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1 SUPPLEMENTARY INFORMATION

In the main article, we provide the statement of the genevakse optimal
control problem (IOCP-2), and then we describe a solutioatesy in-
volving the solution of two sub-problems, i.e. (i) a simak@us input and
parameter estimation problem, and (ii) a multiobjectivéirop! control
problem. In Figur€31 we present a schematic representattbe overall
workflow of our strategy (plots correspond to one of the casdiss; more
details are given below).

In this supplementary information document we give, forshke of
completeness, further details regarding the mathematieé¢ments of
these subproblems. We also provide further informatiorangdigg the
numerical strategy to solve these nonlinear optimal corgroblems.
Finally, we also give additional details and results regaydhe four case
studies considered.

1.1 Dynamic models of biological systems

Here we consider dynamic models of biological systems gibgn
sets of deterministic nonlinear ordinary differential ations (ODES),
with possible additional constraints. We use the classitale space
representation:

dx -
a :‘I’[X{t, p}7 u{t}7 P, t]7 (Sl)
x{to, P} = %o
n[x(tv p),u(t),p} =0 (S.2)
¢lx(t,p),u(t), p] <0 (s.3)
n.[x(t.,p),u(t.),p] =0 (5.4

¢ [x(tL, P), u(tL), p} <0

where W is the right-hand side of the ordinary differential equasio
(ODEs) [S.1) describing the dynamics of the stategiven initial condi-
tionsxg. Constraints can also be present in these dynamic modeslsr ei
as path constraints (3.2).(5.3) or as time-point conssr &%) [Sh). Path
constraints can be equalitigsand inequalitie which must be enforced
the whole time horizon considered. Similarly, time-poionstraints can
be equalities, and inequalitieg, only to be enforced at a specific point
of timet,.

Although the above formulation corresponds to the wideBdu®DE
formalism, it should be noted that the inverse optimal adrapproach
presented in our paper is also applicable to other dynamidefing
formalisms.

(S.5)

1.2 Statement of the general estimation problem

The problem oparameter estimation (PE) in nonlinear dynamic systems
is usually formulated as a dynamic optimization problemveBisome
data and a dynamic model, the optimal values for the modeinpeters
are computed minimizing an objective (cost) function qifging the dif-
ferences between the model’s predictions and the data. @heralized
mathematical formulation of such problems corresponds rordinear
programming problem (NLP) with differential and algebraanstraints:
Find p to minimize

Nexp Nobs Ms

IJ=3" 3" wijk (Wi (x(ti, p), P) — Jiji)’ (S.6)
k=1 j=1 i=1
Subject to:
dx -~
. :‘I’[X{ty p}7 u{t}7 P, t]7
d (S.7)

x{to,p} = %0
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Reference for synthetic problem
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Fig. S1. Diagram of the overall inverse optimal control solution strategy (the illtistra correspond to the particular case of LPN3B synthetic problem).
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y(x,p) = g(x(t,p),p) (S.8)
n[x(¢, p), u(t), p] =0 (5.9
¢[x(t p),u(t), p] <0 (S.10)

p" <p<p” (S.11)

wherel] is the cost function to be minimizeg,is the vector of decision
variables of the optimization problem (the set of paranseteibe estima-
ted), g are the experimental measurements of a subset of the (sohcal

output state variableg,p, t) are the model predictions for those outputs,

W (t) is a weighting (or scaling) matrix and are the differential state

variables. Besidesp is the set of differential and algebraic equality con-

straints [S17) describing the system dynamics (i.e. thdimear process

model), andp and¢ are the possible equality($.9) and inequalify (5.10)
path and point constraints. Finally,is subject to upper and lower bounds

acting as inequality constrainfs{Sl11).

The simultaneous input and parameter estimation problesc(dbed
in the main text as IOCP-1) is a generalization of the aboublpm where
one seeks to estimate both time-invariprend time-dependeni(¢). This
more general estimation problem is actually a particulaead nonlinear
optimal control, which we describe next.

In the usual PE problem time-dependent inputs are treatédasn
(measured) quantities, and model parameters as unknovablesr to be
estimated from experimental data. However, in many ottegahis is not
true, either due to large uncertainty in the input measungse due to lack
of such measurements. The above general estimation faioruklows
us to address those situations where one needs to calibetdyhamic
model to the time-series data and simultaneously estimateeasured
time-dependent inputs.

Extending the PE mathematical formulation, the cost fmeti for

the IOCP-1 case needs to account for the dependency of thel'miod

predictions on the inputs, so instead of EGR.XS.6) we shostd

Nexp Nops Ms

min > > wijk (Y (X6, P), Pow) — i) (S.12)
u®pty 127 51 s
Additionally we consider bounds for the inputs of the form:
ul <u@t) <uY (S.13)

Note that in IOCP-1, no inference of the underlying optitiygtirinci-
ples is considered. In other words, the problem is resttitieestimating
the unknown inputs and parameters of the model that bestiexit) the
data. To make the connection with the underlying optimalityciples,
we need to combine IOCP-1 with a multiobjective optimal colfiroblem
(OCP) in what is referred and described in the main text a1 Qdn the
next section we provide a brief description of the optimaitoal problem,
including its multi-objective formulation.

1.3 Statement of the general optimal control problem

Considering nonlinear dynamic systems, the probleroptifnal control
(OCP) consists of computing the optimal decision variaftiese-varying
inputs, or controls, and time-invariant parameters) thatnmze (or maxi-
mize) a given cost functional (or performance index), sttbje a set of
differential equations and possibly algebraic constsaiktathematically,
the OCP is usually stated as follows:

min J[x,u] (S.14)
u(t) g
Subject to:
& Fix{t, p}. uit),p1],

(S.15)

x{to,p} = %o
n[x(t, p),u(t), p] =0 (S.16)
¢[x(t, p),u(t),p] <0 (S.17)
n.[x(t, p),u(t),p] =0 (S.18)
C[x(te, p), u(t), p] <0 (S.19)
ul <u(t) <u¥ (S.20)

where the time-dependent control variablegt() (along with the final
time (¢ ¢) in the case of the free terminal time problems), are conupinte
order to minimize (or maximize) an objective (cost) funodbJ[x, u]),
subject to the system’s dynamics as well as the imposedreimst The
objective functionall[x, u] corresponds to the optimallity criteria hypoth-
esis. In the case of a multicriteria formulation, the costctional J[x, u]
is a set of objective functions corresponding to fNedifferent criteria
considered:

Jl [x7 u7 p]

J2 [X, u, p]

Jx,u,p] = (S.21)

JN [X, u, p}
where, in its general form, each objective functignin this set { €
[1, NJ]) consists of a Mayer and a Lagrange term:

. ty
Jibx,u, p] = @iy [x(ts, p), ] + / L [x(t,p), u(t), p] (S.:22)

The system’s dynamics are described by Eqns.{S.15), eesahof ordi-
nary differential equations and the corresponding initeles &{to}),
forming the so-called initial value problem (IVP). Equglitp) and ine-
quality (¢) path constraints are represented in the sets of equafohs)(
and [S1V), respectively, as constraints to be enforced t@al enzyme
capacity, critical thresholds for specific concentratjoet.). Also, the
sets of equality#j,) and inequality ¢,) time-point constraints are given
in (518) and[{S19), respectively, corresponding to cairgs valid for
a specific point of the time horizon. Finally, the upper anddobounds
(uY, u) of the control variables’ vector throughout the processgaren

in (£20).

