
SUPPLEMENTARY MATERIALS

Contents

1 Datasets and pre-processing 2
1.1 Dataset Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Dataset Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Computational Experiment Details . . . . . . . . . . . . . . . . . . . . . . . 3

2 Additional Algorithmic Details 4
2.1 State estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Sparse NoLips Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Identifying and ranking cluster specific genes . . . . . . . . . . . . . . . . . . 5
2.4 Heatmap of cluster specific gene expression . . . . . . . . . . . . . . . . . . . 6

3 Synthetic data generation for lineage inference 7
3.1 Generating simulation data along a linear trajectory . . . . . . . . . . . . . . 7
3.2 Generating simulation data along a branched trajectory . . . . . . . . . . . . 7

4 Additional results 8
4.1 Clustering NMI results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Comparison of semi-supervision on 10x pooled data . . . . . . . . . . . . . . 9
4.3 Comparison of lineage inference on synthetic lineages . . . . . . . . . . . . . 10
4.4 Unsupervised UNCURL lineage for Hanchate et. al. . . . . . . . . . . . . . . 12
4.5 Timing comparison of various clustering methods . . . . . . . . . . . . . . . 13
4.6 Parallelizability of UNCURL . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.7 Robustness to choice of K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.8 Cluster specific gene heatmap after Magic pre-processing for 20k subset 10x

1.3 million dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.9 Cluster specific gene plots for 10x 1.3 million dataset . . . . . . . . . . . . . 16
4.10 Top cluster specific genes for 10x 1.3 million dataset . . . . . . . . . . . . . . 17

1



1 Datasets and pre-processing

1.1 Dataset Descriptions

Dataset Distribution Cells K Description

10x pooled full Poisson 73233 8 This dataset consists of 8 FACS sorted cell
types from Zheng et al. (2017): CD19+
b cells, CD14+ monocytes, CD34+,
CD56+ NK, CD4+/CD45RO+ mem-
ory t, CD8+/CD45RA+ naive cytotoxic,
CD4+/CD45RA+/CD25- naive t, and
CD4+/CD25 regulatory t

10x PBMC Poisson 68579 10 68k PBMC dataset from Zheng et al.
(2017), ground truth labels inferred by
Spearman correlation with mean expres-
sion values of cell-sorted data

Zeisel Poisson 3005 9 Zeisel et al. (2015)

Zeisel sub Poisson 3005 9 Zeisel et al. (2015), with UMI counts down-
sampled by 99%

10x 1.3M Poisson 1306127 10* 1.3 million cell dataset from 10x Genomics

Tasic Poisson 1629 49 Tasic et al. (2016) - cells from adult mouse
visual cortex

mESC LogNorm 182 3 Buettner et al. (2015), used as tests dataset
in Wang et al. (2017)

Kolod LogNorm 704 3 Kolodziejczyk et al. (2015), used as test
dataset in Wang et al. (2017)

Pollen LogNorm 249 11 Pollen et al. (2014), used as test dataset in
Wang et al. (2017)

Usoskin Poisson 622 4 Usoskin et al. (2015), used as test dataset
in Wang et al. (2017)

Table 1: Dataset descriptions. Note: the 10x 1.3M dataset does not have a provided K.
We chose K=10 as a balance between runtime performance and cluster resolution. All
the 10x datasets were downloaded from https://support.10xgenomics.com/single-cell-gene-
expression/datasets.

2



1.2 Dataset Pre-processing

All methods were run on the same subset of genes, selected by first binning the genes into
five bins by mean expression value, and then taking the top 20% of genes in each bin by
variance. For most datasets, the NMI did not change substantially for any of the methods
when larger sets of genes were used.

1.3 Computational Experiment Details

tSNE used the implementation in scikit-learn 0.19. tSNE and ZIFA used 2 output dimen-
sions. tSNE was run after first taking the truncated SVD with 50 dimensions on the log-
transformed and column-normalized data, using the scikit-learn randomized TSVD. SIMLR,
Magic, and UNCURL were all run using default settings. Large-scale SIMLR (Python imple-
mentation) was used for all datasets with more than 1000 cells, with 500 PCA components,
on log-transformed data. UNCURL was run using 8 threads for all datasets with less than
1000 cells and 32 threads for all other datasets.

All computational experiments were done on a cluster with 64 dual-core AMD Opteron
6380 processors and 512GB of memory.

