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1 User guide
The implementation scheme is depicted in Supp Fig S1. In most cases, users are not expected to install
and host the application unless there is a need to customize the data, for example, adding genes not
available in the current version or adopting the framework for alternative data sets. For such needs,
installation instruction and example script are provided at https://github.com/anexvis/setup.

The web application is accessible at https://anexvis.chpc.utah.edu/
A tutorial video is provided online at https://youtu.be/IBQiUUsXJls. An equivalent description is

given along with the screen-shots in Supp Fig S2 and Supp Fig S3.

Supp Fig. S1: Architecture of the visualization framework
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Supp Fig. S2: Gene-based expression profile. To visualize gene-based expression profiles , a user would start at the panel A by
specifying the genes of interest, as well as the organ system(s) or tissue type(s) to include. Panel B will visualize the expression profile
as parallel coordinate plot, as explained in the text. Panel C provides the detailed meta data of each samples included in the analysis.
Panel D summarizes the fraction of highlighted samples in various perspectives.

Supp Fig. S3: Correlation-based expression profile. To visualize correlation-based expression profiles (Supp Fig S3), a user would
start at panel A to specify the genes of interest, as well as the organ system(s) or tissue type(s) to be included. Panel B will display
the correlation matrix among the selected genes, each square color-coding the correlation coefficient. Clicking on each square will give
the corresponding scatter diagram in panel C. A description of the gene pair in query is shown in panel D for convenient reference of
gene names and functions.
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Supp Fig. S4: Technical limits of RNA-seq experiments become more transparent. Many genes are found to segregate the
samples into populations of null expression (in blue) and of low expression (in grey). Using anexVis, one can quickly examine the
composition of the null-expression population. In the case of HS3ST6 highlighted here, the null-expression population has equivalent
representation in all histological sites, as well as genders and races, implying that HS3ST6 transcript abundance in some of the samples
was too low to be detected.

Supp Fig. S5: Coloring of scatter plot by sample attributes reveals meaningful structures. An example pairwise co-expression
pattern in brain samples, where correlation coefficient is low (-0.015), yet the pattern is intriguing. Coloring the data points by ontology
term reveals that the cerebellum is distinct from the rest of brain regions.
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2 Comparison with other RNA-seq visualization tools
There has been an active development of web-based tools for visualization of data generated at various
stages in an RNA-seq workflow. Specifically, QuickRNASeq (Zhao et al., 2016) simplifies the workflow by
pipelining the available processing and analysis tools into user-friendly graphical interface. Its plethora
of plots to explore QC metrics of RNA-seq samples also enable rigorous QC after read mapping. ASAP
(Gardeux et al., 2017) has a similar intention yet focuses on the later steps such as differential expression
analysis, dimensionality reduction, etc. DEIVA (Harshbarger et al., 2017) leverages traditional differ-
ential expression (DE) analysis with graphical user interface, interactive MA plot and Volcano plot.
Shinyheatmap (Khomtchouk et al., 2017) and NG-CHM (Broom et al., 2017) improve the heatmap rep-
resentation of gene expression data, in terms of performance and customization, respectively. anexVis,
introduced by this manuscript, furthers gene expression analysis by integrating the different views on
multiple data types, including gene expression, sample metadata, and phenotypes. The integrated views
supported by anexVis are particularly helpful in exploring the multi-gene expression and co-expression
patterns across different tissue types. Together, these tools contribute to a variety of options for visualizing
transcriptomic data.

Depending on the biological questions and correspondingly, the required analytic tasks, visualization
solutions may vary significantly. Thus, the choice of an appropriate tool from a user viewpoint should also
be based primarily on the questions one wants to address. The plotting features such as zooming and pan-
ning, generating publication images, customizing plot parameters, etc., although important, have become
increasingly universal and thus, secondary in deciding which tool is appropriate. In such perspective, we
provide a summary of these tools in Table S1.

QC metrics
on samples

Expression
levels

Differential
expression

Expression
patterns

Co-
expression
patterns

Expression
patterns vs
Phenotypes

Performance
of co-
expression
measure

QuickRNASeq ++
DEIVA + ++
Shinyheatmap + + + +
ASAP + + + +
NG-CHM + + + + +
anexVis ++ + ++ ++ ++ ++

Table S1: Summary of recent RNA-seq visualization tools, by the level of support for each analytic task. The higher
level of support indicates a more appropriate tool for the corresponding purpose.

