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Table S1: Performance comparison in APA site detection on simulated data. The number of true APA sites
is 21731.

Dataset
(in million)

Tool name
Number of
predicted
APA sites

Correctly
identified
APA sites

Sensitivity
(%)

Precision
(%)

50 TAPAS 19453 16866 77.61 86.70

100 TAPAS 20712 18205 83.77 87.90

150 TAPAS 21335 18871 86.84 88.45

50 Cufflinks 25952 15117 69.56 58.25

100 Cufflinks 26032 16303 75.02 62.63

150 Cufflinks 25499 16779 77.21 65.80

50 IsoSCM 28152 11790 54.25 41.88

100 IsoSCM 29201 13583 62.51 46.52

150 IsoSCM 29600 14592 67.15 49.3

50 GETUTR 50818 15495 71.30 30.49

100 GETUTR 53226 16596 76.37 31.18

150 GETUTR 54577 17082 78.61 31.3

Table S2: Performance comparison in APA site detection on real data. Two flexible ranges (50 bps and 100
bps) are considered for matching a predicted APA site with a true one from 3′-Seq.

Number of
true APA sites
based on 3′-Seq

Tool name
Number of
predicted
APA sites

Correctly
identified
APA sites
(50 bps)

Precision
(%)

Correctly
identified
APA sites
(100 bps)

Precision
(%)

TAPAS 33816 10429 30.84 12224 36.15
33751 Cufflinks 71502 5711 7.99 7956 11.13

IsoSCM 36286 6354 17.51 7680 21.17
GETUTR 62858 3111 4.95 6977 11.10
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Figure S1: A flowchart of the TAPAS pipeline. In the differential expression analysis, we assume that n
RNA-Seq replicates are given for each condition. In the figure, mapped reads also include read coverage
information.
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Figure S2: Some examples of filtration. (a) The PELT algorithm might output cp1 as a change point even
though the true APA site is cp2, which is removed by TAPAS. (b) If a 3′ UTR frame contains an intron
(either annotated or novel), then a well might be created in the read coverage. (c) Three situations of the
read coverage over the frame are illustrated. In case 1, the mean read coverages before and after the well
are similar and TAPAS removes both change points cp1 and cp2 around the well. In case 2, the mean read
coverage before the well is greater than the mean read coverage after the well and TAPAS keeps cp1 as a
potential APA site. In case 3, when the mean read coverage before the well is smaller than that after the
well (which is not common), TAPAS would remove both change points as in the first case.
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Table S3: Performance comparison in APA site detection on real data, when the prediction results of the
tools compared are filtered by the 3′ UTR frames defined by TAPAS. Two flexible ranges (50 bps and 100
bps) are considered for matching a predicted APA site with a true one from 3′-Seq. The number of predicted
APA sites of TAPAS is lowered to be closer to those of Cufflinks’ and IsoSCM’s. For a further comparison,
Cufflinks is run with the reference transcriptome in RefSeq (i.e., Cufflinks -g). Note that, given the number
of APA sites predicted by Cufflinks -g, its performance should be directly compared with that of TAPAS
provided in Table S2 rather than the numbers in this table.

Tool name

Number of
predicted APA

sites within
frames

Correctly
identified
APA sites

(50 bps flexible
range)

Precision
(%)

Correctly
identified
APA sites

(100 bps flexible
range)

Precision
(%)

TAPAS 16313 8764 53.72 9764 59.85

Cufflinks 8719 3534 40.53 5034 57.74

Cufflinks -g 23594 9884 41.89 10838 45.94

IsoSCM 10016 4569 45.62 5606 55.97

GETUTR 23347 2289 9.80 5452 23.35

Table S4: Performance comparison in detecting internal APA sites located inside the 3′ UTR frames on real
data.

