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Abstract
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Supplementary information: Supplementary data are available at Bioinformatics online.

1 SUPPLEMENTARY INFORMATION

In the main article, we provide the statement of the general inverse optimal
control problem (IOCP-2), and then we describe a solution strategy in-
volving the solution of two sub-problems, i.e. (i) a simultaneous input and
parameter estimation problem, and (ii) a multiobjective optimal control
problem. In Figure S1 we present a schematic representationof the overall
workflow of our strategy (plots correspond to one of the case studies; more
details are given below).

In this supplementary information document we give, for thesake of
completeness, further details regarding the mathematicalstatements of
these subproblems. We also provide further information regarding the
numerical strategy to solve these nonlinear optimal control problems.
Finally, we also give additional details and results regarding the four case
studies considered.

1.1 Dynamic models of biological systems

Here we consider dynamic models of biological systems givenby
sets of deterministic nonlinear ordinary differential equations (ODEs),
with possible additional constraints. We use the classicalstate space
representation:

dx

dt
=Ψ̃[x{t,p},u{t},p, t],

x{t0,p} = x0

(S.1)

η[x(t,p),u(t),p] = 0 (S.2)

ζ[x(t,p),u(t),p] ≤ 0 (S.3)

ηι[x(tι,p),u(tι),p] = 0 (S.4)

ζι[x(tι,p),u(tι),p] ≤ 0 (S.5)

whereΨ̃ is the right-hand side of the ordinary differential equations
(ODEs) (S.1) describing the dynamics of the statesx given initial condi-
tionsx0. Constraints can also be present in these dynamic models, either
as path constraints (S.2),(S.3) or as time-point constraints (S.4),(S.5). Path
constraints can be equalitiesη and inequalitiesζ which must be enforced
the whole time horizon considered. Similarly, time-point constraints can
be equalitiesηι and inequalitiesζι only to be enforced at a specific point
of time tι.

Although the above formulation corresponds to the widely used ODE
formalism, it should be noted that the inverse optimal control approach
presented in our paper is also applicable to other dynamic modeling
formalisms.

1.2 Statement of the general estimation problem

The problem ofparameter estimation (PE) in nonlinear dynamic systems
is usually formulated as a dynamic optimization problem. Given some
data and a dynamic model, the optimal values for the model parameters
are computed minimizing an objective (cost) function quantifying the dif-
ferences between the model’s predictions and the data. The generalized
mathematical formulation of such problems corresponds to anonlinear
programming problem (NLP) with differential and algebraicconstraints:

Findp to minimize

J =

nexp
∑

k=1

nobs
∑

j=1

ns
∑

i=1

wijk(yijk(x(ti,p),p)− ỹijk)
2 (S.6)

Subject to:

dx

dt
=Ψ̃[x{t,p},u{t},p, t],

x{t0,p} = x0

(S.7)
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Fig. S1. Diagram of the overall inverse optimal control solution strategy (the illustrations correspond to the particular case of LPN3B synthetic problem).
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y(x,p) = g(x(t,p),p) (S.8)

η[x(t,p),u(t),p] = 0 (S.9)

ζ[x(t,p),u(t),p] ≤ 0 (S.10)

pL ≤ p ≤ pU (S.11)

whereJ is the cost function to be minimized,p is the vector of decision
variables of the optimization problem (the set of parameters to be estima-
ted), ỹ are the experimental measurements of a subset of the (so-called)
output state variables,y(p, t) are the model predictions for those outputs,
W (t) is a weighting (or scaling) matrix andx are the differential state
variables. Besides,̃Ψ is the set of differential and algebraic equality con-
straints (S.7) describing the system dynamics (i.e. the nonlinear process
model), andη andζ are the possible equality (S.9) and inequality (S.10)
path and point constraints. Finally,p is subject to upper and lower bounds
acting as inequality constraints (S.11).

The simultaneous input and parameter estimation problem (described
in the main text as IOCP-1) is a generalization of the above problem where
one seeks to estimate both time-invariantp and time-dependentu(t). This
more general estimation problem is actually a particular case of nonlinear
optimal control, which we describe next.

In the usual PE problem time-dependent inputs are treated asknown
(measured) quantities, and model parameters as unknown variables to be
estimated from experimental data. However, in many other cases, this is not
true, either due to large uncertainty in the input measurements or due to lack
of such measurements. The above general estimation formulation allows
us to address those situations where one needs to calibrate the dynamic
model to the time-series data and simultaneously estimate unmeasured
time-dependent inputs.

Extending the PE mathematical formulation, the cost functional for
the IOCP-1 case needs to account for the dependency of the model’s
predictions on the inputs, so instead of Eqn. (S.6) we shoulduse:

min
u(t),p,tf

nexp
∑

k=1

nobs
∑

j=1

ns
∑

i=1

wijk(yijk(x(ti,p),p,u)− ỹijk)
2 (S.12)

Additionally we consider bounds for the inputs of the form:

uL ≤ u(t) ≤ uU (S.13)

Note that in IOCP-1, no inference of the underlying optimality princi-
ples is considered. In other words, the problem is restricted to estimating
the unknown inputs and parameters of the model that best explain (fit) the
data. To make the connection with the underlying optimalityprinciples,
we need to combine IOCP-1 with a multiobjective optimal control problem
(OCP) in what is referred and described in the main text as IOCP-2. In the
next section we provide a brief description of the optimal control problem,
including its multi-objective formulation.

1.3 Statement of the general optimal control problem

Considering nonlinear dynamic systems, the problem ofoptimal control

(OCP) consists of computing the optimal decision variables(time-varying
inputs, or controls, and time-invariant parameters) that minimize (or maxi-
mize) a given cost functional (or performance index), subject to a set of
differential equations and possibly algebraic constraints. Mathematically,
the OCP is usually stated as follows:

min
u(t),tf

J[x,u] (S.14)

Subject to:

dx

dt
=Ψ̃[x{t,p},u{t},p, t],

x{t0,p} = x0

(S.15)

η[x(t,p),u(t),p] = 0 (S.16)

ζ[x(t,p),u(t),p] ≤ 0 (S.17)

ηι[x(tι,p),u(tι),p] = 0 (S.18)

ζι[x(tι,p),u(tι),p] ≤ 0 (S.19)

uL ≤ u(t) ≤ uU (S.20)

where the time-dependent control variables (u(t)) (along with the final
time (tf ) in the case of the free terminal time problems), are computed in
order to minimize (or maximize) an objective (cost) functional (J[x,u]),
subject to the system’s dynamics as well as the imposed constraints. The
objective functionalJ[x,u] corresponds to the optimality criteria hypoth-
esis. In the case of a multicriteria formulation, the cost functionalJ[x,u]
is a set of objective functions corresponding to theN different criteria
considered:

J[x,u,p] =



















J1[x,u,p]

J2[x,u,p]

.

.

.

JN[x,u,p]



















(S.21)

where, in its general form, each objective functionJi in this set (i ∈

[1, N ]) consists of a Mayer and a Lagrange term:

Ji[x,u,p] = Φi
M [x(tf ,p),p] +

∫ tf

t0

Φi
L[x(t,p),u(t),p] (S.22)

The system’s dynamics are described by Eqns. (S.15), i.e. the set of ordi-
nary differential equations and the corresponding initialvalues (x{t0}),
forming the so-called initial value problem (IVP). Equality (η) and ine-
quality (ζ) path constraints are represented in the sets of equations (S.16)
and (S.17), respectively, as constraints to be enforced (e.g. total enzyme
capacity, critical thresholds for specific concentrations, etc.). Also, the
sets of equality (ηι) and inequality (ζι) time-point constraints are given
in (S.18) and (S.19), respectively, corresponding to constraints valid for
a specific point of the time horizon. Finally, the upper and lower bounds
(uU ,uL) of the control variables’ vector throughout the process are given
in (S.20).