1.4 Numerical solution of nonlinear optimal control
problems

Methods for the numerical solution of nonlinear optimal ttohprob-
lems can be classified under three categories: dynamic groging,
indirect and direct approaches. Dynamic program @6

, ) suffers from the so-calledlirse of dimensional-

ity, so the latter two are the most promising strategies forist@al
problems. Indirect approaches were historically the fiestetbped and
are based on the transformation of the original optimal rebmgroblem
into a multi-point boundary value problem using Pontry&gimecessary
conditions l(&m_dn@i;_le_edoE(blZ). Direct methaede based
on the discretization of the control, known as the sequlestiate-
ay &a_&sma_dm_aﬂ [l9_9_4b), or both the control and the states, known
as the simultaneous strate ,@). Here we have chosen
the control parameterization approach.
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1.4.1 Control vector parameterization Xy =0
The control vector parameterization (CVP) approach praseg dividing X, = kiuxi —kax;
the time horizon into a number of elements).(Each of the control | X1(0)=1;x2(0)=0;
variables { = 1... are then approximated within each interval
. g ) PP . a) CASE 1: u(t)= ku; k1ky=2
(i = 1...p) by means of some basis functions (usually, low order ky=1 ky=2
Lagrange polynomials (Vassiliadés all,[1994b)) as follows: 2F L 2F ——
- L e MRy
o L o Xp(t); k=2 L — X,(t); k=4
) J ) . - — X,(t); ky=4 r - u(t); k=1
M 2t Ky u(v); k,
u;-”(t) = Zuzjkf; D) teftio, b (5.23) L S - u(D); k=1 1[-. e (); k=05 |
k=1 - - u(t); k,=0.5 =
beingr the normalized time in each element 0 T g
) t—ts 5 10 5 10
7O — izl (S.24) Time Time
ti —ti—1

and M; the order of the Lagrange polynomid) (In this work we will
considerM; = 1 or M; = 2, i.e. step-wise or linear-wise control
approximations.

In the CVP approach, the controls are expressed as funatibas
new set of time invariant parameters corresponding to thHenpmial
coefficients ). Therefore the original infinite dimensional problem is
transformed into a set of non-linear programming problewit) dyna-
mic (the model) and algebraic constraints, in which thedlenivariables
correspond to the original unknown parameterg@ andw, which will be
part of the overall set of parameters to determine.

1.5 Structural identifiability

Here we illustrate how the Taylor approach could be used &tyaa the
structural identifiability of a given model. The approachased on the
fact that observations are unique analytic functions oftiamd so all
their derivatives with respect to time should also be uni o,
@). Itis thus possible to represent the observablesaydiresponding
Maclaurin series expansion and it is the uniqueness of épiesentation
that will guarantee the structural identifiability of thestgm. The idea is
to establish a system of non-linear algebraic equationi@mmknowns,
based on the calculation of the Taylor series coefficients, ta check
whether the system has a unique solution.

Importantly for the IOCP problem, the unknowns include tleetor
of parameters and the vector of inputs (plus their derieatiwith respect
to time as evaluated at a given time, typically= 0T).

Let's consider the simple illustrative example:

1 = 0 (S.25)
Tro = kiuxri — koxo (S.26)
Yy = x2 (s.27)

with 21(0) = 1 andz2(0) = 0. For illustrative purposes, we now use
the Taylor approach to perform the structural identifiéiinalysis of the
associated I0C problem. For the purpose of the analysis Wasgume
thatu(t) is a bounded continuously differentiable function of tirfiéle
first Taylor coefficients would read as follows:

To = 0 (S.28)
T = kiu(0); (S.29)
Ty = kiu'(0) — kikau(0); (S.30)
Ty = kiu?(0) — k1kau! (0) 4+ k1k3u(0) (S.31)
Ty = kiu3(0) — kikau?(0) + k1k3ul (0) — k1k3u(0)(S.32)
(S.33)
where u?) with ¢ = 1,2,3,... regards the first, second, third, etc.

derivative of the control with respect to time.

Fig. S2. lllustrative examples of lack of structural identifiability under sustained $&mu
tion. Figures correspond to the controls and the corresponding obgesva two different
scenarios: if,, = 0.5; k1 = 4; ko = 1 (red) andk,, = 1;k; = 2; ko = 1 (blue);
and ii) k, = 0.5; k1 = 4; ko = 2 (purple) andk,, = 1; k1 = 2; ko = 2 (green).
Figures illustrate how the inputs in each figure are different while the oltsmmsaoincide
but also that results vary in both figures. The fact that the observatesrdi change despite
the value of u has to do with the fact thai - k1 = 2 in both cases; these results mean that
k., andk, are not uniquely identifiable (only their product is). Remarkably modification
in ko result in a different system behaviour, 8@ becomes structurally identifiable.

X, = 0
XZ = k1UX1 —k2X2
x1(0)=1; x2(0)=0;

CASE 2: u(t)= ky e-k, t; kiky=2; k=1
ke=0.1

2

=
T T T T T T

5
Time

Fig. S3. lllustrative examples of lack of structural identifiability under exponentiaisia-
tion. Figures correspond to the controls and the corresponding ob&esva two different
scenarios: ik, = 0.5;k1 = 4;k: = 0.1 (red) andk,, = 1;k; = 2;k¢ = 0.1
(blue); and ii)k,, = 0.5; k1 = 4; k¢ = 0.5 (purple) andk,, = 1; k1 = 2;ky = 0.5
(green). Figures illustrate how the inputs in each figure are different wiletibervations
coincide but also that results vary in both figures. The fact that the witg@t does not
change despite the value of u has to do with the factthatk; = 2 in both cases; these
results mean that,, andk; are not uniquely identifiable (only their product is). Remar-
kably modifications irk, result in a different system behavior, Bp becomes structurally
identifiable.

Sinceks, k2, u(0), u!) (0) andu? with i = 1,2, 3, ... are unknown
in the general IOCP problem, we need to assess whether tiigngobf
the system of equatiofis_SIP9-3.33 on the unknowns is unique.

It is straightforward to see that the Jacobian of the Taytafficients
with respect to the unknowns is rank deficient, indicatirgt frarameters
andwu cannot be simultaneously uniguely estimated.

To get further information we may define specific control paegeri-
zations. For example, #i(t) = k., it can be clearly seen that omy k.,
andkg can be simultaneously estimated, but it will be impossiblgive
unique values fokq andk,. Similarly, if u(t) = kyexp(—k:t), it can
be again probed that; k., ko andk; can be uniquely identified iR T.

In Figures[SRP[33, and B4 several simple illustrative exaspif
structural non-identifiability are depicted.
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x; =0
XZ = k‘|UX1 *kzXz
x1(0)=1; x2(0)=0;
CASE 3: u(t)= ku/(1+e-Kt(t-tu)); kqky=2; kp=1
ke=1; ty=3; k=4; ty=3; ke=1; t,=8;
1 [ eeeee 1]
0 5 10 OC
Time
o Xy(t); k=2
— X,(t); k=4
== u(t); k=1
u(t); k,=0.5

Fig. S4. lllustrative examples of lack of structural identifiability under logistic stimulatio
Figures correspond to the controls and the corresponding obsesvakiieree different
scenarios each: i}, = 0.5;k1 = 4; ke 15ty 3 (red) andk,, 1;kq
2; ky = 1;t,, = 3 (blue); ii) k,, = 0.5; k1 = 4; ky = 4;t, = 3 (purple) andk,, =

1; k1 = 25kt = 4;t,, = 3 (green) and iii)k,, = 0.5;ky = 4; k¢ 15ty = 8
(orange) andk,, = 1; k1 = 2; k+ = 1; t,, = 8 (cyan). Figures illustrate how the inputs
in each figure are different while the observations coincide but alsa¢balts vary in all
three figures. The fact that the observation does not change degpitaltie of u has to do
with the fact that,, - k1 = 2 in all three cases; these results mean khaaindk4 are not
uniquely identifiable (only their product is). Remarkably modificationsrandt,, result
in different system behaviors, so both parameters become structidezityfiable.

1.6 Error analysis

1.6.1 Goodness of fit

For each case study, the performance of our method is egdlusing
the normalized root mean square error (NRMSE). This metricway to
quantify the relative deviation of the model’s predictiavith respect to the
experimental measurements or the known problem solutiontHe case
of the error with respect to the experimental measuremebtefvables),
the NRMSE is computed as:

Nexp Nobs Ms

U (

k=1 j=1i=1

Yijk (x(t,p),u(ty),P)—Jijk
max (S’ijk )—min (S’ijk)

) 2
(S.34)

Wherene.p, nops, ns stand for the numbers of experiments, the num-
ber of observables and the number of time-points resp&Gta®N ;¢ iS
the total number of data points available (all experimegitgbservables
and all time-points).

