx] then
x← ¯̂x[extLen :]+extNuc
offset←offset+e

if isCanon[extIdx] and not Direction[extIdx] then
x←extNuc+x̂[:−extLen]
offset←offset−e

if not isCanon[extIdx] and not Direction[extIdx] then
x←extNuc+¯̂x[:−extLen]
offset←offset−e

i←h(x̂)

if i≥N then return −1

pi← pos [rank (isSamp,i)] - offset
if useq[pi :pi+k]== x̂q or useq[pi :pi+k]==¯̂xq then

return pi
else

return −1

5

5 The effect of different extension sizes on the sparse

pufferfish index

We explored the empirical effect of selecting different extension sizes for the sparse pufferfish index.
Specifically, as one increases the extension size, the amount of space in the index required for
storing the extensions of non-sampled k-mers increases, while the number of sampled k-mers (and
hence the space requires to store the pos table) decreases. For moderate size references, since we
require only ∼ lg(|useq|) bits per position, and we are storing many more extensions than sampled
positions, the extension vector quickly reaches a similar size to the position table. We consider a
range of different values in Supplementary Figure 3. We note that we here only consider varying
the extension size e while keeping the sampling rate s at 2·e+1, which ensures that at most one
extra lookup is required for non-sampled positions. Further space savings could easily be obtained
(at the cost of slower lookups) by considering s>2·e+1.

6

10GB

12GB

14GB

16GB

18GB

20GB Index Sizes
Genome
Transcriptome

0 4 5 6 7 8
Extension size

0.0GB

0.1GB

0.2GB

0.3GB

0.4GB

0.5GB

Si
ze

 o
n

di
sk

(a)

60MB

100MB

140MB

Component File Sizes (Transcriptome)
canonical.bin
direction.bin
extension.bin
extensionSize.bin
sample_pos.bin

4 5 6 7 8
Extension size

0MB

10MB

20MB

30MBSi
ze

 o
n

di
sk

(b)

2GB

3GB

4GB

5GB Component File Sizes (Genome)
canonical.bin
direction.bin
extension.bin
extensionSize.bin
sample_pos.bin

4 5 6 7 8
Extension size

0.0GB

0.4GB

0.8GB

1.2GB

1.6GB

Si
ze

 o
n

di
sk

(c)

Supplementary Figure 3:
(a) Total size of indices produced by pufferfish on human genome and transcriptome sequence for dense

(extension size 0) and sparse indices with different levels of sparsity (extension sizes 4,5,6,7,8). Individual

sizes for different components of sparse indices are plotted for human transcriptome (b) and genome (c).

7

[i,j] [i’,j’] [k,l] [k’,l’]

[i,j] [i’,j’] [k,l] [k’,l’]∪ ∪ ∪

∪ ∪

Species

Genus

Family

Kingdom

Union of coverage

Read coverage intervals

[k,l] [k’,l’]∪ [i,j] [i’,j’]∪>
In case of multi-mapping

the read is assigned to

more covered candidate

Reads

Supplementary Figure 4: An example showing the process by which pufferfish maps reads to
leaf nodes, propagates coverage information up the taxonomy and assigns a read to a given node.

6 Read assignment and accuracy assessment methodol-

ogy

Supplementary Figure 4 provides an illustration of how the Kraken algorithm for taxonomic read
assignment has been modified to account for coverage by uni-MEMs under the mappings produced
by pufferfish. Supplementary Figure 5 illustrates how true and predicted taxonomic assignments
are aggregated over the entire tree to allow full-taxonomy assessment of accuracy.

8

2

24

6/1

Truth
Pufferfish taxonomic

read assignment

9/0

20/0

4 3

7/03

10/0

23/0

Reads

Species

Genus

Family

Kingdom

True assignment to leaf nodes

Correlation at each level of tree

Missed one

read

assignment

Truth (3)

Supplementary Figure 5: An
example showing how aggregated values are propagated up the taxonomy to enable full-taxonomy

assessment. On the left, true reads are generated from leaf nodes, and the abundance
of internal nodes is populated based on the number of true nodes originating from each subtree.
On the right, reads are assigned by a taxonomic assignment method (sometimes to internal nodes
— e.g. when they are ambiguous at a lower level). The assessment metrics are computed based

on the correspondence of the true and predicted abundances over all nodes of the taxonomy.

9

Unfiltered Filtered

Time(mm:ss) Memory (G) Time(mm:ss) Memory (G)
Kraken 24:57 70.5 37:08 70.5
Clark 06:21 72.4 09:06 86
pufferfish 10:58 34.7 10:58 34.7

Supplementary Table 3: The time

and memory requirements of Kraken, Clark, and pufferfish for performing taxonomic read assignment

for the ∼100M of an experimental dataset (sample P00497 from SRR1749083) in both the unfiltered

(left) and filtered (right) modes. All tools were run with 16 threads. Clark is the fastest of the tools,

followed by pufferfish and then Kraken. Clark and Kraken require a similar amount of memory (except

when Clark is run in “full” mode), approximately twice as much memory as is required by pufferfish.