1.4 Numerical solution of nonlinear optimal control
problems

Methods for the numerical solution of nonlinear optimal control prob-
lems can be classified under three categories: dynamic programming,
indirect and direct approaches. Dynamic programming (Bellman, 1956;
Bertsekaset al., 1995) suffers from the so-calledcurse of dimensional-
ity, so the latter two are the most promising strategies for realistic
problems. Indirect approaches were historically the first developed and
are based on the transformation of the original optimal control problem
into a multi-point boundary value problem using Pontryagin’s necessary
conditions (Bryson, 1975; Liberzon, 2012). Direct methodsare based
on the discretization of the control, known as the sequential strate-
gy (Vassiliadiset al., 1994a), or both the control and the states, known
as the simultaneous strategy (Biegleret al., 2002). Here we have chosen
the control parameterization approach.
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1.4.1 Control vector parameterization
The control vector parameterization (CVP) approach proceeds by dividing
the time horizon into a number of elements (ρ). Each of the control
variables (j = 1 . . . nu) are then approximated within each interval
(i = 1 . . . ρ) by means of some basis functions (usually, low order
Lagrange polynomials (Vassiliadiset al., 1994b)) as follows:

u
(i)
j (t) =

Mj
∑

k=1

uijkℓ
(Mj)

k (τ (i)) t ∈ [ti−1, ti] (S.23)

beingτ the normalized time in each elementi:

τ (i) =
t − ti−1

ti − ti−1
(S.24)

andMj the order of the Lagrange polynomial (ℓ). In this work we will
considerMj = 1 or Mj = 2, i.e. step-wise or linear-wise control
approximations.

In the CVP approach, the controls are expressed as functionsof a
new set of time invariant parameters corresponding to the polynomial
coefficients (w). Therefore the original infinite dimensional problem is
transformed into a set of non-linear programming problems,with dyna-
mic (the model) and algebraic constraints, in which the decision variables
correspond to the original unknown parameters inθ andw, which will be
part of the overall set of parameters to determine.

1.5 Structural identifiability

Here we illustrate how the Taylor approach could be used to analyze the
structural identifiability of a given model. The approach isbased on the
fact that observations are unique analytic functions of time and so all
their derivatives with respect to time should also be unique(Pohjanpalo,
1978). It is thus possible to represent the observables by the corresponding
Maclaurin series expansion and it is the uniqueness of this representation
that will guarantee the structural identifiability of the system. The idea is
to establish a system of non-linear algebraic equations on the unknowns,
based on the calculation of the Taylor series coefficients, and to check
whether the system has a unique solution.

Importantly for the IOCP problem, the unknowns include the vector
of parameters and the vector of inputs (plus their derivatives with respect
to time as evaluated at a given time, typicallyt = 0+).

Let’s consider the simple illustrative example:

ẋ1 = 0 (S.25)

ẋ2 = k1ux1 − k2x2 (S.26)

y = x2 (S.27)

with x1(0) = 1 andx2(0) = 0. For illustrative purposes, we now use
the Taylor approach to perform the structural identifiability analysis of the
associated IOC problem. For the purpose of the analysis we will assume
thatu(t) is a bounded continuously differentiable function of time.The
first Taylor coefficients would read as follows:

T0 = 0; (S.28)

T1 = k1u(0); (S.29)

T2 = k1u
1(0) − k1k2u(0); (S.30)

T3 = k1u
2(0) − k1k2u

1(0) + k1k
2
2u(0) (S.31)

T4 = k1u
3(0) − k1k2u

2(0) + k1k
2
2u

1(0) − k1k32u(0)(S.32)

. . . (S.33)

where ui) with i = 1, 2, 3, ... regards the first, second, third, etc.
derivative of the control with respect to time.

ẋ1 =

ẋ2 = k1u x1 − k2 x2

0

x1(0)=1; x2(0)=0;  

a) CASE 1: u(t)= ku; k1ku=2
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Fig. S2. Illustrative examples of lack of structural identifiability under sustained stimula-

tion. Figures correspond to the controls and the corresponding observables in two different

scenarios: i)ku = 0.5; k1 = 4; k2 = 1 (red) andku = 1; k1 = 2; k2 = 1 (blue);

and ii) ku = 0.5; k1 = 4; k2 = 2 (purple) andku = 1; k1 = 2; k2 = 2 (green).

Figures illustrate how the inputs in each figure are different while the observations coincide

but also that results vary in both figures.The fact that the observation does not change despite

the value of u has to do with the fact thatku· k1 = 2 in both cases; these results mean that

ku andk1 are not uniquely identifiable (only their product is). Remarkably modifications

in k2 result in a different system behaviour, sok2 becomes structurally identifiable.

ẋ1 =

ẋ2 = k1u x1 − k2 x2
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CASE 2: u(t)= ku e-kt t; k1ku=2; k2=1
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Fig. S3. Illustrative examples of lack of structural identifiability under exponential stimula-

tion. Figures correspond to the controls and the corresponding observables in two different

scenarios: i)ku = 0.5; k1 = 4; kt = 0.1 (red) andku = 1; k1 = 2; kt = 0.1

(blue); and ii)ku = 0.5; k1 = 4; kt = 0.5 (purple) andku = 1; k1 = 2; kt = 0.5

(green). Figures illustrate how the inputs in each figure are different while the observations

coincide but also that results vary in both figures. The fact that the observation does not

change despite the value of u has to do with the fact thatku· k1 = 2 in both cases; these

results mean thatku andk1 are not uniquely identifiable (only their product is). Remar-

kably modifications inkt result in a different system behavior, sokt becomes structurally

identifiable.

Sincek1, k2, u(0), u1)(0) andui) with i = 1, 2, 3, ... are unknown
in the general IOCP problem, we need to assess whether the solution of
the system of equations S.29-S.33 on the unknowns is unique.

It is straightforward to see that the Jacobian of the Taylor coefficients
with respect to the unknowns is rank deficient, indicating that parameters
andu cannot be simultaneously uniquely estimated.

To get further information we may define specific control parameteri-
zations. For example, ifu(t) = ku, it can be clearly seen that onlyk1ku
andk2 can be simultaneously estimated, but it will be impossible to give
unique values fork1 andku. Similarly, if u(t) = kuexp(−ktt), it can
be again probed thatk1ku, k2 andkt can be uniquely identified inR+.

In Figures S2, S3, and S4 several simple illustrative examples of
structural non-identifiability are depicted.
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Fig. S4. Illustrative examples of lack of structural identifiability under logistic stimulation.

Figures correspond to the controls and the corresponding observables in three different

scenarios each: i)ku = 0.5; k1 = 4; kt = 1; tu = 3 (red) andku = 1; k1 =

2; kt = 1; tu = 3 (blue); ii) ku = 0.5; k1 = 4; kt = 4; tu = 3 (purple) andku =

1; k1 = 2; kt = 4; tu = 3 (green) and iii)ku = 0.5; k1 = 4; kt = 1; tu = 8

(orange) andku = 1; k1 = 2; kt = 1; tu = 8 (cyan). Figures illustrate how the inputs

in each figure are different while the observations coincide but also thatresults vary in all

three figures. The fact that the observation does not change despite the value of u has to do

with the fact thatku· k1 = 2 in all three cases; these results mean thatku andk1 are not

uniquely identifiable (only their product is). Remarkably modifications inkt andtu result

in different system behaviors, so both parameters become structurallyidentifiable.

1.6 Error analysis

1.6.1 Goodness of fit
For each case study, the performance of our method is evaluated using
the normalized root mean square error (NRMSE). This metric is a way to
quantify the relative deviation of the model’s predictionswith respect to the
experimental measurements or the known problem solution. For the case
of the error with respect to the experimental measurements (observables),
the NRMSE is computed as:

NRMSEy =

√

√

√

√

√

√

nexp
∑

k=1

nobs
∑

j=1

ns
∑

i=1

(

yijk(x(ti,p),u(ti),p)−ỹijk
max (ỹijk)−min (ỹijk)

)2

Ndata

(S.34)
Wherenexp, nobs, ns stand for the numbers of experiments, the num-

ber of observables and the number of time-points respectively, asNdata is
the total number of data points available (all experiments,all observables
and all time-points).

This is a typical metric used in parameter estimation (PE) problems. In
the IOCP, we are not only estimating the unknown parameter set (θ), trying
to fit the model’s prediction to the observables, but also reconstructing the
model’s inputs. Therefore, in synthetic problems (where the input used
to create the data and should be inferred is known), considering only the
error related to the observables would not be an adequate quantification of
the method’s error.