This is a typical metric used in parameter estimation (P&blems. In
the IOCP, we are not only estimating the unknown parametéfsérying
to fit the model’s prediction to the observables, but alsomstructing the
model’s inputs. Therefore, in synthetic problems (wheeeitiput used
to create the data and should be inferred is known), consglenly the
error related to the observables would not be an adequatifieetion of
the method’s error.

An equivalent expression is used to compute the NRMSE withaet
to the time-dependent inputs:

NRMSE, = N
ata

Nexp Nstj Nsu

|

k=1 j=1i=1

Wijk —Wijk

max (ﬁijk)fmin (‘]ijk

)

NRMSE, = (S.35)

Nuydata

Whereneap, nsti, nsu Stand for the numbers of experiments, the number
of inputs and the number of elements of the inputs’ time-aeatspecti-
vely, asN, 4aqtq IS the total number of data points for the inputs available
(all experiments, all inputs and all time-points). In thése of problems
using simulated data, the true value of the parameters ianiknso this
metric can also be computed with respect to the estimateahyders
themselves:

Nexp % _ejk_éjk ] 2
E=1 j=1 max (ij)fmin (ij)

NRMSE,y = (S.36)

Nodata

Whereneqp, ng stand for the numbers of experiments (in case some or all
parameters are local unknowns in a multi-experimental reefleand the
number of unknown parameters respectivelyVas, . is the total number

of data points for all unknown parameters available (allegkpents, all
unknown parameters).

1.6.2 Data generation

Several case studies included subcases with noisy synttata. We
have generated realizations of this pseudo-experimeatal loly adding
noise to the output of the models considering a Gaussiaribdigon with
heteroscedastic variance as follows:

Z]o,s = Yo,s + €o,s (537)

with :

€0,s = 0 X randCo,s X Ye,o (5.38)

wheree,, s are normally distributed independent random variables wit
standard deviatios X ye, , andrandC, s is arandom number drawn from
the standard normal distributiaN (0, co) defined for every observabte
and sampling time. In the rest of the manuscript, we are referring to this
error model as heteroscedastic proportional.

1.7 Case study JAK-STAT

This case study is an example of IOCP-1, based on the probtem c
sidered b ), where we seek the simultaneous input
reconstruction and parameter estimation in a dynamic nufdeé JAK2-
STAT5 signaling pathway. The detailed mathematical statéwas taken
fromhtt p://dat a2dynam cs. gi t hub. i o/ d2d/|and is detailed
below. In Figurd S5 we show the corresponding network remtasion.

Fig. S5. Case JAKSTAT: Network representation for the JAK-STAT case study.
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1.7.1 Problem formulation PEpoR Y4
The mathematical formulation of the simultaneous input pathmeter 1 Recovered 0.9
estimation problem is: E) © Dam 3
S o5 g o8
i J[x,pEpoR, S.39 2 ]
- [x,pEpoR, p] (s39 3 3.,
0
Where: 0 20 40 60 0 20 40 60
Time (s) Time (s)
oy obs Mdata Error analysis Y,
Jx,pEpoR,pl = > > > wijq(yijq(x(ti, P), P) — Fijq)? 100 1
g=1 j=1 i=1 '
(S.40) " 2.30e-02 508
Subject to: %) 3.23e-04 : 0.6
o r c
= S
dSTAT5 0.45 0.4
% =p4-nSTATSs5 - Ti p1 - pEpoR - STATS
’ 0 0 20 40 60
dpSTAT5 oo .
pT — p1-pEpoR - STATS — 2 - pa - pSTAT5? IOCP solution Time (s)
dpST AT52
T =2-p2- PSTAT52 —p3 - pSTAT5; Fig. S6. Case JAKSTATO: estimated versus experimental stimuli measureméons, a
with the fit for the observed states. The overall quality of the estimation is gisenor-
dnpSTATSs = p3 - pSTATS, - 14 — pa - npSTAT54 malized root mean square error (NRMSE) for the observables (yxtimeli (u) and the
dt 0.45 parametersd). This solution corresponds to the synthetic noiseless case.
dnSTAT5
% — 2. pa-npSTATS2 — pa - nSTATS,
dnSTAT5 ifficulti i i
n 2 _ pa - nSTATS, — pa - nSTAT5, 'dlffICl..ll.tIeS are. 'O.ur. analy§|s reveal§ that the quel iscstmally non
dt identifiable, i.e. it is impossible to uniquely determinkparameters plus
dnSTAT5 the parameterization of the stimulus. The complete armlgsieals that
B s nSTATS: — pa - nSTATS3 P P esieals
dt of fset_tSTATS andof fset_pST AT are globally structurally iden-
dnST AT54 tifiable, p4 is non identifiable and for the remaining parameters it is not
dt =pa nSTATS3 — ps - nSTATS, possible to conclude identifiability.
dnSTAT55 Only if we fix the observables scaling parametets, and p4 it
dt = pa - nSTATS4 — pa - nSTATS5 is possible to obtain a full rank Jacobian in the generatiedes ap-
(S.41)  proach to guarantee local structural identifiability fof fset_tST AT,
y1(x,p) =of fset_tSTATS + scale_tSTATS - (STATS (5.42) of fset_pSTATS5, p, ps, EpoA, Epot, EpoS].

+ pSTATS5 + 2 - pSTAT55)

y2(x, p) =of fset_pSTATS5 + scale_pSTATS5 - (pSTATS

+2- pSTAT52)
(S.43)

Where the states vector is:

x =[STAT5,pSTATS5,pST AT52,npST AT52,nSTATS1,

nSTAT59,nST AT 53, nSTAT54, nST AT5s5]
(S.44)

And the initial conditions are:

x(to) = [1 0000000 0] (S.45)

1.7.2 Structural identifiability analysis

The structural identifiability analysis was performed gdine generating

series approach as implemented in GenSSI software toc
), available at https://github.com/genssi-tbgper/GenSSl). For

the analysis we assumed a Gaussian parameterizatignEipo R(t) =

EpoAe(—0-5(t=Fpot)?/EpoS®) - This parameterization captures the

main features of the measured data and it only requires tHiticad of
three parameters: the maximum valdgpp A), the width of the Gaussian
(EpoS) and the location of the centeEpot) of the Gaussian.

The model has been reported as non-identifiable regardarglatd
parameter estimatio )). Here we analyze the structu-
ral identifiability of the more general IOCP to assess what ddded

1.7.3 Numerical results

Inthis case study, we considered solving the IOCP-1 probjemfor three
different scenarios, one considering real experimental JAKSTATreal)

and two additional scenarios using a synthetic data setrd@desxperi-
mental data and the nominal values for the model parametens taken
fromhttp://dataZdynam cs. gi t hub. i o/ d2d/| The synthetic
data for the additional scenarios were generated by siionlef a chosen
input profile either without the addition of numerical No{[SAKSTATO)

or with 5% heteroscedastic proportional noise (JAKSTATS5).

Given the structural identifiability analysis presented\af) we first
considered the synthetic subcases (JAKSTATO and JAKSTAT Sjudy
the impact on identifiability of fixing parameters to theimmioal values.
For the noiseless case JAKSTATO, the inference of the inmftlp and
the fit on the observables were almost perfectly recoveregresented
in Figure[S6. The quality of inference is given in terms of NBEIwith
respect to both the observables and the inputs. Additipntéde almost
perfectidentification of the known parameters is showngurEST , where
the bounds considered for the estimation of the parametershawn as
blue boxes, their true nominal values as orange lines, amédtimated
values as dots.