3



2 Additional Algorithmic Details

2.1 State estimation

Algorithm 1 State estimation with the Probabilistic Convex Mixture Model

function Estimate-State(X, k,maxiters, ε)
W ← Init-W(X, k)
M ← Init-M(X,W, k)
for iter ← 1...maxiters do

Update W to minimize − logP (X |M,W ), subject to W nonnegative
Update M to minimize − logP (X |M,W ) , subject to M nonnegative
if M and W changed less than ε this iteration then

return M,W normalized
end if

end for
return M,W normalized

end function

By default, Init-W(X, k) simply performs a k-means clustering on D reduced with truncated
SVD, and assigns 0.75 to the highest cluster for each cell and 0.25 divided among the re-
maining clusters. Init-M(X,W, k) sets each column of M to be the mean of all cells assigned
to that cluster.

W and M can also be initialized manually, or with the output of qualNorm or a different
clustering/dimensionality reduction algorithm.

4



2.2 Sparse NoLips Algorithm

Algorithm 2 One round of NoLips optimization for W

function NoLips-Estimate-W(X,M,W, k, ε)
for c← 1...numcells do

λ← 1/(2
∑

j X[j, c])

ci← [0]k

for g ← 1...numgenes do
mw ← X[g, c]/(M [g, :] ∗W [:, c])
for j ← 1...k do

ci[j]← ci[j] +mwM [g, j]
end for

end for
for j ← 1...k do

W ← max(0,W [j, c]/(1 + λW [j, c](
∑

lM [l, j]− ci[j])))
end for

end for
return W

end function

The optimization step for M proceeds identically, with XT , W T , and MT as the parameters
to the above algorithm.

2.3 Identifying and ranking cluster specific genes

In Figure 6 of the main text, we utilized the ranked list of cluster specific genes. While a
commonly used approach used for cluster specific gene identification is ’one-vs-all’ differential
gene expression analysis, this method suffers from a few defects making it unsuitable for
identification of over-expressed cell type specific genes from multiple clusters. The main
problem with the one-vs-all approach is that it treats all other clusters equally, when focusing
on one cluster. This can lead to overlap among significant gene sets between different clusters.
Moreover, differential gene expression analysis is also sampling model dependent hence would
not work well for our pre-processed data. Hence, we devise the following test statistic to
compare how over-expressed a gene is on average in one cluster compared to all other clusters:

CScore[G,C] =
E[Xj,i∈SC

] + ε

maxk′∈[K],k′ 6=C E[Xj,i∈Sk′
] + ε

Here G is the gene, C is the cluster of interest, Sk is a set of all cells belonging to cluster k
and ε is a user defined small number (ε = 10−3 was used in this paper). The test statistic
measures the ratio of average expression between the cluster of interest and the highest among
all other clusters. Hence, if CScore ≥ 1, it represents a gene that has a higher expression
in the cluster of interest than all other clusters. Since the statistic basically measures fold
change, it can be used to rank the cluster specific genes.

5



2.4 Heatmap of cluster specific gene expression

Clusters are identified by performing arg −max on the W matrix estimated by UNCURL.
The top 10 genes of each cluster are identified by sorting on the basic of the CScore. We
then group the genes and cells by cluster. Finally, within each cluster (say cluster i), the
cells are sorted based on the values of the ith column of W . Each gene’s expression is then
normalized by it’s maximum value. A heatmap is then plotted on this new matrix.

6



3 Synthetic data generation for lineage inference

3.1 Generating simulation data along a linear trajectory

To generate sampled data along a linear trajectory, we first select the extreme means M1

and M2. We then generate the true state matrix T such that the ith column is equal to:

Ti = rM1 + (1− r)M2

Where r ∈ [0, 1] is a variable that controls the mixing between the two means. The r’s are
chosen sequentially to obtain a complete lineage between the two simulated cell types. The
observed data matrix (D) is then generated by the following way:

Di,j = r,where r ∼ Poiss(Ti,j)

The normalization of the read count (to yield a standard read depth for each cell) is then
performed using the uniform sampling method described in (Heimberg et al., 2016).