An equivalent expression is used to compute the NRMSE with respect
to the time-dependent inputs:

NRMSEu =

√

√

√

√

√

√

nexp
∑

k=1

nsti
∑

j=1

nsu
∑

i=1

(

uijk−ũijk

max (ũijk)−min (ũijk)

)2

Nudata
(S.35)

Wherenexp, nsti, nsu stand for the numbers of experiments, the number
of inputs and the number of elements of the inputs’ time-vector respecti-
vely, asNudata is the total number of data points for the inputs available
(all experiments, all inputs and all time-points). In this case of problems
using simulated data, the true value of the parameters is known, so this
metric can also be computed with respect to the estimated parameters
themselves:

NRMSEθ =

√

√

√

√

√

√

nexp
∑

k=1

nθ
∑

j=1

(

θjk−θ̃jk

max (θ̃jk)−min (θ̃jk)

)2

Nθdata
(S.36)

Wherenexp, nθ stand for the numbers of experiments (in case some or all
parameters are local unknowns in a multi-experimental scheme) and the
number of unknown parameters respectively, asNθdata is the total number
of data points for all unknown parameters available (all experiments, all
unknown parameters).

1.6.2 Data generation
Several case studies included subcases with noisy synthetic data. We
have generated realizations of this pseudo-experimental data by adding
noise to the output of the models considering a Gaussian distribution with
heteroscedastic variance as follows:

ỹo,s = yo,s + ǫo,s (S.37)

with :

ǫo,s = σ × randCo,s × ye,o (S.38)

whereǫo,s are normally distributed independent random variables with
standard deviationσ×ye,o andrandCo,s is a random number drawn from
the standard normal distributionN(0,∞) defined for every observableo
and sampling times. In the rest of the manuscript, we are referring to this
error model as heteroscedastic proportional.

1.7 Case study JAK-STAT

This case study is an example of IOCP-1, based on the problem con-
sidered by Schelkeret al. (2012), where we seek the simultaneous input
reconstruction and parameter estimation in a dynamic modelof the JAK2-
STAT5 signaling pathway. The detailed mathematical statement was taken
from http://data2dynamics.github.io/d2d/ and is detailed
below. In Figure S5 we show the corresponding network representation.

pEpoR

npSTAT5
2

pSTAT5
2

pSTAT5STAT5

nSTAT5
1

nSTAT5
2

nSTAT5
3

nSTAT5
4

nSTAT5
5

Fig. S5. Case JAKSTAT: Network representation for the JAK-STAT case study.

http://data2dynamics.github.io/d2d/
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1.7.1 Problem formulation
The mathematical formulation of the simultaneous input andparameter
estimation problem is:

min
pEpoR(t),p

J[x, pEpoR,p] (S.39)

Where:

J[x, pEpoR,p] =

nexp
∑

q=1

nobs
∑

j=1

ndata
∑

i=1

wijq(yijq(x(ti,p),p)− ỹijq)
2

(S.40)
Subject to:

dSTAT5

dt
= p4 · nSTAT55 ·

0.45

1.4
− p1 · pEpoR · STAT5

dpSTAT5

dt
= p1 · pEpoR · STAT5− 2 · p2 · pSTAT52

dpSTAT52

dt
= 2 · p2 · pSTAT52 − p3 · pSTAT52

dnpSTAT52

dt
= p3 · pSTAT52 ·

1.4

0.45
− p4 · npSTAT52

dnSTAT51

dt
= 2 · p4 · npSTAT52 − p4 · nSTAT51

dnSTAT52

dt
= p4 · nSTAT51 − p4 · nSTAT52

dnSTAT53

dt
= p4 · nSTAT52 − p4 · nSTAT53

dnSTAT54

dt
= p4 · nSTAT53 − p4 · nSTAT54

dnSTAT55

dt
= p4 · nSTAT54 − p4 · nSTAT55

(S.41)
y1(x,p) =offset_tSTAT5 + scale_tSTAT5 · (STAT5

+ pSTAT5 + 2 · pSTAT52)
(S.42)

y2(x,p) =offset_pSTAT5 + scale_pSTAT5 · (pSTAT5

+ 2 · pSTAT52)

(S.43)

Where the states vector is:

x =[STAT5, pSTAT5, pSTAT52, npSTAT52, nSTAT51,

nSTAT52, nSTAT53, nSTAT54, nSTAT55]

(S.44)

And the initial conditions are:

x(t0) =
[

1 0 0 0 0 0 0 0 0
]

(S.45)

1.7.2 Structural identifiability analysis
The structural identifiability analysis was performed using the generating
series approach as implemented in GenSSI software toolbox (Chiset al.
(2011a,b), available at https://github.com/genssi-developer/GenSSI). For
the analysis we assumed a Gaussian parameterization forpEpoR(t) =

EpoAe(−0.5(t−Epot)2/EpoS2). This parameterization captures the
main features of the measured data and it only requires the addition of
three parameters: the maximum value (EpoA), the width of the Gaussian
(EpoS) and the location of the center (Epot) of the Gaussian.

The model has been reported as non-identifiable regarding standard
parameter estimation (Raueet al. (2009)). Here we analyze the structu-
ral identifiability of the more general IOCP to assess what the added
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Fig. S6. Case JAKSTAT0: estimated versus experimental stimuli measurements, along

with the fit for the observed states. The overall quality of the estimation is given as nor-

malized root mean square error (NRMSE) for the observables (y), thestimuli (u) and the

parameters (θ). This solution corresponds to the synthetic noiseless case.

difficulties are. Our analysis reveals that the model is structurally non
identifiable, i.e. it is impossible to uniquely determine all parameters plus
the parameterization of the stimulus. The complete analysis reveals that
offset_tSTAT5 andoffset_pSTAT5 are globally structurally iden-
tifiable, p4 is non identifiable and for the remaining parameters it is not
possible to conclude identifiability.

Only if we fix the observables scaling parameters,p1 and p4 it
is possible to obtain a full rank Jacobian in the generating series ap-
proach to guarantee local structural identifiability for [offset_tSTAT5,
offset_pSTAT5, p2, p3, EpoA, Epot, EpoS].

1.7.3 Numerical results
In this case study, we considered solving the IOCP-1 problemtype for three
different scenarios, one considering real experimental data (JAKSTATreal)
and two additional scenarios using a synthetic data set. Thereal experi-
mental data and the nominal values for the model parameters were taken
from http://data2dynamics.github.io/d2d/. The synthetic
data for the additional scenarios were generated by simulation of a chosen
input profile either without the addition of numerical noise(JAKSTAT0)
or with 5% heteroscedastic proportional noise (JAKSTAT5).

Given the structural identifiability analysis presented above, we first
considered the synthetic subcases (JAKSTAT0 and JAKSTAT5)to study
the impact on identifiability of fixing parameters to their nominal values.
For the noiseless case JAKSTAT0, the inference of the input profile and
the fit on the observables were almost perfectly recovered, as presented
in Figure S6. The quality of inference is given in terms of NRMSE with
respect to both the observables and the inputs. Additionally, the almost
perfect identification of the known parameters is shown in Figure S7, where
the bounds considered for the estimation of the parameters are shown as
blue boxes, their true nominal values as orange lines, and the estimated
values as dots.

For the noisy synthetic subcase (JAKSTAT5), we used regularization
to achieve a satisfactory solution, avoiding possible artefacts as described
in the main paper. We made use of two regularization terms, the first acting
as a constraint on the second order derivative in order to avoid obtaining
noisy input solutions that result in over-fitting the observables. At the same
time, we avoid oscillatory behavior in the input profile and incorporate the
prior knowledge on the behavior we expect from a biological inducer. We

http://data2dynamics.github.io/d2d/
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Fig. S8. Case JAKSTAT5: illustration of practical non-identifiability inp2 simulating a

local solution (pEpoR andp) for different values ofp2 and showing how it affects the

observablesy1 andy2. This corresponds to the synthetic noisy case.

also used regularization on the input, providing a very simplistic initial
guess, simulating in the simplest way the early peak that we expect to
observe qualitatively. We were able to infer with high quality the input
profile (Figure S9), obtaining a simultaneous good fit to the observables.
We provide the NRMSE metrics in the same figure. The identification of the
parameters is illustrated in Figures S10 and S11. These results indicate lack
of practical identifiability for parameterp2. This issue is further illustrated
in Figure S8: forp2 values greater than10, the outputs (and therefore the
quality of the fit, as indicated by the NRMSE) are essentiallythe same.