For the noisy synthetic subcase (JAKSTATS), we used reigalion
to achieve a satisfactory solution, avoiding possiblefacts as described
in the main paper. We made use of two regularization ternadijrst acting
as a constraint on the second order derivative in order tml alaining
noisy input solutions that result in over-fitting the obsdnes. Atthe same
time, we avoid oscillatory behavior in the input profile andarporate the
prior knowledge on the behavior we expect from a biologindLicer. We
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Fig. S7. Case JAKSTATO: parameter inference in the inverse optimal conbl@m. The

box corresponds to the bounds used in the estimation, the orange dastrtethalue used
to generate the synthetic data and the orange dot to the estimate. This salutésponds
to the synthetic noiseless case.
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Fig. S8. Case JAKSTATS: illustration of practical non-identifiability n, simulating a
local solution p Epo R andp) for different values ofpo and showing how it affects the
observableg; andys. This corresponds to the synthetic noisy case.

also used regularization on the input, providing a very $istip initial
guess, simulating in the simplest way the early peak that xped to
observe qualitatively. We were able to infer with high gtyathe input
profile (Figure.SB), obtaining a simultaneous good fit to theepvables.
We provide the NRMSE metrics in the same figure. The identiinaf the
parametersisillustrated in Figufes $10and S11. Thesksewulicate lack
of practical identifiability for parameter,. This issue is further illustrated
in Figure[S8: forp, values greater that, the outputs (and therefore the
quality of the fit, as indicated by the NRMSE) are essentigifysame.
Finally, for the real data subcase (JAKSTATreal) we tookaadage
of the analysis we performed in the synthetic subcases. fthe same
discretization, a simple initial guess for the input andniitsal regular-
ization strategy and settings. The input inference and thte the real
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Sos gos
o o
o O 07
o 06t ¢
0 20 40 60 0 20 40 60
Time (s) Time (s)
Error analysis Ys
0.4
1
. $
w 2 0.
%) 8 0.8 $
S o6
< 0118916 | S
0.075605 O o4
y u 0 20 40 60
IOCP solution Time (s)

Fig. S9. Case JAKSTATS: estimated versus experimental stimuli measureméats, a
with the fit for the observed states. The overall quality of the estimation isgisenor-
malized root mean square error (NRMSE) for the observables (yjrenstimuli (u). This
solution corresponds to the synthetic noisy case.
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Fig. S10. Case JAKSTATS5: parameter inference in the inverse optimal contrblgmo
The box corresponds to the bounds used in the estimation, the orarg#luktsates the
true value used to generate the synthetic data and the orange dot shosvsdtirttate. This
solution corresponds to the synthetic noisy case.

data are presented in the main paper, showing an excellemtas. The
corresponding convergence curve is given in Fifurd S54.

1.7.4 Uncertainty analysis

Analyzing the uncertainty in the estimates is non-triviad this class of
problems. Here, we will show how to quantify the uncertaivitthe IOCP
for one of the case studies presented (JAKSTATS).

Our starting point is to consider IOCP as a generelizatiothepara-
meter estimation problem involving dynamic systems. Rbugpeaking,
for the parameter estimation problem there are four waysotopeite
errors in the parameter estimates: (i) using metrics basetth@® Fisher
Information Matrix (FIM) and the Cramer-Rao inequalityi) footstrap-
ping approaches, (iii) Bayesian methods, and (iv) the grdiftelihood
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5 Pa‘rameter infereqce Table S.T1. Uncertainty analysis: credible intervals
computed for the JAKSTATS5 case with 90% pro-
45+ B bability. The pEpoR time vector elements (ioc1-9)
correspond to the value of pEpoR fort=[037 1115 24
ar i 36 48 60]. The high density interval (HDI) computed
R 35F 1 is then used to plot Figufe"S14.
(0]
§ 30 1 I0C_upar mode90% 90%HDI b  90%HDI ub
% 25 b p2 - 500 500.0235
o p3 0.113052 0.095799 0.1301
52T 1 offset tSTAT 0.179433 0.138071  0.20572
&3 15 F ] offset_pSTAT 0.235583 0.222378 0.256238
iocl 0.067923 0.044708 0.116407
10 1 ioc2 0.074264 0.023111 0.109239
ioc3 0.981378 0.775684 1
5T 7 ioc4 0.946703 0.116469 1
0 ioch 0.196829 0.072747 0.889468
p3 offset STAT offsetpSTAT ioc6 0.12167 0.056991  0.307032
Parameters ioc7 0.025029 0.011514 0.044097
ioc8 0.011836 0.00499 0.020522
ioc9 0.010573 0.003899 0.016652

Fig. S11. Case JAKSTATS5: parameter inference in the inverse optimal contoddl@m.
Relative difference between the true values used to generate the syulétetiand the
estimates. This solution corresponds to the synthetic noisy case.

method. A detailed review of these and related approachebedound
invanlier et all (2013)

However, when we consider problems IOCP-I and IOCP-Il ane-a f
quentist framework, bootstrapping seems to be the onlyoggpr that
can be extended easily. Essentially, in a bootstrap appra@&cperturb
the data and solve the problem for each realization of tha. detis is
a straight-forward approach that generally has the disadga of being
rather demanding computationally.

Considering the JAKSTAT5 case, we used the bootstrap apiproa
generating different realizations of synthetic data anal\siog he pro-
blem for each one of them. Then the resulting distributioeseranalyzed
statistically. In Figur&S13 the distribution obtained thee unknown para-
meters is presented. Note that the distributions in thisdigas well as the
ones corresponding to the time elements of the input (pEpaif@)non-
normal. Therefore we represent them using violin plots guFe[STP (for
the case of model parameters).

Due to their non-normal nature, the concepts of standarii@v or
confidence intervals are not applicable. Instead, we carthegseoncept
of credible intervals, introduced in Bayesian statisMHﬂ@,
3), as an equivalent for our purposes. InrE{@L4 the
input (PEpoR) bootstrap resultis presented. The 90% highkitjeinterval
(credible interval) was computed (Table S .T1) and is itlatstd with the
green envelope.

1.8 Case study TSP

This case study is another, more complex, instance of thé*KDClass.
It is based on the biochemical pathway studiem M) for
parameter estimation. Here we consider the simultanequg and para-
meter estimation in a dynamic model of a fully observed 3 phway,
with 8 states, 36 parameters and 2 inputs (which take differaues for a
set of 16 different experimental conditions). It should béed that practi-
cal identifiability issues for the parameter estimationbtem studied by

) were reported H;LRQ_dL@u_ez_Eem_a.nﬂL] ).
Thus, we expect the extended IOCP version presented hezevézyochal-
lenging, and therefore a good opportunity to evaluate tharadges of
the regularization methodology discussed above. The @dedmetwork
representation is given in Figure $15.

HDI:High Density Intervals, Ib: lower bound, ub:upper

bound.
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() [}
= =
g g o012
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o 5000 bt
£ £ o
< <
a o
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0.25 0.28
S S
T < 0.26
g o2 g
[0} [0}
T g 024
E o5 §
5 5022
o o
0.1 0.2
offset, STAT offset o STAT

Fig. S12. Uncertainty analysis for JAKSTATS: violin plots depicting the distribution of
the parameters found using the bootstrap approach.

1.8.1 Problem formulation
The formulation of the simultaneous input and parameteimesion
problem is:

min J[X, u, p] (S.46)
u(t),p

Where:

J[Xvuvp Z Z Z Wijq lelI(x(tlv )7p) _giJQ)Q

(S.47)
Subject to:
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Fig. S13. Uncertainty analysis for JAKSTAT5: histograms depicting the distributichef
parameters resulting from the bootstrap approach. The true valuepdithmeters used to
generate all data realizations is marked with the red vertical line. Note thedelity of
po due to its lack of identifiability.
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Fig. S14. Uncertainty analysis for JAKSTAT5: comparison between the mean artcith
trajectories of the time-dependent input resulting from the bootstrapagipr The high
density interval (90% HDI) is represented as the gray envelope.

Fig. S15. Case TSP: Network representation for the TSP case study.