Tool
name

Correctly
predicted

internal APA
sites (50 bps

flexible range)

Sensitivity
(%)

Correctly
predicted

internal APA
sites (100 bps
flexible range)

Sensitivity
(%)

TAPAS 7598 46.69 8302 51.01

Cufflinks 3906 24.00 5520 33.92

IsoSCM 4640 28.51 5586 34.32

GETUTR 2512 15.43 5579 34.28

Table S5: Performance comparison in APA site detection on real data. Two flexible ranges (50 bps and 100
bps) are considered for matching a predicted APA site with a true one from PAS-Seq.

Number of
true APA sites

based on PAS-Seq
Tool name

Number of
predicted
APA sites

Correctly
identified
APA sites
(50 bps)

Precision
(%)

Correctly
identified
APA sites
(100 bps)

Precision
(%)

TAPAS 33816 26336 77.88 29346 86.78
50148 Cufflinks 71502 12338 17.26 17290 24.18

IsoSCM 36286 17606 47.38 19919 54.89
GETUTR 62858 6253 9.95 15442 24.57
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Table S6: Performance comparison in the detection of genes with differentially expressed (DE) APA sites
on simulated data. The number of genes with actual DE APA sites is 1254, and each such gene contains
only one DE APA sites. Since DEXSeq is designed for differential splicing (DS) rather than DE analysis
[Liu et al., 2014, Soneson et al., 2016], we consider DE genes with at least two transcripts (298 in total) as
the benchmark when evaluating the performance of DEXSeq. Here, Cuffdiff anno = Cuffdiff with annotation.

Dataset
(in million)

Tool name
Number of

detected genes with
DE APA sites

Correctly
identified genes with

DE APA sites

Sensitivity
(%)

Precision
(%)

30 TAPAS 1282 955 76.16 74.49

50 TAPAS 1329 1048 83.57 78.86

100 TAPAS 1308 1119 89.23 85.55

150 TAPAS 1317 1139 90.83 86.48

30 Cuffdiff 1377 999 79.67 72.55

50 Cuffdiff 1388 1011 80.62 72.84

100 Cuffdiff 1429 1017 81.10 81.10

150 Cuffdiff 1446 1012 80.70 69.99

30 Cuffdiff anno 1158 1022 81.50 88.26

50 Cuffdiff anno 1180 1046 83.41 88.64

100 Cuffdiff anno 1188 1057 84.29 88.97

150 Cuffdiff anno 1200 1063 84.47 88.58

30 DESeq 1202 1129 90.03 93.93

50 DESeq 1210 1144 91.23 94.55

100 DESeq 1197 1124 89.63 93.90

150 DESeq 1235 1141 90.99 92.39

30 DEXSeq 281 198 66.44 70.46

50 DEXSeq 278 211 70.81 75.90

100 DEXSeq 268 215 72.15 80.22

150 DEXSeq 273 216 72.48 79.12

Table S7: Performance comparison in the detection of genes with shortening/lengthening events on simulated
data. The actual number of genes with shortening/lengthening events is 674.

Dataset
(in million)

Tool name
Number of
predicted

event genes

Correctly
determined
event genes

Sensitivity
(%)

Precision
(%)

50 TAPAS 598 444 65.88 74.25

100 TAPAS 632 502 74.48 79.43

150 TAPAS 631 506 75.07 80.19

50 DaPars 727 422 62.61 58.05

100 DaPars 645 426 63.20 66.05

150 DaPars 618 443 65.73 71.68

50 ChangePoint 421 125 18.55 29.69

100 ChangePoint 525 125 18.55 23.81

150 ChangePoint 509 138 20.47 27.11
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Table S8: Performance comparison in the detection of genes with shortening/lengthening events on real
data.

Tool name
Shortening

/lengthening event gene
identified by tool

Precision
(%)

TAPAS 872 61.7

DaPars 808 39.85

ChangePoint 734 34.33

Table S9: Comparison of time (in minutes) and peak memory (in gigabytes) usage among the APA site
detection tools on the simulated dataset with 50 million reads used in Section 3.1. Here, the running time
of TAPAS includes the calculation of read coverage by SAMtools.