3.2 Generating simulation data along a branched trajectory

To generate sampled data along a branched trajectory, we first select the three extreme
means M1, M2 and M3. The centroid Mc is then found as follows:

Mc =
M1 +M2 +M3

3

Having generated this, we then proceed to generate linear trajectories between the pairs
(M1,Mc), (M2,Mc) and (M3,Mc). There are then combined into a true state matrix T . We
then generate the observed data matrix in the same way as the linear case.

7



4 Additional results

4.1 Clustering NMI results

Dataset
tSNE +
kmeans

SIMLR +
kmeans

ZIFA +
kmeans

Magic +
tSNE +
kmeans

UNCURL+
argmax

UNCURL+
tSNE +
kmeans

10x pooled full 0.65 0.59 N/A 0.54 0.83 0.56
10x PBMC 0.42 0.42 N/A 0.31 0.57 0.38
Zeisel 0.72 0.77 0.42 0.53 0.73 0.67
Zeisel sub 0.55 0.58 0.43 0.37 0.64 0.61
Tasic 0.78 0.71 0.48 0.64 0.82 0.79
mESC 0.38 0.81 0.41 0.3 0.51 0.54
Kolod 0.99 0.99 0.55 1.0 0.95 1.0
Pollen 0.95 0.95 0.81 0.88 0.95 0.95
Usoskin 0.79 0.74 0.58 0.79 0.87 0.98

Dataset kmeans
PCA +
kmeans

Magic +
kmeans

Magic +
PCA +
kmeans

UNCURL+
kmeans

UNCURL+
PCA +
kmeans

10x pooled full 0.34 0.59 0.71 0.71 0.85 0.7
10x PBMC 0.4 0.25 0.07 0.07 0.57 0.5
Zeisel 0.59 0.44 0.49 0.48 0.74 0.55
Zeisel sub 0.43 0.43 0.42 0.37 0.68 0.5
Tasic 0.72 0.6 0.64 0.64 0.81 0.73
mESC 0.4 0.32 0.29 0.3 0.62 0.56
Kolod 0.92 0.65 1.0 1.0 0.97 0.97
Pollen 0.95 0.74 0.91 0.9 0.95 0.87
Usoskin 0.44 0.28 0.89 0.89 0.87 0.8

Table 2: NMI results for various preprocessing/clustering methods on different datasets. In
most datasets, a method using UNCURL was either the best method, or tied as the best
method.

8



4.2 Comparison of semi-supervision on 10x pooled data

Figure 1: Effect on tSNE based visualization for 10x pooled dataset using different initial-
ization strategies. A) tSNE without pre-processing. B) Unsupervised UNCURL + tSNE.
C) QualNorm semi-supervised UNCURL + tSNE.

9



4.3 Comparison of lineage inference on synthetic lineages

Figure 2: Comparison of lineage estimation on a synthetic linear lineage containing 100
cells. Comparison of different algorithms and different three different pre-processing methods
namely A) Unprocessed, B) Magic pre-processed, C) UNCURL pre-processed. Cells are
colored by true progress along the lineage.

Figure 3: Rank correlation (with true pseudotime) of the pseudotime estimated by different
lineage estimation algorithms using different pre-processing methods.

10



Figure 4: Estimated lineage along a branched trajectory (containing 300 cells, 100 per
branch) using Monocle2 after different pre-processing methods. A) Unprocessed, B) UN-
CURL pre-processed, C) Magic pre-processed. D) Comparison of branch purity measured
using identified branches and actual branches.

11



4.4 Unsupervised UNCURL lineage for Hanchate et. al.

Figure 5: Unsupervised lineage estimation after UNCURL pre-processing using different
methods on the dataset from Hanchate et al. (2015)

12



4.5 Timing comparison of various clustering methods

Dataset Distribution Cells K
tSNE +
kmeans

SIMLR
ZIFA +
kmeans

Magic +
tSNE +
kmeans

UNCURL

10x pooled Poisson 73233 8 3615 2504 N/A 23188 591
10x PBMC Poisson 68579 10 4051 2733 N/A 9670 490
Zeisel Poisson 3005 9 120 184 3040 93 62
Zeisel sub Poisson 3005 9 134 149 12778 96 36.5
10x 1.3M Poisson 1.3 mil 10 87981.53 109887.2 N/A N/A 36869
Tasic Poisson 1629 49 24 27 2734 56 144
mESC LogNorm 182 3 2 6.73 287 3 0.5
Kolod LogNorm 704 3 9 84.75 2401 13 2
Pollen LogNorm 249 11 2.7 10.5 964 6 2.2
Usoskin Poisson 622 4 8.3 49.29 4603 21 19

Table 3: Comparison of run times of various algorithms on different single cell RNA-Seq
datasets.