.y . e

Error analysis

100

107!
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NRMSE

1078

1074
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Fig. S16. Case TSP: goodness of the estimation for the two subcases, TSPO (noedess)
TSP5 6% noise) interms of normalized root mean square error (NRMSE) of theruables
(y), the stimuli (u) and the parametem)( The observables, stimuli and parameters are

described iNTSASHIL(SI52).

dG \%
d_tl: 1 P nill Kay naj _kl.Gl
+ (Kil) + (T)
dG \%
dt2 - P _yni : Kas \na — k- G2
1+(K_7,2) 2+(A{1) 2
dG V-
dtS - P \nig : Kag ynas — ks G
1+(K77,3) 3+( ]MQ) 3
dE .
v _ Va-Go g
dt K4+ Gy
dE Vs -G
bz _ Vs G2, g
dt Ky + Gy
dFE. .
s _ Vo2 o p, (5.48)
dt Kg + Gs
dM,  keaty - Ey - (%m) (S — M)
= S M1
dt 1+ Kmq + Kmo
kcats - Eo - (K;WL;}) - (My — Ma)
- M1 M2
1+ Kms + Kmy
dMo . kcats - Eo - (K;mS) - (My — Ma)
dt L+ 2o + 7oy
kcats - E3 - (K;mS) - (Mo — P)
- M. P
1+ erir, + Kmg
y(X,p)=X (S.49)
Where the states vector is:
X = [G1,G2,G3, E1, E2, E3, M1, M>) (S.50)
And the inputs and parameters vectors are, respectively:
u=[S,P] (S.51)
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Fig. S17. Case TSP: normalized root mean square error for noisy and naiselss, with
respect to the observables (y), the inputs (u) and the true paran®teFSP5 corresponds
to the left y-axis while TSPO to the right one. The units of the latter are predecaled in
10~ 5. The observables, stimuli and parameters are describEdid (E83),[S.52).

p =[V1, Ki1,ni1, Kai,na1, k1, Va, Kiz, niz, Kaz, naz,

ko, Vs, Kiz,niz, Kas,nas, ks, Va, Ka,k4, Vs,
(S.52)
Ks, ks, Vs, Ke, ke, kcat1, Kmi, Kma, kcate, Kms,

Kmuy, kcats, Kms, Kmg]

And the initial conditions are:

[0.66667]
0.57254
0.41758

0.4
0.36409
0.29457

1.419
10.93464 |

X" (to) (S53)

where M1, Ms, E1, E2, E3, G1, G2 andG3 represent concentra-
tions of the species involved in the different biochemiadations and
S and P keep fixed initial values for each experiment (i.e. paransete
under our control). The parameters are divided in two diffierclasses:
Hill coefficients, allowed to vary within the rang®.1, 10), and all the
others, allowed to vary within the rang&0—%, 500).

1.8.2 Numerical results

We considered two scenarios, noisy (TPS5) and noiselesSQ)T&ata.
Thus, we generated data for 16 experiments with differeptitsy both
with and without 5% heteroscedastic proportional noiser. ©sults are
summarized in Figule_S16, where we give the NRMSE valuesrfuts,
states and parameters) for the two different subcases, tiatés a synth-
etic scenario and knowing the true parameter values allets compute
their NRMSE.

For the noiseless subcase (TSPO), there was no need to usa-reg
rization, and we were able to recover almost exactly all tirutis and
parameters (note the very low NRME values). The input retcoaton
is summarized in Figufe_SIL8, showing an analysis based orelhtve
difference of the values inferred and the true inputs foheafcthe 16
experimental conditions and each of the two time-invariaputs. The
parameter identification results are presented in FlguBkaS1he relative
difference of the parameters computed to the their trueega(gince the

Table S.T2. Case TSP: evolution of NRMSE for noisy and
noiseless cases while iteratively decreasing the regaléon
parameters.

Noise lterations NRMSE, NRMSE, NRMSEy

0% 1st 0.000030 0.000021 0.000033
10%  1st 0.375198 0.644647 0.842095
10% 2nd 0.308303 0.677463 0.774919
10% 3rd 0.128832 0.148638 0.168275

y:observables, u:stimul):parameters.

Control inference
Per experiment
. —

Relative difference %

IHI

N2 e e A D o 0 B N0 0

0 -mlﬂlﬂ-ﬂ_ﬂu IHlﬂlm

Stimulus

Fig. S18. Case TSPO: stimuli inference per experiment. In this case study, synthetic
multi-experimental datasets were used for the inverse optimal conttblgm. Here the
relative difference between the true input values used to generateitiederss data for each
experiment and the input estimates is analyzed, per experiment, foinpaiis.

problem is synthetic and therefore we know the true valugagfmeters).
The fit on the observables for experiment | is given in FigLEzd 8he fit
for the remaining 15 experiments are similar, and not shoere for the
sake of brevity).

In the case of TSP5, we achieved a good inference of the tlue so
tion despite the practical identifiability issues of thisiplem. In contrast
to TSPO, where no regularization was used, in TSP5 we usedftite
implemented regularization terms in our cost function. émtigular, we
used aregularization scheme with re-optimizations, istawtith relatively
large values for the regularization parameters for bothdtiand para-
meters. Then we iterate, re-optimizing using the solutibtaioed as an
initialization guess for the new optimization, while dexsing the values
of the regularization parameters. This procedure resuitecery good
estimations of the stimuli for the multiple experiments. 8o achieved
good parameter estimates, although we also found thefidéility issues
previously reporte i - \ ), as expected. The
impact of the iterative decrease of regularization on thitopmance of our
method can be visualized in Figire$17, and is also giverbie farmat
in Table[S.T2. These results illustrate how the NRMSE impsoat each
iteration (TSP5 on the left y-axis). We also give as a refegethe much
lower NRMSE of the noiseless case (TSPO, on the right y-akis infe-
rence of the inputs and parameters is presented in Fiju@suSLS2L.
The fit on the observables for one of the experiments is gimdrigure
[S23, and the convergence curve in FidurelS55.




Supplementary information -

Inverse optimal control in systems biology

11

Parameter inference

0.012

0.01

0.008

0.006

0.004

Relative differences %

0.002

Parameters

Fig. S19. Case TSPO: parameter inference in the inverse optimal control pralslestative
difference between the true values used to generate the synthetic modalesand the
estimates.
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Fig. S20. Case TSP5: stimuli inference per experiment. In this case study, signthsti-
experimental datasets were used for the inverse optimal control problere the relative
difference between the true input values used to generate the noispdaae experiment
and the input estimates is analyzed, per experiment, for both inputs.

1.9 Case study LPN3B

This case study is given as a first illustrative example oftioee general
IOCP-2 problem class. The problem is a generalization obtteestudied
bylde Hijas-L istest all
mal control problem (OCP). Here, we take the solution refeseof the
inner problem as the multi-objective OCP describe g
m) selecting a specific point of the resulting ParemtfrThe nature of
this case study illustrates well the ability of our approticbonsider dyna-
mic models with path constraints on the states and the inpufSigure
we show the network representation considered.

1.9.1 Problem formulation
The mathematical formulation of inverse optimal contralgem is stated
below:

mln Jouter [S,e,K] (S.54)

e(t),k

Parameter inference

60

50 -

Relative difference %
w B
o o
| |

N
o
T

Parameters

Fig. S21. Case TSP5: parameter inference as relative difference between thalies
used to generate the synthetic noisy data and the estimates.
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Fig. S22. Case TSPO: example of resulting fit for the observables (experimentresines

for the other experiments are included as part of the software distrifution

), where it was considered as a standard opti-
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Fig. S23. Case TSP5: example of resulting fit for the observables (experimentresthies
for the other experiments are included as part of the software distrihution
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(s.)

Cr—=

Fig. S24. Case LPN3B: Network representation for the LPN3B case study.

s

Where:
obs Ndata
Jouter[S, e, k] = Z Z D wisg(Wije(S(ti, k), e, k) — Gijq)
=1 j=1 i=1
(S.55)
Subject to:
fn)ln Jinner[S, e, K] (S.56)
e(t),
Where:
Tinner[S,e,K] = [t7, [ (52 + S dt] (S.57)
Subject to the system dynamics:
ds
— =Nv (S.58)
dt
y(S,k) =S8 (S.59)
Where the states’ vector is:
S = [51,52753,54} (S.60)
While the stoicheiometric matriX is:
0 0 O
N — 1 -1 0
0o 1 -1
0 0 1
And the kinetics are described by:
vi=k;-S;-e (S.61)
With the following end-point constraint:
Sa(ty) = P(ty) (S.62)
and path constraint:
3
> e < EBr (S.63)

with: Ep = 1M, Si(tg) = 1 M, S;(to) = 0fori = 2,3,4 and
P(ty) = 0.9 M.