Finally, for the real data subcase (JAKSTATreal) we took advantage
of the analysis we performed in the synthetic subcases. We used the same
discretization, a simple initial guess for the input and identical regular-
ization strategy and settings. The input inference and the fit to the real
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Fig. S9. Case JAKSTAT5: estimated versus experimental stimuli measurements, along

with the fit for the observed states. The overall quality of the estimation is given as nor-

malized root mean square error (NRMSE) for the observables (y) andthe stimuli (u). This

solution corresponds to the synthetic noisy case.
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Fig. S10. Case JAKSTAT5: parameter inference in the inverse optimal control problem.

The box corresponds to the bounds used in the estimation, the orange dash illustrates the

true value used to generate the synthetic data and the orange dot shows to the estimate. This

solution corresponds to the synthetic noisy case.

data are presented in the main paper, showing an excellent recovery. The
corresponding convergence curve is given in Figure S54.

1.7.4 Uncertainty analysis
Analyzing the uncertainty in the estimates is non-trivial for this class of
problems. Here, we will show how to quantify the uncertaintyof the IOCP
for one of the case studies presented (JAKSTAT5).

Our starting point is to consider IOCP as a generelization ofthe para-
meter estimation problem involving dynamic systems. Roughly speaking,
for the parameter estimation problem there are four ways to compute
errors in the parameter estimates: (i) using metrics based on the Fisher
Information Matrix (FIM) and the Cramer-Rao inequality, (ii) bootstrap-
ping approaches, (iii) Bayesian methods, and (iv) the profile likelihood
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Fig. S11. Case JAKSTAT5: parameter inference in the inverse optimal control problem.

Relative difference between the true values used to generate the syntheticdata and the

estimates. This solution corresponds to the synthetic noisy case.

method. A detailed review of these and related approaches can be found
in Vanlier et al. (2013).

However, when we consider problems IOCP-I and IOCP-II and a fre-
quentist framework, bootstrapping seems to be the only approach that
can be extended easily. Essentially, in a bootstrap approach we perturb
the data and solve the problem for each realization of the data. This is
a straight-forward approach that generally has the disadvantage of being
rather demanding computationally.

Considering the JAKSTAT5 case, we used the bootstrap approach
generating different realizations of synthetic data and soolving he pro-
blem for each one of them. Then the resulting distributions were analyzed
statistically. In Figure S13 the distribution obtained forthe unknown para-
meters is presented. Note that the distributions in this figure, as well as the
ones corresponding to the time elements of the input (pEpoR), are non-
normal. Therefore we represent them using violin plots in Figure S12 (for
the case of model parameters).

Due to their non-normal nature, the concepts of standard deviation or
confidence intervals are not applicable. Instead, we can usethe concept
of credible intervals, introduced in Bayesian statistics (Kruschke, 2014),
(Kruschke, 2013), as an equivalent for our purposes. In Figure S14 the
input (pEpoR) bootstrap result is presented. The 90% high density interval
(credible interval) was computed (Table S.T1) and is illustrated with the
green envelope.

1.8 Case study TSP

This case study is another, more complex, instance of the IOCP-1 class.
It is based on the biochemical pathway studied by Moleset al. (2003) for
parameter estimation. Here we consider the simultaneous input and para-
meter estimation in a dynamic model of a fully observed 3 steppathway,
with 8 states, 36 parameters and 2 inputs (which take different values for a
set of 16 different experimental conditions). It should be noted that practi-
cal identifiability issues for the parameter estimation problem studied by
Moleset al. (2003) were reported by Rodriguez-Fernandezet al. (2006).
Thus, we expect the extended IOCP version presented here to be very chal-
lenging, and therefore a good opportunity to evaluate the advantages of
the regularization methodology discussed above. The associated network
representation is given in Figure S15.

Table S.T1. Uncertainty analysis: credible intervals

computed for the JAKSTAT5 case with 90% pro-

bability. The pEpoR time vector elements (ioc1-9)

correspond to the value of pEpoR for t=[0 3 7 11 15 24

36 48 60]. The high density interval (HDI) computed

is then used to plot Figure S14.

IOC_upar mode90% 90%HDI lb 90%HDI ub

p2 - 500 500.0235
p3 0.113052 0.095799 0.1301
offset_tSTAT 0.179433 0.138071 0.20572
offset_pSTAT 0.235583 0.222378 0.256238
ioc1 0.067923 0.044708 0.116407
ioc2 0.074264 0.023111 0.109239
ioc3 0.981378 0.775684 1
ioc4 0.946703 0.116469 1
ioc5 0.196829 0.072747 0.889468
ioc6 0.12167 0.056991 0.307032
ioc7 0.025029 0.011514 0.044097
ioc8 0.011836 0.00499 0.020522
ioc9 0.010573 0.003899 0.016652

HDI:High Density Intervals, lb: lower bound, ub:upper
bound.
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Fig. S12. Uncertainty analysis for JAKSTAT5: violin plots depicting the distribution of

the parameters found using the bootstrap approach.

1.8.1 Problem formulation
The formulation of the simultaneous input and parameter estimation
problem is:

min
u(t),p

J[X,u,p] (S.46)

Where:

J[X,u,p] =

nexp
∑

q=1

nobs
∑

j=1

ndata
∑

i=1

wijq(yijq(x(ti,p),p) − ỹijq)
2

(S.47)
Subject to:
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dG1

dt
=

V1
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Ki1
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S
)na1

− k1 ·G1

dG2

dt
=

V2

1 + ( P
Ki2

)ni2 + (Ka2

M1
)na2

− k2 ·G2

dG3

dt
=

V3

1 + ( P
Ki3

)ni3 + (Ka3

M2
)na3

− k3 ·G3

dE1

dt
=

V4 ·G1

K4 +G1
− k4 ·E1

dE2

dt
=

V5 ·G2

K5 +G2
− k5 ·E2

dE3

dt
=

V6 ·G2

K6 +G3
− k6 ·E3

dM1

dt
=

kcat1 ·E1 · ( 1
Km1

) · (S −M1)

1 + S
Km1

+ M1
Km2

−
kcat2 · E2 · ( 1

Km3
) · (M1 −M2)

1 + M1
Km3

+ M2
Km4

dM2

dt
=

kcat2 ·E2 · ( 1
Km3

) · (M1 −M2)

1 + M1

Km3
+ M2

Km4

−
kcat3 · E3 · ( 1

Km5
) · (M2 − P )

1 + M2

Km5
+ P

Km6

(S.48)

y(X,p) = X (S.49)

Where the states vector is:

X = [G1, G2, G3, E1, E2, E3,M1,M2] (S.50)

And the inputs and parameters vectors are, respectively:

u = [S,P ] (S.51)



10 Tsiantis et al.

1st 2nd 3rd 1st

IOCP solution in iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
R

M
S

E

Error analysis

TSP5 TSP0 y u θ

0

1

2

3

4

5

6

7

8

9

×10-5
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p =[V1, Ki1, ni1, Ka1, na1, k1, V2,Ki2, ni2,Ka2, na2,

k2, V3, Ki3, ni3, Ka3, na3, k3, V4,K4, k4, V5,

K5, k5, V6,K6, k6, kcat1,Km1,Km2, kcat2, Km3,

Km4, kcat3, Km5,Km6]

(S.52)

And the initial conditions are:

XT (t0) =





























0.66667

0.57254

0.41758

0.4

0.36409

0.29457

1.419

0.93464





























(S.53)

whereM1, M2, E1, E2, E3, G1, G2 andG3 represent concentra-
tions of the species involved in the different biochemical reactions and
S andP keep fixed initial values for each experiment (i.e. parameters
under our control). The parameters are divided in two different classes:
Hill coefficients, allowed to vary within the range(0.1, 10), and all the
others, allowed to vary within the range(10−6, 500).