[blank] Not supported
+ Data can be read but difficult to compare, constrast, or relate
++ Data are presented to highlight an insight

3 Example use cases
3.1 Example 1: Tissue signatures by proteoglycan core proteins
Proteoglycan structural diversity is attributed to both the core proteins and the attached glycosaminogly-
can chains. More than 40 core proteins have thus far been identified (Iozzo and Schaefer, 2015) and the
tissue distribution of many of these proteins have been established. The tissue-specific expression patterns
can be readily detected with our interactive visualization of the expression data. BCAN (brevican) and
NCAN (neurocan) are known to be brain-specific proteoglycans (Rauch et al., 1991; Yamada et al., 1994;
Frischknecht and Seidenbecher, 2012). By plotting samples from the brain, liver, heart and lung, one can
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Supp Fig. S6: Comparison of transcriptional profiles of proteoglycan core proteins in various tissue pairs. (A) Brain vs
Liver. (B) Brain vs Heart (C) Brain vs Lung. In all plots, brain samples are highlighted in blue. Some brain-specific proteoglycans
can be readily recognized such as neurocan NCAN and brevican BCAN. Many others also form tissue-characteristic cluster, such as
fibromodulin (FMOD), syndecan-1 (SDC1), glypican-3 (GPC3).

Supp Fig. S7: The expression profiles of proteoglycan core proteins in human revealed similar tissue distribution as in mouse tissues
investigated by Nairn et al. (2008) . For example, SDC1 (syndecan-1) is highly expressed in liver, while BGN (biglycan) is similary
expressed in all four tissues.

visually recognize the distinct clusters on these two axes and many others. Highlighting the samples with
high expression of NCAN confirms that they are exclusively of brain origin (Fig S6). Several other axes
also provide interesting insights. For example, FMOD (fibromodulin) expression is distinctively high in
lung and heart, SDC1 (syndecan-1) is highly expressed in lung and liver, GPC3 (glypican-3) is highly
expressed in lung and some samples of the right atrial appendage of heart. Together, these proteoglycan
genes compose expression profiles that uniquely represent each tissue type.

Compared with transcriptional profiles of mouse tissues (Nairn et al., 2008), many similar features are
also observed in human; for example, the distinctively high level of SDC1 (syndecan-1) in liver and the
universal expression of BGN (biglycan) in all four tissues (Supp Fig S7).

3.2 Example 2: Tissue signatures by heparan sulfate biosynthetic genes
Heparan sulfate (HS) is composed of repeating disaccharide units of glucosamine and hexuronic acid. A
variety of modifications on HS chains, including C-5-epimerization and 2-O-sulfation of the hexuronic
acid, N -deacetylation and N -sulfation, 6-O-sulfation and 3-O-sulfation of glucosamine, enable HS to be
an information-rich molecule that could render binding specificity to a wide range of protein ligands
which in turn regulate cellular signaling events. Analysis of tissue-specific HS structures has been of great
interest for over two decades. Early biochemical studies on various biological systems have confirmed the
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Supp Fig. S8: A. Heparan sulfate biosynthetic pathway and the corresponding genes. B. Expression profiles of HS biosynthetic enzymes
in brain (blue) and lung (grey). C. The pairwise correlation among HS biosynthetic genes in brain and lung reveals distinct co-expression
patterns. Clusters of highly co-expressed genes are highlighted in green boxes.

presence of organ-specific HS structural profiles in animals including mouse (Ledin et al., 2004), rat (Shi
and Zaia, 2009), and bovine (Shao et al., 2013). However, it remains unknown how these signatures are
generated. The process of generating HS fine structures involves inscrutable coordination among a series
of biosynthetic enzymes numbering well over 25. A schematic description of this pathway is provided in
Fig S8A. Each of these biochemical reactions is catalyzed by specific enzymes, most of which exists in
multiple isoforms, i.e. encoded by multiple genes. It is reasonably hypothesized that the combinatorial
expression of these enzyme-encoding genes dictates, at least partly, the tissue-specific HS structures.

Fig S8-B and -C reveal the distinct expression profiles and co-expression patterns, respectively, of
HS biosynthetic genes in brain and lung. The expression profiles revealed that most of the linkage
enzymes, and some modification enzymes (NDST1, NDST2, HS2ST1, HS6ST1) are similarly expressed,
while most modification enzymes (NDST3, NDST4, HS6ST2, HS6ST3 and the HS3STs) vary widely,
across the two organs and even within an organ. These observations of the human tissues align with
previous observations of mouse tissues (Nairn et al., 2008). In addition, the co-expression patterns of
these genes revealed interesting patterns. Many of them are highly co-expressed in brains, forming tightly
correlated clusters, such as those of (B3GALT6, B4GALT7, EXTL2, EXTL3, EXT1, HS6ST1) or of
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(GLCE, HS3ST1, NDST3, XYLT2, NDST2, EXT2, B3GAT3). The few genes whose expression does not
couple tightly with any of the other genes are the 3-O-sulfotransferases, HS3ST3A1, HS3ST5, HS3ST6,
and an N -deacetylase/N -sulfotransferase, NDST4. In contrast, most of these genes are not coupled in
lung. Here the co-expression of 3-O-sulfotransferase with other genes, if present, is usually weak. This
comparison suggests that the HS structures in brain are bestowed with more intricate, and likely more
strictly regulated modifications.