1.9.2 Structural identifiability analysis
The structural identifiability analysis was performed gsithe gener-
ating series approach as implemented in the GenSSl softivalieox
), available at github.com/genssideveloper8Sén
We first needed to parameterize the solution for the aabatrofiles
for the different enzymes;(t), ¢ = 1...3. With this aim, we exploited
the fact that an underlying optimality principle drives thestem, i.e. the
system evolves to minimize the final time to achieve a cerdairount
of product. Under this assumption, the enzyme activatiafilps can be
approximated by a boxcar function as follows:

e; = keilH(t — til) — keigH(t — tig) (8.64)
whereH (t) is the Heaviside step functiok;;; andk.;2 regard the ampli-
tudes of the enzyme activation, and andt;> determine the switching
times fromO to k.; or the other way around.

Table S.T3. Case LPN3B: brief description of sub-casesidered for the
LPN3B case study. LPN3B0 and LPN3B10 are the main sub-casesis The
rest of the sub-cases are variations presented to illedditierent issues of the
inverse optimal control problem.

Label Noise level Description
LPN3BO 0% Noiseless case
LPN3B10 10% Noisy case
. LPN3BO without initial assumption of input
LPN3BOre 0% discretization and using re-optimizations
) LPN3B10 without initial assumption of input
LPN3B10re 0% discretization and using re-optimizations
LPN3BOnoreg 0% LPN3BO0 without regularization
LPN3BO0p2I2 0% LPN3BO with different parameter bounds

LPN3BO without regularization and with

LPN3BOnoreg2 0% different parameter and input bounds

A continuous approximation of the boxcar function would be:

keil o
1+ e—2ke(t—t;1)

keiQ
1+ e—2ke(t—ti2)

e; ~

(S.65)

with k; large enough (for example, kt>20).

The number of parameters under this approximatidf jghree kinetic
constants plus the boxcar approximation related parametére gener-
ating series approach results in a rank deficient Jacobtamadidition of
further derivatives to the method does not increase thebiate rank.
Therefore it is concluded that the model in its more genenahfis non-
identifiable.

To further reduce the number of unknowns, we exploit agamtider-
lying optimality principle: 1) we assume that the enzymeseither active
or inactive, i.e.ke; = kei1 = keio, @ = 1...3; 2) we apply the con-
straintzle kei = Er, i.e. the sum of the enzymes corresponds to the
maximumE over time; and 3) we use the just-in-time activation propert
@) of linear pathways to fitg; = 0, i.e. first enzyme
is active from initial time and2s = t31. The number of unknowns i&

After several derivatives the rank of the Jacobiafi,isvhich means
that the model is still non-identifiable. The model becoragkast, locally
structurally identifiable if we fix either the kinetic consta ;) or the
amplitudes of the enzyme activatiok.().

In summary, exploiting the biological knowledge about thémality
principle underlying the dynamics of these linear pathwegabled the
reduction of the unknowns in the IOCP problem. However it naispos-
sible to guarantee structural identifiability. We discuss tonsequences
of this lack of identifiability in the next section.

1.9.3 Numerical results

We solved the IOCP-2 formulation considering synthetiadgenerated
by simulation) for two scenarios: data with 10% heterosstdaropor-

tional noise (LPN3B10), and noiseless data (LPN3BO0). Ttadityuof the

solutions computed for these two subcases are shown inFabkn terms
of the normalized root mean square error (NRMSE) for the vlades,

inputs and (since we are dealing with a synthetic problengre/the true
values of parameters are known) the model parameters.

In the noiseless case, we achieved almost perfect recotistruof
inputs and parameters. In the noisy case we were able tovachieery
good solution using a piecewise constant approximatioth®inputs. In
order to tackle the identifiability issues discussed aboseised regulari-
zation in an iterative scheme for both the inputs and parsetater we
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Fig. S25. Case LPN3BO: stimuli inference in 3rd re-optimization of the inverse opti-

mal control problem and the relative difference between the true paeavalues used to
generate the synthetic noiseless data and the estimates.
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Fig. S26. Case LPN3BO: fit for the observablesin 3rd re-optimization of the ievepsimal
control problem for the noiseless case.

analyzed the impact of this strategy on the inference ofriie golution.
The results for the LPN3BO case are summarized in Figuresa8d%26.
The respective results for the noisy case are presented Figre§ S27,
andS56.

It is worth using this relatively simple (but challengingase study
to illustrate several additional key points of our approachFigure[S1
we present a schematic representation of the workflow weidenor
synthetic problems. Assuming a set of parameters for ouremad well
as the underlying optimality principles, we solve the maltjective OCP.
We then obtain a set of all optimal solutions (Pareto frostifferent trade-
offs of the criteria considered. We generate synthetic datsidering the
inputs resulted from the OCP (and the same assumed set oh@i@ra)
and that correspond to one of the Pareto optimal points. fedlpkze with
the general IOCP work-flow figure presented in the main paperthen
refer to the first step, that is solving the input estimatioabtem from
the synthetic data set. As a result, we have the reconstrimgtet and the
inferred parameters that can be now used in step 2. In tips s solve
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Fig. S27. Case LPN3B10: goodness of the estimation for the noisy and noiselessstb
comparison, showing the normalized root mean square error anddbestructed stimuli
in the noisy subcase (versus the true value used for the pseuddrespel noisy data
generation).
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Fig. S28. Case LPN3B10: fit to the observables in the inverse optimal control prdiolem
the noisy case.

the multicriteria OCP (using the parameter set that we gohfstep 1).
We, thus, obtain a Pareto front where we proceed in step 3hingtthe

reconstructed solution of step 1 to one of the Pareto optpuoalts and

thus infer the specific trade-off of the criteria considetteat is consistent
with the data used. In Figure 4 (in the main paper) such a cosgrais

made for the solution taken in the noisy case (LPN3B10) aedgnted
along with the multi-objective OCP Pareto front, in whiclisitocated.

It is also worth noting the challenges present in this pnobléor
instance, in the main subcases of the problem (LPN3B10 aiBBB)
we used a 3-step approximation for the inputs profiles, wkeagh step
has varying duration of time. This is something that can t=l\eausti-
fied in this case by the optimality principle underlying indar metabolic
networks of minimal transition time, described as the jogime acti-
vation profile. If we ignore this assumption, the suitablenber of steps
to approximate the inputs can be determined by solving thielem using
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optimal control problem. This subcase corresponds to the solution ofdiseless case
without any initial assumption of input discretization and iteratively usinglagized re-

optimization as described in-text.

Table S.T4. Case LPN3B: NRMSE for noiseless (LPN3BO0)
and noisy (LPN3B10) case.

Noise lterations NRMSE, NRMSE, NRMSEy

0% 1st 0.412983 0.577643 0.999990
0% 2nd 0.382238 0.482203 0.931450
0% 3rd 0.153955 0.141419 0.396655
0%  4th 0.023829 0.115464 0.098381
10%  1st 0.405368 0.577643 0.999990
10% 2nd 0.487641 0.486206 0.935376
10% 3rd 0.208916 0.141912 0.447917
10% 4th 0.131578 0.141407 0.112145

y:observables, u:stimulf):parameters.