7 Time and space benchmark for a large dataset

In table 3 we provide the time and memory required to map reads and then aggregate the counts
for each taxon in the taxonomy tree by pufferfish, Kraken, and Clark. The benchmarks are
provided for both cases of running the tools with and without their default filtering options. we ran
all the tools on a set of 100M reads (P00497 Deep.100.Mreads derived from the database provided
by (McIntyre et al., 2017)). The filtering options we used for each of the tools are as follows:

• For Kraken we ran kraken-filter with the option --thresh 0.2 which filters any map-
ping with fewer k-mers than 20% of the non-ambiguous k-mers for the read (this is the
setting recommended by (McIntyre et al., 2017)).

• For Clark we ran the abundance estimation command with --highconfidence which
applies the default recommended confidence filtering for assigning reads.

• For pufferfish we filtered any mapping with less than 44 nucleotides coverage. The motivation
for this cutoff is that a coverage of 44 nucleotides corresponds to the minimum number of
nucleotides in a 100bp read that can be covered using only 20% of the k-mers— this default
value, therefore, was inspired by the filtering option we use for Kraken.

Full details of the experimental protocols used to produce these results and evaluate the different
methods can be found in the repository at https://github.com/COMBINE-lab/pufferfish_

experiments.

10

8 Level-specific evaluation of taxonomic read assignment

for tools Kraken, Clark, and Pufferfish

In Supplementary Figure 6 we provide a breakdown of the performance of the different taxonomic
read assignment methods under a number of different, specific taxonomic ranks, as measured
using the Spearman correlation, the mean absolute relative difference (MARD) and the F1 score.

11

species genus family order class phylum
level

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
F1

puff
kraken
clark

(a)

species genus family order class phylum
level

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ea

rm
an

puff
kraken
clark

(b)

species genus family order class phylum
level

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ar

d

puff
kraken
clark

(c)

species genus family order class phylum
level

0.2

0.4

0.6

0.8

1.0

F1

puff
kraken
clark

(d)

species genus family order class phylum
level

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ea

rm
an

puff
kraken
clark

(e)

species genus family order class phylum
level

0.2

0.4

0.6

0.8

M
ar

d

puff
kraken
clark

(f)

puff kraken
tools

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1

(g)

puff kraken
tools

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ea

rm
an

(h)

puff kraken
tools

0.5

0.6

0.7

0.8

0.9

M
ar

d

(i)

puff kraken
tools

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1

(j)

puff kraken
tools

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ea

rm
an

(k)

puff kraken
tools

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ar

d

(l)

Supplementary Figure 6: The F1 score (a), Spearman correlation

(b) and MARD (c) at different, specific taxonomic ranks for the three taxonomic read classifiers when

using their unfiltered setting. The F1 score (d), Spearman correlation (e) and MARD (f) at different,

specific taxonomic ranks for the three taxonomic read classifiers when using their default filtering

mechanisms (i.e., 20% for Kraken, 44 nucleotides for pufferfish and “high-confidence” assignments

for Clark). The third and fourth rows show the accuracy metrics for pufferfish and Kraken for nodes

in the tree that are not considered at the labeled ranks covered in the first two rows (with and without

default filtering, respectively). Specifically, these are nodes in the tree that nonetheless give rise to reads

(but are labeled either as “no-rank” or with some other taxonomic rank not considered in the first two

rows). Clark is not included in this comparison since it is not able to make assignments to such nodes.

12

9 Time and space benchmarks for running TwoPaCo in

single-threaded mode

The results reported as benchmarks for TwoPaCo in Table 1 in the main paper are generated
by running the construction step with multiple threads (specifically 16 threads). Here we report
the time and space requirements for running TwoPaCo using only a single thread.

Memory (MB) Time (h:m:s)
Human

Transcriptome
Human

Genome
Bacterial
Genomes

Human
Transcriptome

Human
Genome

Bacterial
Genomes

4,251 8,430 16,817 0:08:49 01:29:26 14:15:54

Supplementary Table 4: This table shows time and memory requirements
for running TwoPaCo with a single thread to construct a compacted de Bruijn graph.

13

References

McIntyre, A. B. R., Ounit, R., Afshinnekoo, E., Prill, R. J., Hénaff, E., Alexander, N., Minot, S. S., Danko, D., Foox, J., Ahsanuddin, S.,

Tighe, S., Hasan, N. A., Subramanian, P., Moffat, K., Levy, S., Lonardi, S., Greenfield, N., Colwell, R. R., Rosen, G. L., and Mason, C. E.

(2017). Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. Genome Biology, 18(1).

14