3.3 Example 3: Understanding congenital disorders of glycosylation

Supp Fig. S9: IDS-related reactions. Iduronate sulfatase, IDS, catalyzes the removal of 2-O-sulfate groups on the iduronic acid of
either HS or DS. Thus the substrates of IDS come from two distinct pathways: (1) HS biosynthesis, and (2) CS/DS biosynthesis. HS
substrate of IDS is generated via the conversion of glucuronic acid to iduronic acid (epimerization) by GLCE, and then 2-O-sulfation by
HS2ST1. Similarly, DS substrate of IDS is generated via epimerization by DSE/DSEL and then 2-O-sulfation by UST. Unlike HS2ST1,
which highly prefers iduronic acid over glucuronic acid as a substrate, UST can modify either glucuronic acid or iduronic acid. Thus
the activity of HS2ST1 is enough to indicate the presence of HS substrate, while the activity of both DSE/DSEL and UST are needed
to indicate the presence of DS substrate.

A large number of congenital glycosylation diseases that have been documented until now are the
result of deficiency in one of the glycan metabolic activities (Freeze and Schachter, 2009). In most cases,
such defect introduces an imbalance between biosynthesis and metabolism, resulting in abnormalities in
multiple tissues. When the rescue of metabolic activity is difficult, the inhibition of biosynthesis could be
helpful. Thus the knowledge of relative expression of the biosynthetic and metabolic genes is essential for
devising therapeutic strategies.

One of such diseases is Hunter syndrome, which is caused by deficiency in the iduronyl sulfatase
enzyme. This enzyme, encoded by the gene IDS, catalyzes the removal of the sulfate group on the
iduronic acid unit of HS and dermatan sulfate (DS) (Fig S9). Hence, IDS deficiency prevents these GAGs
from being degraded properly, resulting in the accumulation of HS and DS chains and disrupting the fine
balance between synthesis and turnover. Assuming that abnormal phenotypes are caused by the deviation
from this balance, we can then predict the affected tissues, based on the normal relation between IDS and
the related biosynthetic genes. The generation of 2-O-sulfated iduronic acid on DS involves the activity
of DSE/DSEL and UST, while that on HS involves HS2ST1 (Fig S9).

Additionally, assuming that transcriptional regulation accounts for the large part of GAG structures,
we would expect that a tissue synthesizing 2-O-sulfated DS to exhibit co-expression of DSE/DSEL and
UST. Hypothetically if IDS is found to correlate with both of these genes, the balance of DS synthesis
and turnover in such places is tightly regulated and a disruption in either direction would be detrimental.
Similarly, if IDS is highly correlated with HS2ST1, the balance of HS synthesis and turnover is tightly
regulated. To predict whether IDS deficiency would affect a given tissue, we qualitatively examined the
co-expression pattern of IDS with each of these genes (Supp Fig S10).

It should be noticed that 2-O-sulfation by HS2ST1 almost always requires epimerization, i.e. conver-
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Supp Fig. S10: Pairwise correlation in transcriptional abundance of IDS and 2-O-sulfated iduronate generating enzymes: DSE/DSEL,
UST, HS2ST1.

sion of glucuronic acid to iduronic acid in the HS chain, while the 2-O-sulfation by UST can act on either
glucuronic acid or iduronic acid (Silbert and Sugumaran, 2002; Mikami and Kitagawa, 2013). Corre-
spondingly, the coexpression of IDS with HS2ST1 is enough to indicate the coupling between biosynthesis
and metabolism of HS-2-O-sulfated iduronic acid, while the conjunctive activity of UST and DSE/DSEL
is necessary to indicate the presence of DS-2-O-sulfated iduronic acid. A boolean encoding is used to
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Table S2: Co-expression of IDS and related biosynthetic genes. The pairwise co-expression is binary-encoded with 0 for no
co-expression, and 1 for detectable co-expression.

Co-expression with IDS
DSE DSEL UST HS2ST1 Predicted effect Relevant phenotype

Boolean variable A B C D (A ∧ C) ∨ (B ∧ C) ∨D

Lung 1 0 0 0 0
Liver 1 0 0 0 0 enlargement
Brain 0 0 0 1 1 intellectual dis-

ability, (jerky
movements)

Heart 1 1 1 1 1 leaky heart valves
Thyroid 0 0 0 0 0
Muscle 1 1 1 1 1 jerky movements
Spleen 1 0 1 0 1 enlargement

denote this relation: 1 if there is strong co-expression, 0 otherwise. Using our tool, the pairwise coupling
of the four biosynthetic genes with IDS can be filled as shown in Table S2. This table suggests that brain,
heart, muscle and spleen are affected, while lung, liver and thyroid are not. These sites of effects closely
match with documented phenotypes in Hunter syndrome: intellectual disability, leaky heart valves, en-
larged spleen, and jerky movements (Haldeman-Englert, 2015). The fact that liver was not predicted to
be impaired in IDS deficiency may imply that liver enlargement observed in this syndrome, as in many
other disorders, could be a secondary effect. In general, our visual analysis on RNA expression data, with
the aid of this framework, was able to pinpoint the affected organs in IDS deficiency. Such analysis illus-
trates how visualization can provide preliminary ideas to develop quantitative models of human disease
conditions.
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