Fig. S32. Case LPN3B10re: stimuli inference in re-optimizatiog and the relative dif-
ference between the true parameter values used to generate the symdfsstidata and
the estimates. This subcase corresponds to the solution of the noisy itfaset wny ini-

tial assumption of input discretization and iteratively using regularizezptinization as
described in-text.

increasing numbers of discretization elements. In ordezgbthe capabi-
lities of our methods by using zero prior knowledge (worstecacenario
for a problem of unknown solution), we considered obtairttrggsolution
of the same two main scenarios using input profiles that hage befined
through sequential re-optimizations increasing the nurobeliscretiza-
tion elements. In that way we can approximate any profilemiis starting
from very few piecewise constant elements of fixed time domafThese
illustrative subcases are referred to as LPN3B10re and BRNS cor-
responding to the noisy and noiseless case respectivélthé\subcases
considered for illustrative purposes are summarized ine[E0L3.
Theresults forthe noisy case are presented in Fifurd§ S3ar& S3K.
Here eachiteration is labeled as the number of times the digeretization
has been doubled (starting from the initial number of 5 elesjewith the
number of iterative decreases in the regularization patienswe ands as a
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Fig. S33. Case LPN3B10re: fit on the observables in re-optimizatipm the inverse opti-
mal control problem. This subcase corresponds to the solution of thgcase without any
initial assumption of input discretization and iteratively using regularizeaptenization
as described in-text.
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Fig. S34. Case LPN3B10re: Quality of fit in the solution of the inverse optimal control

problem presented in FIg-S32, corresponding to the noisy case, indénosnalized root
mean square (with respect to the observables (y), inputs (u) anth@ena ¢))and how it
changes by the iterative use of regularized re-optimization.

subscript. In Figure2S34 we can see that after a certain,fmjribcreasing
more the discretization level and relaxing the regulaicraparameters
the solution was insignificantly improving in terms of NRMS&g. for
the parameters, but was actually becoming worse for thednfpie later
can also be visualized by the obvious numerical noise inrtpetiprofiles
in Figure[S3P. In LPN3BOre, due to the absence of noise, the isanot
the same and the solution is being improved until the lagttiten of the
scheme that we implemented (Figlire 1531). In addition tq thatinput
profiles are smoother and of course the metrics (NRMSE)hettét can
be expected. The results are summarized in Figured S2D,reif03 .
Furthermore, it is worth illustrating numerically the sttural identifi-
ability issues arising in these formulations, i.e. we cataioithe same fitto
the model’'s observables with completely different inpudfipes. Follow-
ing three more subcases are presented to support our cIRINSBOnoreg,

Parameter inference 1

o
o

Relative difference %
(o)
o
Concentration (au)
o
[6,}

o
o

1 2 3 0 1 2 3 4
Parameters

Concentration (au)
o
(4]
Concentration (au)
o
[¢,]

o

0
0 1 2 3 4 0 1 2 3 4

. = Recovered .
Time (s) - = Tree Time (s)

Fig. S35. Case LPN3BOnoreg: two different optimal solutions with the same quality of fit
to the observables as a result of lack of structural identifiability. The rededhline is the
true solution used to generate the synthetic noiseless data and the blue linestrtize
computed without the use of regularization for this ill-posed case. THative difference

in terms of parameters estimated is also presented. The underestimatieninpuls is
compensated by the massive difference in parameter values.
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Fig. S36. Case LPN3BOnoreg: fit to the observables for the optimal solutions dejiicted
Fig[S35.

LPN3BOp2I2 and LPN3BOnorege2), all of them consideringselaiss
synthetic data to emphasize the issues even in the idearizen

In particular, in subcase LPN3BOnoreg, we can obtain a isoludf
the problem without any use of regularization (as expeated hoiseless
case). We summarize the results in Figlired S35-and S36. s profiles
are quite different with respecto to the original ones, etr@ugh the
model’s output fit the observables extremely well. As we disoussed in
the main paper, this is a consequence of the problem beipgsid (due
to the lack of structural identifiability). We can reduce dedifficulties
using regularization, i.e. we surmount ill-posedness bgiiporating prior
information via regularization.

In addition, in subcases LPN3BO0p2I2 and LPN3BOnorege2 we/ sh
how introducing prior information (in the bounds and usiegularization)
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parameter set.
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Fig. S38. Case LPN3BOp2I2: fit to the observables corresponding to the noiseless
optimal solution presented in F[g_337.

can improve the inferred solution. In LPN3BOp2I2, whilengsiregu-
larization in the exact same way as to obtain the LPN3BO0 soiuive
constrain the bounds of parameter, to force a solution far for the true
one & 1) and imposing a lower bound equal}in the IOCP formulation.
As a result, the input profiles we obtain show that the in@aasthe
resultingps is totally compensated by a decrease indh@ctivation, yet
the output of the model remains unaltered. The results aemgn Figures

Fig. S39. Case LPN3BO0norege2: two different optimal enzyme profiles whichtrieshe
same quality of fit. The computed enzyme profiles compensate for thevaaiféerences
in the parameter estimates. This result illustrates the lack of structural ideifitifiand
corresponds to the solution of the noiseless case with different boanrptrameter set and
inputs.
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Fig. S40. Case LPN3BOnorege2: fit to the observables corresponding to the ssisake
optimal solution presented in Flg—339.

compensated by increasgd andps values resulting again in an excellent
fit.

1.10 Case study SC

This case study is presented as the second example of thegEDeP-
2 problem. The model corresponds to the central carbon mileterb of
yeast during diauxic shift in a nutrient depletion scenafioe model for-

mulation is taken from @) an M).

and_S38. In subcase LPN3BOnorege2, we do not make usg of art consists of six metabolic reactions: the upper and lovigeatysis, the

regularization term in our cost function. We constrainbetween0 and
0.1 and we increase the upper boundegffrom 1 to 100. The results

ethanol formation and consumption, the TCA cycle and theira®ry
chain. This description results in 9 dynamic states, 8 pataraand 6 time-

are shown in Figures_SB9 ahd $40. As one can expect, the sathe (w dependent enzyme concentrations. Additionally, we cendide critical

the LPN3BO) output is obtained but with much different injpubfiles.
The big decrease ip is compensated by a massive increasexinvhile

having no regularization in use andes activations are decreased and the objective was to find the enzyme activation proflles wimh Pareto

values of ATP and NADH as constraints on the states of the mbdihe
multicriteria OCP formulation considered b
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optimal, considering two objective functions (maximinatiof survival
time and minimization of enzyme synthesis cost). Here tim¢hsfic data
used to fit the model are generated considering one of thespofrthe
Pareto front resulted by this OCP in the same way previoussciibed
for LPN3B. In Figure[S4lL we give the network representatioat tvas
considered.

Fig. S41. Case SC: Network representation for the SC case study. Glucose as&l trio
phosphates are represented in this modelxby and X, while pyruvate and ethanol,
respectively, byX 3 and X 4.

1.10.1 Problem formulation
The mathematical formulation of the inverse optimal cdnpr@blem is
given as:

min  Jouter[S, €, K] (S.66)
e(t).k,ty
Where:
Nexp Nobs Ndata
Jouter [Sy e, k] = wijq(yijq (S(tl ’ k)7 €, k) - gijq)Q
g=1 j=1 i=1
(S.67)
Subject to:
max Jirlrler [S7 €, k} (568)
e(t),ty
Where:
_ ty 6 T
Jinner[S, e, k| = |t7, — [,/ (325, ei)dt (S.69)
Subject to:
ds
G - NV S{to} = So (S.70)
y(S,k) =S8 (S.71)
6
> ei<Er (S.72)
i=1
NADH > NADH, (S.73)
ATP > ATP, (S.74)
Where the states’ vector is:
S = [X1, X2, X3, X4, NADH, ATP,NAD, ADP] (S.75)

And the stoichiometric matrix along with the reactions’ édics corre-
sponds to[(S.16) anA{S177) respectively and are given below

-1 0 0 0 0O 0 0 0]

2 -1 0 0 0 0 0 O

0 1 -1 1 -1 0 0 0

N_|0 0 1 -10 0 0 0 (5.76)

0 1 -1 1 4 -1 0 -1

-2 2 0 0 0 3 -1 0

0 -1 1 -1 -4 1 0 1

L2 -2 0 0 0 -3 1 0|

17
vi =k1-e1-X1-ATP
vy =k ez Xo- NAD - ADP
vy =kz-e3- X3 -NADH
vy =ky-eq4- X4 - NAD
(8.77)
vs = ks -e5- Xz - NAD
vg =kg-ec- NADH - ADP
vy = ky - ATP
vg = ks - NADH
With the given initial values of:
So = [1 1110 0.7 0.8 0.3 0.2] (5.78)

A path constraint on the total amount of enzymes is implesteint
Eqgn. [S7P) whergzr is 11.5. In [S7B) and{S.¥4) the critical values
NADH. = 0.5 and ATP. = 0.7, of NADH and ATP respectively,
above which the cell is considered to survive are implenteatso as path
constraints.