1.8.2 Numerical results
We considered two scenarios, noisy (TPS5) and noiseless (TPS0) data.
Thus, we generated data for 16 experiments with different inputs, both
with and without 5% heteroscedastic proportional noise. Our results are
summarized in Figure S16, where we give the NRMSE values (forinputs,
states and parameters) for the two different subcases. Note, this is a synth-
etic scenario and knowing the true parameter values allows us to compute
their NRMSE.

For the noiseless subcase (TSP0), there was no need to use regula-
rization, and we were able to recover almost exactly all the inputs and
parameters (note the very low NRME values). The input reconstruction
is summarized in Figure S18, showing an analysis based on therelative
difference of the values inferred and the true inputs for each of the 16
experimental conditions and each of the two time-invariantinputs. The
parameter identification results are presented in Figure S19 as the relative
difference of the parameters computed to the their true values (since the

Table S.T2. Case TSP: evolution of NRMSE for noisy and

noiseless cases while iteratively decreasing the regularization

parameters.

Noise Iterations NRMSEy NRMSEu NRMSEθ

0% 1st 0.000030 0.000021 0.000033
10% 1st 0.375198 0.644647 0.842095
10% 2nd 0.308303 0.677463 0.774919
10% 3rd 0.128832 0.148638 0.168275

y:observables, u:stimuli,θ:parameters.
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Fig. S18. Case TSP0: stimuli inference per experiment. In this case study, synthetic

multi-experimental datasets were used for the inverse optimal control problem. Here the

relative difference between the true input values used to generate the noiseless data for each

experiment and the input estimates is analyzed, per experiment, for bothinputs.

problem is synthetic and therefore we know the true values ofparameters).
The fit on the observables for experiment I is given in Figure S22 (the fit
for the remaining 15 experiments are similar, and not shown here for the
sake of brevity).

In the case of TSP5, we achieved a good inference of the true solu-
tion despite the practical identifiability issues of this problem. In contrast
to TSP0, where no regularization was used, in TSP5 we used twoof the
implemented regularization terms in our cost function. In particular, we
used a regularization scheme with re-optimizations, starting with relatively
large values for the regularization parameters for both stimuli and para-
meters. Then we iterate, re-optimizing using the solution obtained as an
initialization guess for the new optimization, while decreasing the values
of the regularization parameters. This procedure resultedin very good
estimations of the stimuli for the multiple experiments. Wealso achieved
good parameter estimates, although we also found the identifiability issues
previously reported (Rodriguez-Fernandezet al., 2006), as expected. The
impact of the iterative decrease of regularization on the performance of our
method can be visualized in Figure S17, and is also given in table format
in Table S.T2. These results illustrate how the NRMSE improves at each
iteration (TSP5 on the left y-axis). We also give as a reference the much
lower NRMSE of the noiseless case (TSP0, on the right y-axis). The infe-
rence of the inputs and parameters is presented in Figures S20 and S21.
The fit on the observables for one of the experiments is given in Figure
S23, and the convergence curve in Figure S55.
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Fig. S19. Case TSP0: parameter inference in the inverse optimal control problemas relative

difference between the true values used to generate the synthetic noiseless data and the
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experimental datasets were used for the inverse optimal control problem. Here the relative
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and the input estimates is analyzed, per experiment, for both inputs.

1.9 Case study LPN3B

This case study is given as a first illustrative example of themore general
IOCP-2 problem class. The problem is a generalization of theone studied
by de Hijas-Listeet al. (2014), where it was considered as a standard opti-
mal control problem (OCP). Here, we take the solution reference of the
inner problem as the multi-objective OCP described in de Hijas-Listeet al.
(2014), selecting a specific point of the resulting Pareto front. The nature of
this case study illustrates well the ability of our approachto consider dyna-
mic models with path constraints on the states and the inputs. In Figure
S24 we show the network representation considered.

1.9.1 Problem formulation
The mathematical formulation of inverse optimal control problem is stated
below:

min
e(t),k,tf

Jouter[S, e,k] (S.54)
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Fig. S21. Case TSP5: parameter inference as relative difference between the truevalues

used to generate the synthetic noisy data and the estimates.
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Fig. S22. Case TSP0: example of resulting fit for the observables (experiment 1; theresults

for the other experiments are included as part of the software distribution).
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Fig. S23. Case TSP5: example of resulting fit for the observables (experiment 1; theresults

for the other experiments are included as part of the software distribution).
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Fig. S24. Case LPN3B: Network representation for the LPN3B case study.

Where:

Jouter[S, e,k] =

nexp
∑

q=1

nobs
∑

j=1

ndata
∑

i=1

wijq(yijq(S(ti,k), e,k)− ỹijq)
2

(S.55)
Subject to:

min
e(t),tf

Jinner[S, e,k] (S.56)

Where:
Jinner[S, e,k] =

[

tf ,
∫ tf
t0

(S2 + S3)dt
]T

(S.57)

Subject to the system dynamics:

dS

dt
= Nυ (S.58)

y(S,k) = S (S.59)

Where the states’ vector is:

S = [S1, S2, S3, S4] (S.60)

While the stoicheiometric matrixN is:

N =











0 0 0

1 −1 0

0 1 −1

0 0 1











And the kinetics are described by:

υi = ki · Si · ei (S.61)

With the following end-point constraint:

S4(tf ) = P (tf ) (S.62)

and path constraint:
3

∑

i=1

ei ≤ ET (S.63)

with: ET = 1 M, S1(t0) = 1 M, Si(t0) = 0 for i = 2, 3, 4 and
P (tf ) = 0.9 M.

1.9.2 Structural identifiability analysis
The structural identifiability analysis was performed using the gener-
ating series approach as implemented in the GenSSI softwaretoolbox
(Chiset al. (2011a,b), available at github.com/genssideveloper/GenSSI).

We first needed to parameterize the solution for the activation profiles
for the different enzymesei(t), i = 1 . . . 3. With this aim, we exploited
the fact that an underlying optimality principle drives thesystem, i.e. the
system evolves to minimize the final time to achieve a certainamount
of product. Under this assumption, the enzyme activation profiles can be
approximated by a boxcar function as follows:

ei = kei1H(t − ti1)− kei2H(t − ti2) (S.64)

whereH(t) is the Heaviside step function;kei1 andkei2 regard the ampli-
tudes of the enzyme activation, andti1 andti2 determine the switching
times from0 to kei or the other way around.

Table S.T3. Case LPN3B: brief description of sub-cases considered for the

LPN3B case study. LPN3B0 and LPN3B10 are the main sub-cases solved. The

rest of the sub-cases are variations presented to illustrate different issues of the

inverse optimal control problem.

Label Noise level Description

LPN3B0 0% Noiseless case

LPN3B10 10% Noisy case

LPN3B0re 0%
LPN3B0 without initial assumption of input

discretization and using re-optimizations

LPN3B10re 0%
LPN3B10 without initial assumption of input

discretization and using re-optimizations

LPN3B0noreg 0% LPN3B0 without regularization

LPN3B0p2l2 0% LPN3B0 with different parameter bounds

LPN3B0noreg2 0%
LPN3B0 without regularization and with

different parameter and input bounds

A continuous approximation of the boxcar function would be:

ei ≈
kei1

1 + e−2kt(t−ti1)
−

kei2

1 + e−2kt(t−ti2)
(S.65)

with kt large enough (for example, kt>20).
The number of parameters under this approximation is15, three kinetic

constants plus the boxcar approximation related parameters. The gener-
ating series approach results in a rank deficient Jacobian. The addition of
further derivatives to the method does not increase the Jacobian’s rank.
Therefore it is concluded that the model in its more general form is non-
identifiable.

To further reduce the number of unknowns, we exploit again the under-
lying optimality principle: 1) we assume that the enzymes are either active
or inactive, i.e.kei = kei1 = kei2, i = 1 . . . 3; 2) we apply the con-
straint

∑3
i=1 kei = ET , i.e. the sum of the enzymes corresponds to the

maximumET over time; and 3) we use the just-in-time activation property
Zaslaveret al. (2004) of linear pathways to fixt11 = 0, i.e. first enzyme
is active from initial time andt22 = t31 . The number of unknowns is9.