13



4.6 Parallelizability of UNCURL

Figure 6: Comparison of run times for UNCURL with different number of computing threads
for the 10x-pooled dataset. It is seen that the run times show an almost linear decrease till
about 24 cores after which the performance saturates.

4.7 Robustness to choice of K

14



Figure 7: Robustness of NMI to choice of K. For a number of different datasets, we compared
the NMI of arg-max(W) for different choices of K, where K* is the ”correct” number of
clusters. We see that while the NMI of UNCURL peaks around the true value of K, for
most datasets, increasing it further leads to only a slight loss in precision. This shows that
UNCURL is quite robust to the choice of K.

4.8 Cluster specific gene heatmap after Magic pre-processing for
20k subset 10x 1.3 million dataset

Figure 8: Clustered heatmaps showing the top cluster specific genes identified by Magic
before and after pre-processing. Cells sorted by decreasing W for each cluster.

15



4.9 Cluster specific gene plots for 10x 1.3 million dataset

Figure 9: Average expression (with and without pre-processing) of the top cluster specific
genes overlaid on the UNCURL processed tSNE plot.

16



4.10 Top cluster specific genes for 10x 1.3 million dataset

Cluster
number

Genes

1
Dnah3, RP23-32A8.6,
1700013G24Rik, Gm11973, 1700101O22Rik, Gm20069, Gm11817, 1700042O10Rik,
Tex21, Gm28856

2
Kcnk18, Paqr6, Rsph4a,
2210011K15Rik, Opn5, Gm42956, Tnn, Map3k19, Tctex1d1, Wnt3a

3
Krt18, Synpo2l, Gm43419,
Gm13583, Prdm13, Hoxc6, Odf3l1, Ttll10, Pebp4, Gm26516

4
Myh2, Gm14637, Slc6a5, Dsg1a,
Hormad1, Gys2, RP23-274K7.1, Rxfp3, Fam163a, Tbata

5
Gm5483, BC100530, Stfa2l1,
S100a9, Ngp, Wfdc21, Retnlg, Gm5416, Epb42, Stfa2

6
Cntnap3, Isl1, Gm43998, Cacng3,
Htr3a, Nxph2, Gm16315, Erbb4, Cntnap5c, Neb

7
Glycam1, Clca3a2, Ntn5,
RP23-344G21.5, Trhr2, Gm8239, Cnn1, Slc9c1, Gm15294, Gm31728

8
Ccl7, Bcl3, Spint1, Il21r, Il1a,
Ms4a7, Ptgs2, Tecrl, Srpx2, Gm5127

9
Crhr2, 1700080N15Rik, C8b,
4921521D15Rik, Baat, Arhgap33os, Macrod2os1, Smco1, Ly6g6f, Zdhhc23

10
Agbl1, Gm6116, Ttc39d, Dmrtc2,
Gm20711, Btla, Cxcl9, 4933427J07Rik, Tbx5, Fbxw19

Table 4: Most highly overexpressed genes for each cluster identified in the 10x 1.M dataset

17



References

Buettner, F. et al (2015). Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden

subpopulations of cells. Nature Biotechnology, 33(2), 155–160.

Hanchate, N.K. et al (2015). Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis. Science, page

aad2456.

Heimberg, G. et al (2016). Low dimensionality in gene expression data enables the accurate extraction of transcriptional programs from

shallow sequencing. Cell systems, 2(4), 239–250.

Kolodziejczyk, A.A. et al (2015). Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular Transcriptional Variation. Cell

Stem Cell, 17(4), 471–485.

Pollen, A.A. et al (2014). Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways

in developing cerebral cortex. Nature Biotechnology, 32(10), 1053–1058.

Tasic, B. et al (2016). Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nature Neuroscience, 19(2), nn.4216.

Usoskin, D. et al (2015). Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nature Neuroscience,

18(1), 145–153.

Wang, B. et al (2017). Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nature Methods,

14(4), 414–416.

Zeisel, A. et al (2015). Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 347(6226), 1138–1142.

Zheng, G.X.Y. et al (2017). Massively parallel digital transcriptional profiling of single cells. Nature Communications, 8, 14049.

18


