
Supplementary Material

February 27, 2018

In this supplementary material we provide a detailed description of the
method employed by METHCOMP, some implementation details, and more
experimental results.

Methods

We seek to compress DNA methylation data stored in the bedMethyl format.
The bedMethyl format is a “modified” BED format consisting of 11 columns,
with the first nine following the same format as BED files, and the last two
columns being methylation specific. In particular, each column (c) contains the
following information:

• c1: chrom, nreference chromosome or scaffold

• c2: chromStart, the start position in chromosome

• c3: chromEnd, the end position in chromosome

• c4: name, the name of item

• c5: score, the score of item

• c6: strand, the strand of item

• c7: thickStart, the start position where the feature is drawn thickly

• c8: thickEnd, the end of position of thick displayed feature

• c9: itemRgb, the color mapping value of item

• c10: coverage, the number of reads

• c11: percentage, the percentage of methylated reads

The columns are a combination of strings and integers, and each of them
encodes different information. Thus, we use different compression strategies for
different columns. The columns containing string values include chrom (c1),
name (c4), and strand (c6). The columns in the bedMethyl format are sorted

1

by reference chromosome (c1), and within a given chromosome, by the starting
position (c2). In addition, a given reference chromosome may contain millions
of items. With these assumptions, it is reasonable to use run-lengh coding for
column 1. The value of column 4 (name) is the same for consecutive records,
and thus for the same reasons as for column 1, we use run-length encoding. The
strand column indicates if methylation occurs on the sense or antisense strand
(it can take values in {+,−, .}, where “.” corresponds to “unknown origin”).
The strand value is most likely independent of the value of any other columns,
and thus we use an adaptive arithmetic coding with a dictionary of size 3 to
compress this column. Some of the remaining columns, which contain integers,
are highly correlated. Hence, we can discard the values in column 3 chromEnd
as these values are always equal to the values of column 2 chromStart plus
one. In addition, in the WGBS pipeline, which is the one we use, columns
7 (thickStart) and 8 (thickEnd) are identical to chromStart and chromEnd,
respectively, and thus they can also be discarded. Columns 5 (score) and 10
(coverage) are also highly correlated, with the score being equal to the min value
between the coverage and 1000. Thus we encode only the coverage column.
Finally, column 9 itemRgb is a deterministic color mapping that depends on
the percentage value (c11), and hence can be easily retrieved from the column
percentage. In summary, from the integer columns, we only need to encode
columns 2 (chromStart), 10 (coverage), and 11 (percentage).

The values of column 2 (chromStart) are sorted within each reference chro-
mosome (c1), and we first apply differential coding as a preprocessing step to
potentially reduce the alphabet size and make the distribution skewed towards
smaller values. The resulting values are then encoded by means of adaptive
arithmetic encoding. The values of column 10 (coverage) are also encoded by
means of adaptive arithmetic encoding. Finally, column 11 (percentage) takes
values between 0 and 100, and thus we encode it with an adaptive arithmetic
encoder of alphabet size 101.

The strategies employed by METHCOMP to compress the different columns
that constitute the bedMethyl file are summarized below (all other columns are
discarded during compression):

• c1: chrom, run-length

• c2: chromStart, differential encoding followed by adaptive arithmetic

• c4: name, run-length

• c6: strand, adaptive arithmetic

• c10: coverage, adaptive arithmetic

• c11: percentage, adaptive arithmetic

Implementation Details

We implemented the METHCOMP encoder and decoder in C++, and the soft-
ware may be retrieved from https://github.com/jianhao2016/METHCOMP. In-

2

structions on how to run the code are available at the same site. Notice that in
order to compile the source, the standard version C++11 [2] of C++ is required.
This version has a number of versatile features amenable for use in large scale
data compression.

The Encoder

The encoder reads the bedMethyl file line by line, and then parses each line
into a Row object that keeps the raw data retrieved from each line in their
default type. For example, chrom (c1), name (c4) and strand (c6) are stored
as strings, while all the remaining seven columns except for itemRgb (c9) are
stored as integers; itemRgb (c9) is maintained as a string since it is discarded
during subsequent processing and given that there are only 11 different colors
in the color map, a saved string is easier to retrieve by an enumerate class than
individual numbers. Each Row is sliced into an InputData class, which performs
data preprocessing such as mapping and differentiation. The InputData of each
row only contains the necessary columns described earlier in this section. The
two run-length codes operating on chrom and name are updated inside the
InputData class while lines are being fed to the encoder.