After several derivatives the rank of the Jacobian is7, which means
that the model is still non-identifiable. The model becomes,at least, locally
structurally identifiable if we fix either the kinetic constants (ki) or the
amplitudes of the enzyme activation (kei).

In summary, exploiting the biological knowledge about the optimality
principle underlying the dynamics of these linear pathwaysenabled the
reduction of the unknowns in the IOCP problem. However it wasnot pos-
sible to guarantee structural identifiability. We discuss the consequences
of this lack of identifiability in the next section.

1.9.3 Numerical results
We solved the IOCP-2 formulation considering synthetic data (generated
by simulation) for two scenarios: data with 10% heteroscedastic propor-
tional noise (LPN3B10), and noiseless data (LPN3B0). The quality of the
solutions computed for these two subcases are shown in TableS.T4 in terms
of the normalized root mean square error (NRMSE) for the observables,
inputs and (since we are dealing with a synthetic problem, where the true
values of parameters are known) the model parameters.

In the noiseless case, we achieved almost perfect reconstruction of
inputs and parameters. In the noisy case we were able to achieve a very
good solution using a piecewise constant approximation forthe inputs. In
order to tackle the identifiability issues discussed above we used regulari-
zation in an iterative scheme for both the inputs and parameters. Later we

https://github.com/genssi-developer/GenSSI
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Fig. S25. Case LPN3B0: stimuli inference in 3rd re-optimization of the inverse opti-

mal control problem and the relative difference between the true parameter values used to

generate the synthetic noiseless data and the estimates.
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Fig. S26. Case LPN3B0: fit for the observables in 3rd re-optimization of the inverse optimal

control problem for the noiseless case.

analyzed the impact of this strategy on the inference of the true solution.
The results for the LPN3B0 case are summarized in Figures S25and S26.
The respective results for the noisy case are presented in the Figures S27,
S28 and S56.

It is worth using this relatively simple (but challenging) case study
to illustrate several additional key points of our approach. In Figure S1
we present a schematic representation of the workflow we consider for
synthetic problems. Assuming a set of parameters for our model, as well
as the underlying optimality principles, we solve the multi-objective OCP.
We then obtain a set of all optimal solutions (Pareto front) as different trade-
offs of the criteria considered. We generate synthetic dataconsidering the
inputs resulted from the OCP (and the same assumed set of parameters)
and that correspond to one of the Pareto optimal points. To parallelize with
the general IOCP work-flow figure presented in the main paper,we then
refer to the first step, that is solving the input estimation problem from
the synthetic data set. As a result, we have the reconstructed input and the
inferred parameters that can be now used in step 2. In this step, we solve
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Fig. S27. Case LPN3B10: goodness of the estimation for the noisy and noiseless subcase in

comparison, showing the normalized root mean square error and the reconstructed stimuli

in the noisy subcase (versus the true value used for the pseudo-experimental noisy data

generation).
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Fig. S28. Case LPN3B10: fit to the observables in the inverse optimal control problemfor

the noisy case.

the multicriteria OCP (using the parameter set that we got from step 1).
We, thus, obtain a Pareto front where we proceed in step 3 matching the
reconstructed solution of step 1 to one of the Pareto optimalpoints and
thus infer the specific trade-off of the criteria consideredthat is consistent
with the data used. In Figure 4 (in the main paper) such a comparison is
made for the solution taken in the noisy case (LPN3B10) and presented
along with the multi-objective OCP Pareto front, in which itis located.

It is also worth noting the challenges present in this problem. For
instance, in the main subcases of the problem (LPN3B10 and LPN3B0)
we used a 3-step approximation for the inputs profiles, whereeach step
has varying duration of time. This is something that can be easily justi-
fied in this case by the optimality principle underlying in linear metabolic
networks of minimal transition time, described as the just-in-time acti-
vation profile. If we ignore this assumption, the suitable number of steps
to approximate the inputs can be determined by solving the problem using
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Fig. S29. Case LPN3B0re: stimuli inference in re-optimization43 and the relative diffe-

rence between the true parameter values used to generate the synthetic noiseless data and

the estimates. This subcase corresponds to the solution of the noiseless case without any

initial assumption of input discretization and iteratively using regularized re-optimization

as described in-text.
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Fig. S30. Case LPN3B0re: fit on the observables in re-optimization43 in the inverse

optimal control problem. This subcase corresponds to the solution of thenoiseless case

without any initial assumption of input discretization and iteratively using regularized re-

optimization as described in-text.

Table S.T4. Case LPN3B: NRMSE for noiseless (LPN3B0)

and noisy (LPN3B10) case.

Noise Iterations NRMSEy NRMSEu NRMSEθ

0% 1st 0.412983 0.577643 0.999990
0% 2nd 0.382238 0.482203 0.931450
0% 3rd 0.153955 0.141419 0.396655
0% 4th 0.023829 0.115464 0.098381
10% 1st 0.405368 0.577643 0.999990
10% 2nd 0.487641 0.486206 0.935376
10% 3rd 0.208916 0.141912 0.447917
10% 4th 0.131578 0.141407 0.112145

y:observables, u:stimuli,θ:parameters.
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Fig. S31. Case LPN3B0re: Quality of fit in the solution of the inverse optimal control

problem presented in Fig. S29, corresponding to the noiseless case, in terms of normalized

root mean square (with respect to the observables (y), inputs (u) andparameters (θ))and

how it changes by the iterative use of regularized re-optimization.
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Fig. S32. Case LPN3B10re: stimuli inference in re-optimization43 and the relative dif-

ference between the true parameter values used to generate the syntheticnoisy data and

the estimates. This subcase corresponds to the solution of the noisy case without any ini-

tial assumption of input discretization and iteratively using regularized re-optimization as

described in-text.

increasing numbers of discretization elements. In order totest the capabi-
lities of our methods by using zero prior knowledge (worst case scenario
for a problem of unknown solution), we considered obtainingthe solution
of the same two main scenarios using input profiles that have been refined
through sequential re-optimizations increasing the number of discretiza-
tion elements. In that way we can approximate any profile of inputs starting
from very few piecewise constant elements of fixed time duration. These
illustrative subcases are referred to as LPN3B10re and LPN3B0re, cor-
responding to the noisy and noiseless case respectively. All the subcases
considered for illustrative purposes are summarized in Table S.T3.

Theresults for thenoisycase are presented inFigures S32, S33 andS34.
Here each iteration is labeled as the number of times the input discretization
has been doubled (starting from the initial number of 5 elements) with the
number of iterative decreases in the regularization parametersα andβ as a



Supplementary information - Inverse optimal control in systems biology 15

0 1 2 3 4

Time (s)

0.8

1

1.2

C
o
n
c
e
n
tr

a
ti
o
n
 (

a
u
)

S1  

0 1 2 3 4

Time (s)

0

0.5

1

1.5

C
o
n
c
e
n
tr

a
ti
o
n
 (

a
u
)

S2  

0 1 2 3 4

Time (s)

0

0.5

1

C
o
n
c
e
n
tr

a
ti
o
n
 (

a
u
)

S3  

0 1 2 3 4

Time (s)

0

0.5

1

C
o
n
c
e
n
tr

a
ti
o
n
 (

a
u
)

S4  

Fig. S33. Case LPN3B10re: fit on the observables in re-optimization43 in the inverse opti-

mal control problem. This subcase corresponds to the solution of the noisy case without any

initial assumption of input discretization and iteratively using regularized re-optimization

as described in-text.
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Fig. S34. Case LPN3B10re: Quality of fit in the solution of the inverse optimal control

problem presented in Fig. S32, corresponding to the noisy case, in termsof normalized root

mean square (with respect to the observables (y), inputs (u) and parameters (θ))and how it

changes by the iterative use of regularized re-optimization.

subscript. In Figure S34 we can see that after a certain point, by increasing
more the discretization level and relaxing the regularization parameters
the solution was insignificantly improving in terms of NRMSE, e.g. for
the parameters, but was actually becoming worse for the inputs. The later
can also be visualized by the obvious numerical noise in the input profiles
in Figure S32. In LPN3B0re, due to the absence of noise, the case is not
the same and the solution is being improved until the last iteration of the
scheme that we implemented (Figure S31). In addition to that, the input
profiles are smoother and of course the metrics (NRMSE) better, as it can
be expected. The results are summarized in Figures S29, S30 and S31.