Tool name Time (min) Memory (GB)

TAPAS 121 16.62

Cufflinks 97 1.00

IsoSCM 103 3.67

GETUTR 106 19.78

Table S10: Comparison of time and peak memory usage among the tools for shortening/lengthening analysis
on the simulated dataset with 50 millions reads used in Section 3.3. Again, the running time of TAPAS
includes the calculation of read coverage by SAMtools.

Tool name Time (min) Memory (GB)

TAPAS 803 7.70

TAPAS (parallel) 81 7.70

DaPars 49 3.99

ChangePoint 1876 19.55

Algorithm 1 The PELT method for finding change points in a 3′ UTR frame.

procedure PELTMethod(y, C, γ)
Input:
y → read coverage of a 3′ UTR frame, (y1, y2, . . . , yn)
C → twice negative log-likelyhood cost function on y
γ → penalty

Initialize:
F (0) = −γ
cp(0) =NULL
R1 = {0}

for t∗ = 1, . . . , n do
F (t∗) = mint∈Rt∗ [F (t) + C(yt+1:t∗) + γ]
t1 = arg{mint∈Rt∗ [F (t) + C(yt+1:t∗) + γ]}
cp(t∗) = [cp(t1), t1]− {0}
Rt∗+1 = {t∗, {t ∈ Rt∗ : F (t) + C(yt+1:t∗) < F (t∗)}}

cp(n) = [cp(n), n]
Output: change points, cp(n)
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Algorithm 2 Filtration of change points found by PELT when the read coverage of a 3′ UTR frame increases
(or decreases) gradually.

procedure FilterRedundantChangePoints(cp, coverage, strand)
Input:
cp→ change points of a 3′ UTR frame
coverage→ read coverage of the 3′ UTR frame
strand→ strand of the 3′ UTR frame
if strand = positive then

for each pair of consecutive change points, (cpi−1, cpi) do
if most of the base positions between cpi−1 and cpi have decreasing coverage then

remove cpi−1 from the list of APA sites

else
for each pair of consecutive change points, (cpi, cpi+1) do

if most of the base positions between cpi and cpi+1 have increasing coverage then
remove cpi+1 from the list of APA sites

Algorithm 3 Detection and removal of change points around a well.

procedure FilterChangePointsAroundWell(cp, coverage, strand)
Input:
cp→ change points of a 3′ UTR frame. These change points divide the frame into segments
coverage→ read coverage of the 3′ UTR frame
strand→ strand of the 3′ UTR frame

M ← mean coverage of segments
if strand = positive then

for each mean mi in M do
if mi−1 > mi < mi+1 then

if mi−1 = mi+1 then
remove change points between mi−1, mi and mi, mi+1

else if mi−1 > mi+1 then
remove change points between mi and mi+1

else
remove change point between mi−1, mi and mi, mi+1

else
for each mean mi in M do

if mi−1 > mi < mi+1 then
if mi−1 = mi+1 then

remove change points between mi−1, mi and mi, mi+1

else if mi−1 < mi+1 then
remove change points between mi−1 and mi

else
remove change point between mi−1, mi and mi, mi+1
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Algorithm 4 EM algorithm for estimating the abundance of alternative 3′ UTRs.

procedure AbundanceCalculator(T , l, R)
Input:
T → set of all possible alternative 3′ UTRs in a frame
l→ set of lengths of those alternative 3′ UTRs
R→ set of reads mapped in the 3′ UTR frame

Assign random values to all ρt, where t ∈ T and ρt is the abundance of t
while not converged do

initialize all readt to 0, where readt is the read count for t
for each read r in R do