Each InputData is inherited from an ArithmeticInt class, so every column
in the integer part of InputData is sent to a separate adaptive arithmetic en-
coder. The values in strand (c6) and percentage (c11) are fixed to 3 and 101,
respectively. As a result, the arithmetic encoder can use fixed dictionaries of
respective size 3 and 101 on them. The values in chromStart (c2) and coverage
(c10) have an unknown range which depends on the results of the experiments
themselves. Keeping a dictionary of size 232 to cover all the possible integer val-
ues is too expensive and impractical. One solution is to update the dictionary
while encoding so as to keep the size of the dictionary at a minimum, but this
approach requires keeping additional information that indicates the update and
frequent extensions of the dictionary, which consumes significant computational
resources. Given that the file size is already very large, a simpler method is
preferred. This is why we opted for “slicing” the 32-bit integer into 4 different
8-bit integers and using a fixed dictionary of size 256 for each of them. Since
the higher register bits do not change as often as the lower register ones, the
frequency counts used in the corresponding arithmetic encoders will concentrate
around several small values. This enables adding only a few bits to each integer
while keeping the model as simple as possible.

The encoding procedure is depicted in Fig. 1. The input is a bedMethyl file,
and after compression, we obtain three files. Two of them are obtained from
run-length coding, namely “outfileChrom” and “outfileName”, and are saved as
plain text since they are both of size less than 100 KB (for the files tested). The
third file is the output bit stream from the arithmetic encoders. The encoder
consecutively goes over the Row of these encoders and outputs them into the
same bit stream.

3

Figure 1: Schematic of the METHCOMP encoder.

The Decoder

From the data flow perspective, the decoder performs mirror image processing
with respect to the encoder: the decoder takes three input files and feeds them to
different decoder subunits to generate the components needed for reassembling
the final output. The first step is arithmetic decoding of the files bit-by-bit and
recovering ArithmeticInt instances. Afterwards, lines from the run-length coded
files are used to form the InputData instance. At the third stage, the decoder
combines these two instance into a Row instance and writes a row into the final
output file.

The decoder terminates once the following three conditions are fulfilled:
an EOF symbol is decoded from the arithmetic decoder; the last line in out-
fileChrom is reached; the last line in outfileName reached.

In the ideal case, those three conditions will be achieved simultaneously,
since the encoders also terminate at the same time. If any of those conditions
are met before the others, then the decoder will produce an “Error message”
informing the user that the input files do not match each other.

Experimental results

To test the performance of our compression method, we used the ENCODE
assays specified in Table 3. In the main text, we used the file suffix to denote
each individual file in assay ENCSR835OJU, since they all have identical pre-
fix. For example, 167OJH and 327MVH correspond to ENCFF167OJH and
ENCFF327MVH, respectively. METHCOMP is tested in terms of the com-
pression ratio, defined in Table 1, and with respect to execution time (Table
2). Table 1 and 2 can be found in the main document. For comparison, in the
same tables we listed the same performance results for gzip (Apple version 272).
All experiments were performed on an Intel i7 laptop with 16GB of RAM and
500GB of disk memory. METHCOMP only uses one thread and occupies less

4

than 2GB of memory, and it can run on any other 64 bit machine.

assay name description
ENCSR835OJU Mus musculus C57BL/6 heart embryo Biosample
ENCSR888JFA Mus musculus C57BL/6 forebrain embryo
ENCSR351IPU Homo sapiens hepatocyte originated from H9
ENCSR656TQD Homo sapiens mammary epithelial cell female and female adult

Table 3: Description of assays used in main text.

We used an integer implementation of arithmetic coding [12], which instead
of using a floating point representation for the interval [0, 1) employs a mapping
onto n bits, and hence reduces the precision. Therefore, one needs to iteratively
output bits and rescale the interval so as to make the calculated values fit into the
allocated n-bit register. In order to avoid multiplication overflow problems, the
number of bits should not be too large, and we settled on a 32-bit representation
which is compatible with a 64-bit machine. For a 32-bit machine, this value may
have to be decreased in case that arithmetic errors occur.