Furthermore, it is worth illustrating numerically the structural identifi-
ability issues arising in these formulations, i.e. we can obtain the same fit to
the model’s observables with completely different input profiles. Follow-
ing three more subcases are presented to support our claim (LPN3B0noreg,
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Fig. S35. Case LPN3B0noreg: two different optimal solutions with the same quality of fit

to the observables as a result of lack of structural identifiability. The red dashed line is the

true solution used to generate the synthetic noiseless data and the blue line is theestimate

computed without the use of regularization for this ill-posed case. Their relative difference

in terms of parameters estimated is also presented. The underestimation in the inputs is

compensated by the massive difference in parameter values.
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Fig. S36. Case LPN3B0noreg: fit to the observables for the optimal solutions depictedin

Fig.S35.

LPN3B0p2l2 and LPN3B0norege2), all of them considering noiseless
synthetic data to emphasize the issues even in the ideal scenario.

In particular, in subcase LPN3B0noreg, we can obtain a solution of
the problem without any use of regularization (as expected for a noiseless
case). We summarize the results in Figures S35 and S36. The inputs profiles
are quite different with respecto to the original ones, eventhough the
model’s output fit the observables extremely well. As we alsodiscussed in
the main paper, this is a consequence of the problem being ill-posed (due
to the lack of structural identifiability). We can reduce these difficulties
using regularization, i.e. we surmount ill-posedness by incorporating prior
information via regularization.

In addition, in subcases LPN3B0p2l2 and LPN3B0norege2 we show
how introducing prior information (in the bounds and using regularization)
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Fig. S37. Case LPN3B0p2l2: two different optimal enzyme profiles which result in the

same quality of fit. Since the optimalp2 value is twice its true value, the computed enzyme

profiles compensate for this modification. This result illustrates the lack of structural iden-

tifiability and corresponds to the solution of the noiseless case with differentbounds on the

parameter set.
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Fig. S38. Case LPN3B0p2l2: fit to the observables corresponding to the noiselesscase

optimal solution presented in Fig. S37.

can improve the inferred solution. In LPN3B0p2l2, while using regu-
larization in the exact same way as to obtain the LPN3B0 solution, we
constrain the bounds of parameterp2, to force a solution far for the true
one (= 1) and imposing a lower bound equal to3 in the IOCP formulation.
As a result, the input profiles we obtain show that the increase in the
resultingp2 is totally compensated by a decrease in thee2 activation, yet
the output of the model remains unaltered. The results are given in Figures
S37 and S38. In subcase LPN3B0norege2, we do not make use of any
regularization term in our cost function. We constrainp2 between0 and
0.1 and we increase the upper bound ofe2 from 1 to 100. The results
are shown in Figures S39 and S40. As one can expect, the same (with
the LPN3B0) output is obtained but with much different inputprofiles.
The big decrease inp2 is compensated by a massive increase ine2 while
having no regularization in usee1 ande3 activations are decreased and
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Fig. S39. Case LPN3B0norege2: two different optimal enzyme profiles which result in the

same quality of fit. The computed enzyme profiles compensate for the massive differences

in the parameter estimates. This result illustrates the lack of structural identifiability and

corresponds to the solution of the noiseless case with different bounds on parameter set and

inputs.
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Fig. S40. Case LPN3B0norege2: fit to the observables corresponding to the noiseless case

optimal solution presented in Fig. S39.

compensated by increasedp1 andp3 values resulting again in an excellent
fit.

1.10 Case study SC

This case study is presented as the second example of the general IOCP-
2 problem. The model corresponds to the central carbon metabolism of
yeast during diauxic shift in a nutrient depletion scenario. The model for-
mulation is taken from Klippet al. (2002) and de Hijas-Listeet al. (2014).
It consists of six metabolic reactions: the upper and lower glycolysis, the
ethanol formation and consumption, the TCA cycle and the respiratory
chain. This description results in 9 dynamic states, 8 parameters and 6 time-
dependent enzyme concentrations. Additionally, we consider the critical
values of ATP and NADH as constraints on the states of the model. In the
multicriteria OCP formulation considered by de Hijas-Liste et al. (2014),
the objective was to find the enzyme activation profiles whichare Pareto
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optimal, considering two objective functions (maximization of survival
time and minimization of enzyme synthesis cost). Here the synthetic data
used to fit the model are generated considering one of the points of the
Pareto front resulted by this OCP in the same way previously described
for LPN3B. In Figure S41 we give the network representation that was
considered.
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Fig. S41. Case SC: Network representation for the SC case study. Glucose and triose

phosphates are represented in this model byX1 andX2, while pyruvate and ethanol,

respectively, byX3 andX4.

1.10.1 Problem formulation
The mathematical formulation of the inverse optimal control problem is
given as:

min
e(t),k,tf

Jouter[S, e,k] (S.66)

Where:

Jouter[S, e,k] =

nexp
∑

q=1

nobs
∑

j=1

ndata
∑

i=1

wijq(yijq(S(ti,k), e,k)− ỹijq)
2

(S.67)
Subject to:

max
e(t),tf

Jinner[S, e,k] (S.68)

Where:
Jinner[S, e,k] =

[

tf ,−
∫ tf
t0

(
∑6

i=1 ei)dt
]T

(S.69)

Subject to:
dS

dt
= N · v,S{t0} = S0 (S.70)

y(S,k) = S (S.71)

6
∑

i=1

ei ≤ ET (S.72)

NADH ≥ NADHc (S.73)

ATP ≥ ATPc (S.74)

Where the states’ vector is:

S = [X1,X2,X3,X4, NADH,ATP,NAD,ADP ] (S.75)

And the stoichiometric matrix along with the reactions’ kinetics corre-
sponds to (S.76) and (S.77) respectively and are given below:

N =





























−1 0 0 0 0 0 0 0

2 −1 0 0 0 0 0 0

0 1 −1 1 −1 0 0 0

0 0 1 −1 0 0 0 0

0 1 −1 1 4 −1 0 −1

−2 2 0 0 0 3 −1 0

0 −1 1 −1 −4 1 0 1

2 −2 0 0 0 −3 1 0





























(S.76)

v1 = k1 · e1 ·X1 ·ATP

v2 = k2 · e2 ·X2 ·NAD ·ADP

v3 = k3 · e3 ·X3 ·NADH

v4 = k4 · e4 ·X4 ·NAD

v5 = k5 · e5 ·X3 ·NAD

v6 = k6 · e6 ·NADH · ADP

v7 = k7 ·ATP

v8 = k8 ·NADH

(S.77)

With the given initial values of:

S0 =
[

1 1 1 10 0.7 0.8 0.3 0.2
]

(S.78)

A path constraint on the total amount of enzymes is implemented in
Eqn. (S.72) whereET is 11.5. In (S.73) and (S.74) the critical values
NADHc = 0.5 andATPc = 0.7, of NADH and ATP respectively,
above which the cell is considered to survive are implemented also as path
constraints.