We reformulated the model as explained below. After comsidethe
computation of the products = k;-e; : i € [1, 6], (566)[S67)[(5.868),
(S89), respectively, become:

min  Jouter[S, &, K]

S.79
&(t),k,ty ( )

Where:

Nexp Nobs Ndata

Jouter[S, 8, K = > D" > wijg(yijq(S(ti, k), 8,k) — fijq)°

g=1 j=1 i=1
(S.80)
Subject to:
max Jinnel‘[S7 é7 k] (581)
&)ty
Where:
~ o tf 6 - T
inner[S,8,K] = [t — fuf (S0, )] (5.82)
Additionally (S72),[S7I7) become, respectively:
6 ~
> e <Er (S.83)
i=1
vy =é€1-X1-ATP
vo =éz-Xo-NAD - ADP
vy =€z X3 - NADH
vg =€4 - X4 -NAD
(S.84)
v = €5+ X3 - NAD
vg =€+ NADH - ADP
vy = k7 - ATP
vg = ks - NADH

This model's reactions correspond to a simple representaf the
central carbon metabolism of yeast. The statgs 4 represent the key
metabolites of the pathways included. In detail; stands for glucose
and X4 for ethanol, the two carbon sources between which the diauxi
shift is occurring in the dynamic scenario taken into ac¢otlihe triose
phosphates in the glycolysis are representecbyas pyruvate is conne-
cting glycolysis with the TCA cycle and ethanol formaticoisumption
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solution presented in Fif_SK2.
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Fig. S44. Case SCOA: estimated inputs from the inverse optimal contro problem being

matched to the corresponding point in the Pareto front. This corresgorttie noiseless
case (scenario A) optimal solution presented in[Eig] S42.

Table S.T5. Case SC: NRMSE for the noisy and noiseless

cases.
Noise Scenaro NRMSE, NRMSE, NRMSE,

0% A 0.001231 0.197015 0.740545
0% B 0.007045 0.644559 1.563603
10% - 0.129583 0.287440 0.642375

y:observables, u:stimulg:parameters.

be even more serious. Therefore, in order to quickly reduegtoblem ill-
possedness we reformulated the model as stated abovey estilmating
the products o€; = k; - e;, for ¢ € [1, 6]. By doing this, we reduced the
NLP size by 6 structurally unidentifiable unknowns.

For this case study, we considered data: (i) generated mathddition
of 10% heteroscedastic proportional noise (SC10), and (ipiseless
(SCO0). In Tabld_S.T5 we summarize the normalized root meaarsq
error for the solutions corresponding to these scenari®®MSE values

as stateX3. Therefore in FigureS SH3 ahd $50 these states are shown byjere computed for observables and inputs). Since we arandesith a

the names corresponding to the metabolites they reprddenever, the
inputs of the model do not correspond to a specific enzymedlteetfact
that the reactions they are catalyzing are simplificatioh&lwle path-
ways. Therefore in Figule_Sb2, where a qualitative comparizetween
the model’s predictions and real experimental measuresigshown, the
model’s inputs are compared with multiple real enzymesuet! in their

corresponding pathway. Note that fay there is no such correspondence

and therefore no comparison is made.

1.10.2 Numerical results
This model presents a similar issues as in case LPN3B. Inythandics,
the inputs (enzyme concentratioag are always found multiplied by the

synthetic problem of known solution, we can also use the NEM®tric
for the parameter inference.

As expected, in the noiseless case (SCO0), there was no neseltegu-
larization terms in the cost function. For illustrative pases we divide this
subcase into two scenarios. In scenario A we assume thatwaeasure
the total enzyme concentration, while in scenario B we doRegarding
scenario A, the controls (enzymes) inference is shown inreg[S4P,
while the fit to the observables is shown in Figurels43. Theesponding
NRMSE values are given for observables, inputs and parasietigure
for both iterations of the solution (1st solution anepéimization).
The respective results for scenario B are presented in &f8ABSA47
and[S48. Finally, in the same way as presented for LPN3B, guirEi

kinetic parameterskf —g). In the case of LPN3B, where the structural [S44 we are illustrating the final step of the IOCP-2, matchirggsolution

identifiability analysis was illustrated both analytigaind numerically,
we found serious problems due to this structure. It shouladted that in
LPN3B the unknowns were three inputs, approximated withe8gwise
constant elements, and 3 parameters, while the data werm@Jpbints
for five observables. Here, in SC, where we have 8 parametetHa
inputs, approximated with 6 piecewise linear steps (akamehts) and
computed for 15 time-points of 8 observables, we expect praiilems to

taken from the input reconstruction with one of the pointshef Pareto
front resulted in the OCP and, i.e., correctly identifyirng tunderlying
optimality principle.

We note that for the noisy case (SC10) no regularization sas in
the objective function (described by a log likelihood castdtion). In
Figure[S4D we present the IOCP result for the inputs, whikignre$ S50
and[S5Y we show the model fit to the observables and the camarg
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Fig. S47. Case SCOB: fit to the observables corresponding to the noiseless casal optim

(y), the inputs (u) and the true parameter} €orresponding to the noiseless case optimal solution presented in FIg_SK6.

solution presented in Fig_S42.
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Fig. S46. Case SCOB: stimuli inference in the inverse optimal control problem. Sdhis
tion corresponds to the noiseless case and scenario B, where wesagswamn not measure
the total enzyme concentration.

curve, respectively. The corresponding NRMSE values vegipect to all
observables, inputs and parameters are given in Higuier8blab|¢ S.Th.

As mentioned in the main paper, experimental time-seritesata avai-
lable that allow qualitative comparisons, as performedrevipus works
conS|der|ng this case study as an optima control prob
) -) Even though the scaling in very dlffe-
rent, we can stlII perform a qualitative comparison betwinenzymes
of the model and the corresponding enzymes that have beesuredaas
was done in these previous papers. In figurel S52 we can sesutttat
qualitative comparison exhibits a good agreement.

1.11 Computational requirements and scalability

The purpose of this paper is to introduce and illustrate @@R approach,
the fundamental issues in this class of problems and howrtdl@éahem.
We illustrate all the above using four different case stsidieo for each
type of IOCP as described previously in the manuscript. #base studies
are of various size and complexity, so it is interesting talyze their
different requirements in terms of computational efforte YWesent the
computation times required to obtain the solutions preskimt this work
in Table[ST®, while in Figurds SBE4-357 we present typicalvergence

Quality of fit

NRMSE

y u 0
IOCP

Fig. S48. Case SCOB: normalized root mean square error with respect to thevables
(y), the inputs (u) and the true parametef} torresponding to the noiseless case optimal
solution presented in FIE_SK6.
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Fig. S49. Case SC10: stimuli inference in the inverse optimal control problem. This
solution corresponds to the noisy case.
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Fig. S51. Case SC10: normalized root mean square error with respect to teevabkes
(y), the inputs(u) and the true paramete#$ ¢orresponding to the noisy case optimal
solution presented in FIifL_SK9.

curves for each case study. The rest of the convergence @igwes,
corresponding to all subcases considered in this work, eafolind in
Zenodo. All the computations were carried out on a PC IntadrXE5-
2630@2.30GHz using Matlab R2015b under Windows 7.

TabldS.T6 shows that the computation times required tesmzise stu-
dies JAKSTAT and LPN3B were rather modest (order of minut€gsse
study SC required computation times of 1 or more hours, asated due
to the larger network involved. Case study TSP was even nemadding
because it considers 16 different experiments. Note hawtead multi-
experiment settings can be easily parallelized. Overadl,believe that
these results indicate a rather satisfactory scalabifiguoapproach with
problem size (Figure_S5h3), especially considering that aeeshused a
Matlab implementation of the framework (typically 1-2 orsl®f magni-
tude slower than compiled languages like C) and how chahenthese
problems are. Further, significant speed-ups can be oldtdypadapting
high performance computing strategies, including coansifiae-grained
parallelization strategies, as we have recently shownHerpgarameter

estimation proble @).

Time (au)

Fig. S52. Case SCOA: qualitative comparison of the estimated inputs with relevant expe

rimental enzyme data. Our estimated inputs (blue line), presented inElgc@4@spond
to the left axis while the experimental data (black lines) correspond to theaigs.
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Fig. S53. Computation (CPU) time ranges for the case studies considered in this paper

as a function of the degrees of freedom of the optimization problemsdiffieeent colors
correspond to different subcases.
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Fig. S57. Case SC10: Convergence curve for the reported noisy solution.
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