From the results in Tables 1 and 2, we see that METHCOMP provides
storage savings exceeding 97% on average. With respect to compression ra-
tio improvements, METHCOMP offers roughly 7.5× better results than gzip,
with the corresponding numerical values for file 327MVH (which shows the
most improvement) being 49.55 and 5.65, respectively. With respect to com-
pression/decompression speed, METHCOMP introduces larger decompression
delays compared to gzip due to parsing and reassembling of the file line by
line. From the results in Table 4, the compression time of METHCOMP is
roughly twice that of gzip, while the decompression time is more than three
times higher than that of gzip. The average compression and decompression
speeds of METHCOMP and gzip are 11.61 and 98.31, and 22.91 and 356.18
MB/s, respectively. It is worth pointing out that compression requires signifi-
cantly more time than decompression, so that the overall time complexities of
the schemes are only a factor of two apart. Furthermore, given that the de-
compression time is higher for METHCOMP than gzip, amounting to roughly
8 min for a file of size 50 GB, METHCOMP may be best suited for archival
storage as it also offers immense file size reductions. The decompression speed
of METHCOMP is still much faster than the download speed.

5

file name
original

size(GB)
compression time(s) compression speed(MB/s) decompression time(s) decompression speed(MB/s)
gzip METHCOMP gzip METHCOMP gzip METHCOMP gzip METHCOMP

167OJH 13 567 1201 23.48 11.08 36 135 369.78 98.61
327MVH 48 2058 4277 23.88 11.49 126 460 390.10 106.85
428AXW 2.6 122 243 21.82 10.96 8 30 332.80 88.75
677YTO 13 572 1200 23.27 11.09 38 137 350.32 97.17
751DLO 2.6 128 241 20.80 11.05 7 30 380.34 88.75
945JPE 48 2060 4405 23.86 11.16 127 473 387.02 103.92
ENCSR1 128.2 5752 10921 22.11 12.02 379 1305 331.71 100.60
ENCSR2 139 6070 12407 23.67 11.47 381 1513 368.10 94.08
ENCSR3 138.9 6257 12119 23.02 11.74 388 1472 356.51 96.63
average 22.91 11.61 356.18 98.31

Table 4: Comparison of compression speeds of gzip and METHCOMP. The

speed is computed according to
(

original size
time taken by teh task

)

To ensure a completely fair comparison between METHCOMP and gzip,
we also ran gzip on what we refer to as the “extracted” files. Extracted files
contain only those columns effectively used by METHCOMP, as outlined at the
introduction of Section Methods. The results for a selected subset of the tested
files are shown in Table 5 and Table 6. Specifically, the files 365XZL and 506SUF
were obtained from ENCSR888JFA, while the files 170PBE and 487XOB were
obtained from ENCSR351IPU. Even when operating on the preprocessed files
with extracted columns, METHCOMP still offers an approximately 3× better
compression ratio than gzip (improvement may be observed in Table 6). At
the same time, the compression/decompression times of the two methods are
comparable in this mode, as the largest fraction of the processing time is spent
on extracting repetitive columns and reinserting them during decompression.
METHCOMP offers further improvements in the decompression speed due to
the use of data blocking.

file name
original

size(GB)
extracted
size(GB)

compressed
size(GB)

compression
ratio

compression
time(s)

compression
speed(MB/s)

decompression
time(s)

decompression
speed(MB/s)

365XZL 2.6 1.0 0.24 12.33 219 12.16 149 17.87
506SUF 13 5.1 0.88 14.69 1126 11.82 784 16.98
170PBE 15 5.5 1.00 15.00 1259 12.20 843 18.22
487XOB 3.5 1.3 0.27 12.89 292 12.27 199 18.01
average 13.73 12.11 17.77

Table 5: Performance of gzip when applied to the subset of columns effectively
used by METHCOMP.

file name
original

size(GB)
compressed

size(GB)
compression

ratio
improvement

compression
time(s)

compression
speed(MB/s)

decompression
time(s)

decompression
speed(MB/s)

365XZL 2.6 0.086 30.25 2.45 230 11.58 31 85.88
506SUF 13 0.316 41.09 2.80 1145 11.63 143 93.09
170PBE 15 0.350 42.91 2.87 1260 12.19 170 90.35
487XOB 3.5 0.110 31.72 2.46 304 11.79 44 81.45
average 2.77 11.88 89.99

Table 6: Performance of METHCOMP when applied to same files in Table 5.