We reformulated the model as explained below. After considering the
computation of the products̃ei = ki ·ei : i ∈ [1, 6], (S.66),(S.67), (S.68),
(S.69), respectively, become:

min
ẽ(t),k,tf

Jouter[S, ẽ,k] (S.79)

Where:

Jouter[S, ẽ,k] =

nexp
∑

q=1

nobs
∑

j=1

ndata
∑

i=1

wijq(yijq(S(ti,k), ẽ,k) − ỹijq)
2

(S.80)
Subject to:

max
ẽ(t),tf

Jinner[S, ẽ,k] (S.81)

Where:
Jinner[S, ẽ,k] =

[

tf ,−
∫ tf
t0

(
∑6

i=1 ẽi)dt
]T

(S.82)

Additionally (S.72), (S.77) become, respectively:

6
∑

i=1

ẽi ≤ ẼT (S.83)

v1 = ẽ1 ·X1 ·ATP

v2 = ẽ2 ·X2 ·NAD ·ADP

v3 = ẽ3 ·X3 ·NADH

v4 = ẽ4 ·X4 ·NAD

v5 = ẽ5 ·X3 ·NAD

v6 = ẽ6 ·NADH ·ADP

v7 = k7 · ATP

v8 = k8 ·NADH

(S.84)

This model’s reactions correspond to a simple representation of the
central carbon metabolism of yeast. The statesX1−4 represent the key
metabolites of the pathways included. In detail,X1 stands for glucose
andX4 for ethanol, the two carbon sources between which the diauxic
shift is occurring in the dynamic scenario taken into account. The triose
phosphates in the glycolysis are represented byX2, as pyruvate is conne-
cting glycolysis with the TCA cycle and ethanol formation/consumption
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Fig. S42. Case SC0A: stimuli inference in the inverse optimal control problem. Thissolu-

tion corresponds to the noiseless case and scenario A, where we assume that we can measure

the total enzyme concentration to be measured.
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Fig. S43. Case SC0A: fit to the observables corresponding to the noiseless case optimal

solution presented in Fig. S42.

as stateX3. Therefore in Figures S43 and S50 these states are shown by
the names corresponding to the metabolites they represent.However, the
inputs of the model do not correspond to a specific enzyme due to the fact
that the reactions they are catalyzing are simplifications of whole path-
ways. Therefore in Figure S52, where a qualitative comparison between
the model’s predictions and real experimental measurements is shown, the
model’s inputs are compared with multiple real enzymes included in their
corresponding pathway. Note that fore6 there is no such correspondence
and therefore no comparison is made.

1.10.2 Numerical results
This model presents a similar issues as in case LPN3B. In the dynamics,
the inputs (enzyme concentrationsei) are always found multiplied by the
kinetic parameters (k1−6). In the case of LPN3B, where the structural
identifiability analysis was illustrated both analytically and numerically,
we found serious problems due to this structure. It should benoted that in
LPN3B the unknowns were three inputs, approximated with 3 piecewise
constant elements, and 3 parameters, while the data were 21 time-points
for five observables. Here, in SC, where we have 8 parameters and 6
inputs, approximated with 6 piecewise linear steps (aka 7 elements) and
computed for 15 time-points of 8 observables, we expect suchproblems to
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Fig. S44. Case SC0A: estimated inputs from the inverse optimal contro problem being

matched to the corresponding point in the Pareto front. This corresponds to the noiseless

case (scenario A) optimal solution presented in Fig. S42.

Table S.T5. Case SC: NRMSE for the noisy and noiseless

cases.

Noise ScenarioNRMSEy NRMSEu NRMSEθ

0% A 0.001231 0.197015 0.740545
0% B 0.007045 0.644559 1.563603
10% - 0.129583 0.287440 0.642375

y:observables, u:stimuli,θ:parameters.

be even more serious. Therefore, in order to quickly reduce the problem ill-
possedness we reformulated the model as stated above, i.e. by estimating
the products of̃ei = ki · ei, for i ∈ [1, 6]. By doing this, we reduced the
NLP size by 6 structurally unidentifiable unknowns.

For this case study, we considered data: (i) generated with the addition
of 10% heteroscedastic proportional noise (SC10), and (ii)w noiseless
(SC0). In Table S.T5 we summarize the normalized root mean square
error for the solutions corresponding to these scenarios (NRMSE values
were computed for observables and inputs). Since we are dealing with a
synthetic problem of known solution, we can also use the NRMSE metric
for the parameter inference.

As expected, in the noiseless case (SC0), there was no need touse regu-
larization terms in the cost function. For illustrative purposes we divide this
subcase into two scenarios. In scenario A we assume that we can measure
the total enzyme concentration, while in scenario B we do not. Regarding
scenario A, the controls (enzymes) inference is shown in Figures S42,
while the fit to the observables is shown in Figure S43. The corresponding
NRMSE values are given for observables, inputs and parameters in Figure
S45 for both iterations of the solution (1st solution and re-optimization).
The respective results for scenario B are presented in Figures S46, S47
and S48. Finally, in the same way as presented for LPN3B, in Figure
S44 we are illustrating the final step of the IOCP-2, matchingthe solution
taken from the input reconstruction with one of the points ofthe Pareto
front resulted in the OCP and, i.e., correctly identifying the underlying
optimality principle.

We note that for the noisy case (SC10) no regularization was used in
the objective function (described by a log likelihood cost function). In
Figure S49 we present the IOCP result for the inputs, while inFigures S50
and S57 we show the model fit to the observables and the convergence
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Fig. S45. Case SC0A: normalized root mean square error with respect to the observables

(y), the inputs (u) and the true parameters (θ), corresponding to the noiseless case optimal

solution presented in Fig. S42.
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Fig. S46. Case SC0B: stimuli inference in the inverse optimal control problem. Thissolu-

tion corresponds to the noiseless case and scenario B, where we assume we can not measure

the total enzyme concentration.

curve, respectively. The corresponding NRMSE values with respect to all
observables, inputs and parameters are given in Figure S51 and Table S.T5.

As mentioned in the main paper, experimental time-series data are avai-
lable that allow qualitative comparisons, as performed in previous works
considering this case study as an optima control problem (Klipp et al.,
2002),(de Hijas-Listeet al., 2014). Even though the scaling in very diffe-
rent, we can still perform a qualitative comparison betweenthe enzymes
of the model and the corresponding enzymes that have been measured, as
was done in these previous papers. In figure S52 we can see thatsuch a
qualitative comparison exhibits a good agreement.

1.11 Computational requirements and scalability

The purpose of this paper is to introduce and illustrate the IOCP approach,
the fundamental issues in this class of problems and how to handle them.
We illustrate all the above using four different case studies, two for each
type of IOCP as described previously in the manuscript. These case studies
are of various size and complexity, so it is interesting to analyze their
different requirements in terms of computational effort. We present the
computation times required to obtain the solutions presented in this work
in Table S.T6, while in Figures S54-S57 we present typical convergence
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Fig. S47. Case SC0B: fit to the observables corresponding to the noiseless case optimal

solution presented in Fig. S46.
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Fig. S48. Case SC0B: normalized root mean square error with respect to the observables

(y), the inputs (u) and the true parameters (θ), corresponding to the noiseless case optimal

solution presented in Fig. S46.
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Fig. S49. Case SC10: stimuli inference in the inverse optimal control problem. This

solution corresponds to the noisy case.
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Fig. S50. Case SC10: fit to the observables corresponding to the noisy case optimal solution

presented in Fig. S49.
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Fig. S51. Case SC10: normalized root mean square error with respect to the observables

(y), the inputs(u) and the true parameters (θ) corresponding to the noisy case optimal

solution presented in Fig. S49.

curves for each case study. The rest of the convergence curvefigures,
corresponding to all subcases considered in this work, can be found in
Zenodo. All the computations were carried out on a PC Intel Xeon E5-
2630@2.30GHz using Matlab R2015b under Windows 7.

Table S.T6 shows that the computation times required to solve case stu-
dies JAKSTAT and LPN3B were rather modest (order of minutes). Case
study SC required computation times of 1 or more hours, as expected due
to the larger network involved. Case study TSP was even more demanding
because it considers 16 different experiments. Note however that multi-
experiment settings can be easily parallelized. Overall, we believe that
these results indicate a rather satisfactory scalability of our approach with
problem size (Figure S53), especially considering that we have used a
Matlab implementation of the framework (typically 1-2 orders of magni-
tude slower than compiled languages like C) and how challenging these
problems are. Further, significant speed-ups can be obtained by adapting
high performance computing strategies, including coarse and fine-grained
parallelization strategies, as we have recently shown for the parameter
estimation problem Penaset al. (2017).
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Fig. S52. Case SC0A: qualitative comparison of the estimated inputs with relevant expe-

rimental enzyme data. Our estimated inputs (blue line), presented in Fig. S42,correspond

to the left axis while the experimental data (black lines) correspond to the right axis.
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correspond to different subcases.
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