Tr → set of alternative 3′ UTRs containing read r
for each alternative 3′ UTR t (t ∈ Tr) do

readt = readt + ρt∑
u∈Tr

ρu

s =
∑
t∈T

readt
(lt−lr+1)

for each alternative 3′ UTR t do
ρt = readt

(lj−lr+1)×s

RC ← calculate the abundance (read counts) of all the 3′ UTRs (of the given frame) from ρ
Output: RC
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Figure S3: Length distribution of the 3′ UTR frames extract from the human RefSeq annotation GRCh37.
The 3′ UTR frames have lengths ranging from 2 bps to 238,767 bps, with the average being 1, 770.786 bps.
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Table S11: Performance comparison between TAPAS and 3P-Seq in APA site detection on mouse liver data.
Paired-end RNA-Seq reads from standard polyA+ libraries for mouse liver (SRX196268) were downloaded
from NCBI and mapped by TopHat2 to the mouse genome. For performance evaluation, a 3′-Seq dataset
for mouse liver (GSM747483) was also downloaded from NCBI and used as benchmark. We ran TAPAS
on the mapped reads and compared its predicted APA sites against the benchmark. As a comparison,
we downloaded the 3P-Seq data for mouse liver (GSM1268948) from NCBI. Among the 29932 APA sites
reported in the 3-Seq data, TAPAS and 3P-Seq identified 10900 and 19480 sites, respectively. In terms
of sensitivity, 3P-Seq outperforms TAPAS; but TAPAS outperforms 3P-Seq in terms of precision. Note
that TAPAS uses standard RNA-Seq data which is very popular and easy to perform while 3P-Seq requires
complex biological steps and large amounts of RNA for its analysis [Kim et al., 2015].

Number of
APA sites in
3′-Seq data

Tool name
Number of

output APA
sites

Overlap with
3′-Seq (100 bps
flexible range)

Sensitivity
(%)

Precision
(%)

29932 TAPAS 25147 10900 36.42 43.35
3P-Seq 82551 19480 65.08 23.60

Table S12: Versions of the other tools compared in the experiments.
Tool name Version

IsoSCM 2.0.11

GETUTR 1.0.2

Cufflinks 2.2.1

Cuffdiff 2.2.1

DESeq 1.9.12

DEXSeq 0.1.25

Commands for Running the Tools Compared in the Experiments

TAPAS

./APA sites detection -ref ANNOTATION FILE -cov READ COVERAGE FILE -l READ LENGTH -o OUTPUT FILE

As also explained on its Github page1, the expected input of TAPAS consists of a genomic or transcriptomic
annotation file (from UCSC), a read coverage file (generated using SAMtools) and the read length, and its
output includes a list of predicted APA sites in all extracted 3′ UTR frames.

IsoSCM

java -Xmx102400m -jar IsoSCM-2.0.11.jar assemble -coverage false -bam BAM FILE

-base OUTPUT FILE NAME -s unstranded -min terminal 50 -min fold 0.08 -jnct alpha 0.05

GETUTR

python GETUTR.1.0.2/GETUTR.py -i BAM FILE NAME -o OUTPUT FILE NAME -m 10 -r ANNOTATION FILE

Cufflinks

cufflinks -p 1 -o OUTPUT FILE --overlap-radius 75 BAM FILE

1https://github.com/arefeen/TAPAS
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Cuffdiff

cuffdiff -o OUTPUT FILE -p 2 -FDR 0.1 -L C1,C2 -m 76 -s 1 -max-bundle-frags 20000000

ANNOTATION FILE SET OF CONDITION ONE FILES SET OF CONDITION TWO FILES

DESeq and DEXSeq

These tools are run with their default settings in Bioconductor.

Dapars

python DaPars Extract Anno.py -b INPUT BED FILE -s ANNOTATION FILE -o OUTPUT BED FILE

python DaPars main.py CONFIGURATION FILE

ChangePoint

perl ChangePoint/change point.pl -c CONDITION ONE BAM -t CONDITION TWO BAM -r 2 -n 5 -a 0.1 -x

51200m -g ANNOTATION FILE -d s -o OUTPUT FILE

perl ChangePoint/change point.pl -c CONDITION ONE BAM -t CONDITION TWO BAM -r 2 -n 5 -a 0.1 -x

51200m -g ANNOTATION FILE -d l -o OUTPUT FILE
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