6

Discussion

The prevalent trend in compression practice in the field of genomics is to ap-
ply universal methods that can compress arbitrary file formats to an acceptable
level. Unfortunately, with the surge of Big Data platforms in biological and
medical research, it has become imperative to devise significantly more space
efficient, specialized algorithms for the underlying data. In this direction, new
software suites for FASTQ and VCF files have been developed for genomic data
storage [3, 4, 5, 10, 11], along with a number of specialized methods for com-
pressing metagenomic data, RNA-seq and ChIP-seq measurements in lossless
and lossy modes [6, 7, 8]. METHCOMP is one more addition to the growing li-
brary of high-performance compression suites for -omics data that is expected to
play a significant role in future cancer genomics and personal medicine research.
Given that the inherent characteristics of methylation data are unchangeable
(e.g., chromosome name, start and end point of the identified methylation cite,
methylation statistics etc), shifts in methylation data acquisition technologies
will not impact the utility of the software. The column-by-column compression
approach also allows to flexibly incorporate new information columns, or discard
unnecessary ones. Furthermore, since the bedMethyl format is a special form
of a BED format, it may be easily extended to operate on other BED formats.

References

[1] Song, Q., Decato, B., Hong, E. E., Zhou, M., Fang, F., Qu, J., Smith, A.
D. (2013). A reference methylome database and analysis pipeline to facilitate
integrative and comparative epigenomics. PloS one, 8(12), e81148.

[2] C++ Standards Committee., (2011). ISO/IEC 14882:2011, Standard for
Programming Language C++. Technical report, 2011. http://www.open-
std.org/jtc1/sc22/wg21.

[3] Malysa, G., Hernaez, M., Ochoa, I., Rao, M., Ganesan, K., Weissman, T.
(2015). QVZ: lossy compression of quality values. Bioinformatics, 31(19),
3122-3129.

[4] Long, R., Hernaez, M., Ochoa, I., Weissman, T. (2017, April). GeneComp, a
new reference-based compressor for SAM files. Data Compression Conference
(DCC), (pp. 330-339). IEEE.

[5] Tatwawadi, K., Hernaez, M., Ochoa, I., Weissman, T. (2016). GTRAC:
fast retrieval from compressed collections of genomic variants. Bioinformatics,
32(17), i479-i486.

[6] Ravanmehr, V., Kim, M., Wang, Z., Milenkovic, O. (2017). ChIPWig: A
Random Access-Enabling Lossless And Lossy Compression Method For ChIP-
Seq Data. bioRxiv, 127464.

7

[7] Kim, M., Zhang, X., Ligo, J. G., Farnoud, F., Veeravalli, V. V., Milenkovic,
O. (2016). MetaCRAM: an integrated pipeline for metagenomic taxonomy
identification and compression. BMC bioinformatics, 17(1), 94.

[8] Wang, Z., Weissman, T., Milenkovic, O. (2015). smallWig: parallel com-
pression of RNA-seq WIG files. Bioinformatics, 32(2), 173-180.

[9] Yang, A. S., Estécio, M. R., Doshi, K., Kondo, Y., Tajara, E. H., Issa, J.
P. J. (2004). A simple method for estimating global DNA methylation using
bisulfite PCR of repetitive DNA elements. Nucleic acids research, 32(3), e38-
e38.

[10] Deorowicz, S., Danek, A., Grabowski, S. (2013). Genome compression: a
novel approach for large collections. Bioinformatics, 29(20), 2572-2578.

[11] Roguski, L., Deorowicz, S. (2014). DSRC 2-Industry-oriented compression
of FASTQ files. Bioinformatics, 30(15), 2213-2215.

[12] Witten, I. H., Neal, R. M., Cleary, J. G. (1987). Arithmetic coding for data
compression. Communications of the ACM, 30(6), 520-540.

8

